Mostrar el registro sencillo del ítem

dc.contributor.advisorArboleda Valencia, Jorge
dc.contributor.advisorRodriguez-Rey, Ghennie T
dc.contributor.authorPérez Duque, Alejandra María
dc.date.accessioned2021-12-09T15:14:44Z
dc.date.available2022-04-11
dc.date.available2021-12-09T15:14:44Z
dc.date.issued2021-12-02
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/17239
dc.descriptionIlustracionesspa
dc.description.abstractspa:El género Vibrio comprende más de 100 especies bacterianas presentes en hábitats acuáticos y marinos como organismos de vida libre o asociados a organismos acuáticos, pese a que la mayoría de estas especies son consideradas no patógenas, existe una preocupación generalizada por el aumento en los casos de infecciones humanas y enfermedades en organismos acuáticos causadas por especies patógenas de Vibrio en el mundo, la emergencia de linajes epidémicos y la gran diversidad del género. Colombia no está exento de posibles brotes de cólera o vibriosis dada su ubicación geográfica y la presencia de las costas Pacífico y Atlántico. Por lo tanto, se ha establecido una vigilancia activa por parte del Instituto Nacional de Salud. En muestreos realizados durante 2010 y 2013, encontraron aislamientos de Vibrio circulando en el país, estos aislamientos no han sido caracterizados a nivel de genoma. Este estudio se enfoca en la diversidad genómica de aislamientos de Vibrio spp. para determinar sus relaciones genéticas e identificar potenciales rasgos de virulencia y resistencia. Sesenta aislamientos de Vibrio spp provenientes de muestras clínicas y ambientales de las costas Pacífico y Atlántico de Colombia fueron secuenciados, ensamblados y anotados. Se llevaron a cabo análisis de pangenoma y filogenómica para cada especie. Se caracterizaron las especies más importantes en salud pública de acuerdo con el esquema de tipificación multilocus y filogenómica. Se encontraron seis especies de Vibrio (V. parahaemolyticus (17), V. vulnificus (9), V. fluvialis (16), V. furnissii (6), V. alginolyticus (10) y V. diabolicus (4). En V. parahaemolyticus encontramos aislamientos pertenecientes al clon pandémico ST3 y ST120 y en V. vulnificus encontramos aislamientos pertenecientes al Linaje 1 y 2. El pangenoma de cada especie mostró que todos los aislamientos compartían importantes categorías relacionadas con virulencia. Se encontraron genes de virulencia homólogos entre las especies incluso en especies clasificadas como no patógenas como V. diabolicus. Se encontraron categorías relacionadas con mobiloma, elementos móviles y genes de resistencia asociados a plásmidos tanto en aislamientos ambientales como en clínicos. Este estudio permitió identificar posibles focos de vibriosis contribuyendo al fortalecimiento del sistema de vigilancia intensificada implementado por el Instituto Nacional de Salud de Colombia para predecir futuros brotes de vibriosis en el país.spa
dc.description.abstracteng:There is widespread concern about the increase in cases of human and animal infections caused by pathogenic Vibrio species due to the emergence of epidemic lineages. In Colombia, active sur-veillance by the National Institute of Health (INS) has confirmed the presence of Vibrio; however, in routine surveillance, these isolates are not genomically characterized. This study focused on the pangenome analysis of six Vibrio species: V. parahaemolyticus, V. vulnificus, V. alginolyticus, V. fluvialis, V. diabolicus and V. furnissii to determine the genetic architectures of potentially virulent and an-timicrobial resistance traits. Isolates from environmental and clinical samples were genome se-quenced, assembled and annotated. The most important species in public health were further characterized by multilocus sequence typing and phylogenomics. For V. parahaemolyticus, we found the virulent ST3 and ST120 genotypes. For V. vulnificus, we identified isolates belonging to lineages 1 and 2. Virulence gene homologues between species were found even in non-pathogenic species such as V. diabolicus. Annotations related to the mobilome, integrative mobile and conjugative elements and resistance genes were obtained from environmental and clinical isolates. This study contributes genomic information to the intensified surveillance program implemented by the INS to establish potential sources of vibriosis in Colombia.eng
dc.description.tableofcontentsAgradecimientos / Resumen Y Abstract / Lista de tablas / Lista de anexos / 1. Introducción / 1.1. Campo temático / 1.2. Planteamiento del problema / 1.3. Justificación / 1.4. Objetivos / 1.4.1. Objetivo general / 1.4.2. Objetivos específicos / 2. Referente teórico y antecedentes / 2.1. Género Vibrio / 2.1.1. Generalidades y hábitat / 2.1.2. Especies patógenas / 2.1.3. Principales especies patógenas de Vibrio / 2.1.3 Genoma de Vibrio / 2.1.4 Patógenos emergentes / 2.1.5 Resistencia a antibióticos / 2.1.6 Herramientas moleculares para el estudio de Vibrio / 2.1.7 Sistemas de vigilancia a nivel mundial / 3 Primer artículo / 4 Conclusiones generales / 4.1 Contribuciones del trabajo de grado / 4.2 Impactos potenciales del trabajo de grado / 4.3 Recomendaciones y trabajos futuros / ANEXOSspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleComparative genomics of clinical and environmental isolates of Vibrio spp.: implications of traits associated with virulence and resistanceeng
dc.typeArtículo de revistaspa
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.educationalvalidatorGonzález Muñoz, Andrea
dc.contributor.researcherArboleda Valencia, Jorge
dc.contributor.researcherVivas Aguas, Lizbeth Janet
dc.contributor.researcherCórdoba Meza, Tania
dc.contributor.researcherRodríguez Rey, Ghennie Tatiana
dc.contributor.researcherDíaz Guevara, Paula
dc.contributor.researcherMartinez Urtaza, Jaime
dc.contributor.researcherWiesner Reyes, Magdalena
dc.description.degreelevelMaestríaspa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.cospa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeManizales, Caldasspa
dc.relation.referencesArias, T., Alexander, J., Higuita, J. C., López, M., & Ospina Martínez, V. (2013). Plan Estratégico de Ciencia, Tecnología e Innovación para el departamento de Caldas.spa
dc.relation.referencesBaker-Austin, C., Oliver, J. D., Alam, M., Ali, A., Waldor, M. K., Qadri, F., & Martinez-Urtaza, J. (2018). Vibrio spp. infections. Nature Reviews Disease Primers, 4(1). https://doi.org/10.1038/s41572- 018-0005-8spa
dc.relation.referencesBaker-Austin, C., Stockley, L., Rangdale, R., & Martinez-Urtaza, J. (2010). Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: A European perspective. Environmental Microbiology Reports, 2(1), 7–18. https://doi.org/10.1111/j.1758- 2229.2009.00096.xspa
dc.relation.referencesBruto, M., Labreuche, Y., James, A., Piel, D., Chenivesse, S., Petton, B., Polz, M. F., & Le Roux, F. (2018). Ancestral gene acquisition as the key to virulence potential in environmental Vibrio populations. ISME Journal, 12(12), 2954–2966. https://doi.org/10.1038/s41396-018-0245-3spa
dc.relation.referencesCDC. (n.d.). Vibrio Species Causing Vibriosis. 2020. Retrieved February 2, 2021, from https://www.cdc.gov/vibrio/index.htmlspa
dc.relation.referencesEscobar, L. E., Ryan, S. J., Stewart-Ibarra, A. M., Finkelstein, J. L., King, C. A., Qiao, H., & Polhemus, M. E. (2015). A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Acta Tropica, 149, 202–211. https://doi.org/10.1016/j.actatropica.2015.05.028spa
dc.relation.referencesGobierno de Caldas, G. (2017). Plan Departamental de Desarrollo 2016-2019. Caldas Territorio de Oportunidades.spa
dc.relation.referencesHernández-Flórez, C. E., & Cáceres-Manrique, F. de M. (2014). Cólera, ¿se aproxima una nueva pandemia? Medicas UIS, 27(2), 67–83.spa
dc.relation.referencesKhouadja, S., Suffredini, E., Baccouche, B., Croci, L., & Bakhrouf, A. (2014). Occurrence of virulence genes among Vibrio cholerae and Vibrio parahaemolyticus strains from treated wastewaters. Environmental Monitoring and Assessment, 186(10), 6935–6945. https://doi.org/10.1007/s10661-014-3900-9spa
dc.relation.referencesKlein, S., Pipes, S., & Lovell, C. R. (2018). Occurrence and significance of pathogenicity and fitness islands in environmental vibrios. AMB Express, 8(1). https://doi.org/10.1186/s13568-018-0704- 2spa
dc.relation.referencesLópez, M. (2012). Acciones de vigilancia intensificada de cólera ante posible reintroducción en los componentes de vigilancia epidemiológica y laboratorio, Colombia, 2011-2012. 2011–2012.spa
dc.relation.referencesMohamad, N., Amal, M. N. A., Saad, M. Z., Yasin, I. S. M., Zulkiply, N. A., Mustafa, M., & Nasruddin, N. S. (2019). Virulence-associated genes and antibiotic resistance patterns of Vibrio spp. isolated from cultured marine fishes in Malaysia. BMC Veterinary Research, 15(1), 1–13. https://doi.org/10.1186/s12917-019-1907-8spa
dc.relation.referencesMok, J. S., Ryu, A., Kwon, J. Y., Kim, B., & Park, K. (2019). Distribution of Vibrio species isolated from bivalves and bivalve culture environments along the Gyeongnam coast in Korea: Virulence and antimicrobial resistance of Vibrio parahaemolyticus isolates. Food Control, 106(June), 106697. https://doi.org/10.1016/j.foodcont.2019.06.023spa
dc.relation.referencesMok, J. S., Ryu, A., Kwon, J. Y., Park, K., & Shim, K. B. (2019). Abundance, antimicrobial resistance, and virulence of pathogenic Vibrio strains from molluscan shellfish farms along the Korean coast. Marine Pollution Bulletin, 149(April), 110559. https://doi.org/10.1016/j.marpolbul.2019.110559spa
dc.relation.referencesNathamuni, S., Jangam, A. K., Katneni, V. K., Selvaraj, A., Krishnan, K., Kumar, S., Avunje, S., Balasubramaniam, S., Grover, M., Alavandi, S. V., & Koyadan, V. K. (2019). Insights on genomic diversity of Vibrio spp. through Pan-genome analysis. Annals of Microbiology, 69(13), 1547– 1555. https://doi.org/10.1007/s13213-019-01539-7spa
dc.relation.referencesOMS. (2019). Cólera. https://www.who.int/es/news-room/fact-sheets/detail/choleraspa
dc.relation.referencesRaszl, S. M., Froelich, B. A., Vieira, C. R. W., Blackwood, A. D., & Noble, R. T. (2016). Vibrio parahaemolyticus and Vibrio vulnificus in South America: water, seafood and human infections. Journal of Applied Microbiology, 121(5), 1201–1222. https://doi.org/10.1111/jam.13246spa
dc.relation.referencesSoto, Z., Pérez, L., & Estrada, D. (2016). Bacterias causantes de enfermedades transmitidas por alimentos: Una mirada en Colombia. Salud Uninorte, 32(1), 105–122. http://www.scielo.org.co/pdf/sun/v32n1/v32n1a10.pdfspa
dc.relation.referencesVezzulli, L., Pezzati, E., Brettar, I., Höfle, M., & Pruzzo, C. (2015). Effects of Global Warming on Vibrio Ecology . Microbiology Spectrum, 3(3). https://doi.org/10.1128/microbiolspec.ve-0004-2014spa
dc.relation.referencesBaker-Austin, C., Oliver, J. D., Alam, M., Ali, A., Waldor, M. K., Qadri, F., & Martinez-Urtaza, J. (2018). Vibrio spp. infections. Nature Reviews Disease Primers, 4(1). https://doi.org/10.1038/s41572- 018-0005-8spa
dc.relation.referencesBaker-Austin, C., Stockley, L., Rangdale, R., & Martinez-Urtaza, J. (2010). Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: A European perspective. Environmental Microbiology Reports, 2(1), 7–18. https://doi.org/10.1111/j.1758- 2229.2009.00096.xspa
dc.relation.referencesBalloux, F., Brønstad Brynildsrud, O., van Dorp, L., Shaw, L. P., Chen, H., Harris, K. A., Wang, H., & Eldholm, V. (2018). From Theory to Practice: Translating Whole-Genome Sequencing (WGS) into the Clinic. Trends in Microbiology, 26(12), 1035–1048. https://doi.org/10.1016/j.tim.2018.08.004spa
dc.relation.referencesBhunia, A. K. (2018). Vibrio vulnificus, Vibrio parahaemolyticus, and Vibrio cholerae. 2013, 315–329. https://doi.org/10.1007/978-1-4939-7349-1_18spa
dc.relation.referencesBisharat, N., Koton, Y., & Oliver, J. D. (2020). Phylogeography of the marine pathogen, Vibrio vulnificus, revealed the ancestral scenarios of its evolution. MicrobiologyOpen, 9(9), 1–8. https://doi.org/10.1002/mbo3.1103spa
dc.relation.referencesBruto, M., James, A., Petton, B., Labreuche, Y., Chenivesse, S., Alunno-Bruscia, M., Polz, M. F., & Le Roux, F. (2017). Vibrio crassostreae, a benign oyster colonizer turned into a pathogen after plasmid acquisition. ISME Journal, 11(4), 1043–1052. https://doi.org/10.1038/ismej.2016.162spa
dc.relation.referencesCastillo, D., Kauffman, K., Hussain, F., Kalatzis, P., Rørbo, N., Polz, M. F., & Middelboe, M. (2018). Widespread distribution of prophage-encoded virulence factors in marine Vibrio communities. Scientific Reports, 8(1), 2–10. https://doi.org/10.1038/s41598-018-28326-9spa
dc.relation.referencesDobrindt, U., Hochhut, B., Hentschel, U., & Hacker, J. (2004). Genomic islands in pathogenic and environmental microorganisms. Nature Reviews Microbiology, 2(5), 414–424. https://doi.org/10.1038/nrmicro884spa
dc.relation.referencesElmahdi, S., DaSilva, L. V., & Parveen, S. (2016). Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food Microbiology, 57, 128–134. https://doi.org/10.1016/j.fm.2016.02.008spa
dc.relation.referencesGavilan, R. G., Zamudio, M. L., & Martinez-Urtaza, J. (2013). Molecular Epidemiology and Genetic Variation of Pathogenic Vibrio parahaemolyticus in Peru. PLoS Neglected Tropical Diseases, 7(5). https://doi.org/10.1371/journal.pntd.0002210spa
dc.relation.referencesGennari, M., Ghidini, V., Caburlotto, G., & Lleo, M. M. (2012). Virulence genes and pathogenicity islands in environmental Vibrio strains nonpathogenic to humans. FEMS Microbiology Ecology, 82(3), 563–573. https://doi.org/10.1111/j.1574-6941.2012.01427.xspa
dc.relation.referencesGonzález-Escalona, N., Martinez-Urtaza, J., Romero, J., Espejo, R. T., Jaykus, L. A., & DePaola, A. (2008). Determination of molecular phylogenetics of Vibrio parahaemolyticus strains by multilocus sequence typing. Journal of Bacteriology, 190(8), 2831–2840. https://doi.org/10.1128/JB.01808-07spa
dc.relation.referencesHazen, T. H., Pan, L., Gu, J. D., & Sobecky, P. A. (2010). The contribution of mobile genetic elements to the evolution and ecology of Vibrios. FEMS Microbiology Ecology, 74(3), 485–499. https://doi.org/10.1111/j.1574-6941.2010.00937.xspa
dc.relation.referencesHeidelberg, J. F., Elsen, J. A., Nelson, W. C., Clayton, R. A., Gwinn, M. L., Dodson, R. J., Haft, D. H., Hickey, E. K., Peterson, J. D., Umayam, L., Gill, S. R., Nelson, K. E., Read, T. D., Tettelin, H., Richardson, D., Ermolaeva, M. D., Vamathevan, J., Bass, S., Halving, Q., … Fraser, C. M. (2000). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature, 406(6795), 477–483. https://doi.org/10.1038/35020000spa
dc.relation.referencesHernández-Cabanyero, C., & Amaro, C. (2020). Phylogeny and life cycle of the zoonotic pathogen Vibrio vulnificus. Environmental Microbiology, 22(10), 4133–4148. https://doi.org/10.1111/1462- 2920.15137spa
dc.relation.referencesHernández, M., Quijada, N. M., Rodríguez-Lázaro, D., & Eiros, J. M. (2020). Bioinformatics of next generation sequencing in clinical microbiology diagnosis. Revista Argentina de Microbiologia, 52(2), 150–161. https://doi.org/10.1016/j.ram.2019.06.003spa
dc.relation.referencesHorseman, M. A., & Surani, S. (2011). A comprehensive review of Vibrio vulnificus: An important cause of severe sepsis and skin and soft-tissue infection. International Journal of Infectious Diseases, 15(3), e157–e166. https://doi.org/10.1016/j.ijid.2010.11.003spa
dc.relation.referencesIna-Salwany, M. Y., Al-saari, N., Mohamad, A., Mursidi, F. A., Mohd-Aris, A., Amal, M. N. A., Kasai, H., Mino, S., Sawabe, T., & Zamri-Saad, M. (2019). Vibriosis in Fish: A Review on Disease Development and Prevention. Journal of Aquatic Animal Health, 31(1), 3–22. https://doi.org/10.1002/aah.10045spa
dc.relation.referencesJanda, J. M., Newton, A. E., & Bopp, C. A. (2015). Vibriosis. Clinics in Laboratory Medicine, 35(2), 273–288. https://doi.org/10.1016/j.cll.2015.02.007spa
dc.relation.referencesJulie, D., Solen, L., Antoine, V., Jaufrey, C., Annick, D., & Dominique, H. H. (2010). Ecology of pathogenic and non-pathogenic Vibrio parahaemolyticus on the French Atlantic coast. Effects of temperature, salinity, turbidity and chlorophyll a. Environmental Microbiology, 12(4), 929– 937. https://doi.org/10.1111/j.1462-2920.2009.02136.xspa
dc.relation.referencesKlemm, E., & Dougan, G. (2016). Advances in understanding bacterial pathogenesis gained from whole-genome sequencing and phylogenetics. Cell Host and Microbe, 19(5), 599–610. https://doi.org/10.1016/j.chom.2016.04.015spa
dc.relation.referencesKwong, J. C., Mccallum, N., Sintchenko, V., & Howden, B. P. (2015). Whole genome sequencing in clinical and public health microbiology. Pathology, 47(3), 199–210. https://doi.org/10.1097/PAT.0000000000000235spa
dc.relation.referencesLe Roux, F., Wegner, K. M., Baker-Austin, C., Vezzulli, L., Osorio, C. R., Amaro, C., Ritchie, J. M., Defoirdt, T., Destoumieux-Garzón, D., Blokesch, M., Mazel, D., Jacq, A., Cava, F., Gram, L., Wendling, C. C., Strauch, E., Kirschner, A., & Huehn, S. (2015). The emergence of Vibrio pathogens in Europe: Ecology, evolution and pathogenesis (Paris, 11-12 March 2015). Frontiers in Microbiology, 6(JUL), 1–8. https://doi.org/10.3389/fmicb.2015.00830spa
dc.relation.referencesLetchumanan, V., Chan, K. G., & Lee, L. H. (2014). Vibrio parahaemolyticus: A review on the pathogenesis, prevalence, and advance molecular identification techniques. Frontiers in Microbiology, 5(DEC), 1–13. https://doi.org/10.3389/fmicb.2014.00705spa
dc.relation.referencesLeyton, Y., & Riquelme, C. (2008). Vibrios en los sistemas marinos costeros. Revista de Biologia Marina y Oceanografia, 43(3), 441–456. https://doi.org/10.4067/s0718-19572008000300004spa
dc.relation.referencesLogar-Henderson, C., Ling, R., Tuite, A. R., & Fisman, D. N. (2019). Effects of large-scale oceanic phenomena on mon-cholera vibriosis Incidence in the United States: Implications for climate change. BioRxiv. https://doi.org/10.1101/528893spa
dc.relation.referencesLópez, L., Ganiveth, M., Herrera, L., Montes, A., Olascuaga, Y., & Ortega, R. (2010). Estudio piloto para el aislamiento de Vibrio spp. en ostras (Crassostrea rhizophorae) capturadas en la ciénada de la Vírgen, Cartagena, Colombia. 1spa
dc.relation.referencesLópez, M. (2012). Acciones de vigilancia intensificada de cólera ante posible reintroducción en los componentes de vigilancia epidemiológica y laboratorio, Colombia, 2011-2012. 2011–2012.spa
dc.relation.referencesMartinez-Urtaza, J., Bowers, J. C., Trinanes, J., & DePaola, A. (2010). Climate anomalies and the increasing risk of Vibrio parahaemolyticus and Vibrio vulnificus illnesses. Food Research International, 43(7), 1780–1790. https://doi.org/10.1016/j.foodres.2010.04.001spa
dc.relation.referencesMohamad, N., Amal, M. N. A., Saad, M. Z., Yasin, I. S. M., Zulkiply, N. A., Mustafa, M., & Nasruddin, N. S. (2019). Virulence-associated genes and antibiotic resistance patterns of Vibrio spp. isolated from cultured marine fishes in Malaysia. BMC Veterinary Research, 15(1), 1–13. https://doi.org/10.1186/s12917-019-1907-8spa
dc.relation.referencesMok, J. S., Ryu, A., Kwon, J. Y., Kim, B., & Park, K. (2019). Distribution of Vibrio species isolated from bivalves and bivalve culture environments along the Gyeongnam coast in Korea: Virulence and antimicrobial resistance of Vibrio parahaemolyticus isolates. Food Control, 106(June), 106697. https://doi.org/10.1016/j.foodcont.2019.06.023spa
dc.relation.referencesMuhling, B. A., Jacobs, J., Stock, C. A., Gaitan, C. F., & Saba, V. S. (2017). Projections of the future occurrence, distribution, and seasonality of three Vibrio species in the Chesapeake Bay under a high-emission climate change scenario. GeoHealth, 1(7), 278–296. https://doi.org/10.1002/2017GH000089spa
dc.relation.referencesNewton, A., Kendall, M., Vugia, D. J., Henao, O. L., & Mahon, B. E. (2012). Increasing rates of vibriosis in the United States, 1996-2010: Review of surveillance data from 2 systems. Clinical Infectious Diseases, 54(SUPPL.5), 391–395. https://doi.org/10.1093/cid/cis243OMS. (2019). Cólera. https://www.who.int/es/news-room/fact-sheets/detail/choleraspa
dc.relation.referencesRaszl, S. M., Froelich, B. A., Vieira, C. R. W., Blackwood, A. D., & Noble, R. T. (2016). Vibrio parahaemolyticus and Vibrio vulnificus in South America: water, seafood and human infections. Journal of Applied Microbiology, 121(5), 1201–1222. https://doi.org/10.1111/jam.13246spa
dc.relation.referencesRivera, I. N. G., Souza, K. M. C., Souza, C. P., & Lopes, R. M. (2012). Free-living and planktonassociated vibrios: Assessment in ballast water, Harbor areas, and coastal ecosystems in Brazil. Frontiers in Microbiology, 3(JAN), 1–8. https://doi.org/10.3389/fmicb.2012.00443spa
dc.relation.referencesRodríguez-Castro, A. M. (2012). Origen, distribución y caracterización de Vibrios patógenos humanos en el medio ambiente marino de Galicia. Santiago de Compostela.spa
dc.relation.referencesRouli, L., Merhej, V., Fournier, P. E., & Raoult, D. (2015). The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes and New Infections, 7, 72–85. https://doi.org/10.1016/j.nmni.2015.06.005spa
dc.relation.referencesSawabe, T., Ogura, Y., Matsumura, Y., Feng, G., Rohul Amin, A. K. M., Mino, S., Nakagawa, S., Sawabe, T., Kumar, R., Fukui, Y., Satomi, M., Matsushima, R., Thompson, F. L., Gomez-Gil, B., Christen, R., Maruyama, F., Kurokawa, K., & Hayashi, T. (2013). Updating the Vibrio clades defined by multilocus sequence phylogeny: Proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Frontiers in Microbiology, 4(DEC), 1–14. https://doi.org/10.3389/fmicb.2013.00414spa
dc.relation.referencesSong, X., Zang, J., Yu, W., Shi, X., & Wu, Y. (2020). Occurrence and identification of pathogenic Vibrio contaminants in common seafood available in a chinese traditional market in Qingdao, Shandong Province. Frontiers in Microbiology, 11(June), 1–6. https://doi.org/10.3389/fmicb.2020.01488spa
dc.relation.referencesSoto, Z., Pérez, L., & Estrada, D. (2016). Bacterias causantes de enfermedades transmitidas por alimentos: Una mirada en Colombia. Salud Uninorte, 32(1), 105–122. http://www.scielo.org.co/pdf/sun/v32n1/v32n1a10.pdfspa
dc.relation.referencesSun, Y., Bernard, E., Hammer, B., & Miyashiro, T. (2013). Competence and Natural Transformation in Vibrios. 23(1), 1–7. https://doi.org/10.1111/mmi.12307.Competencespa
dc.relation.referencesThompson, F. L., Iida, T., & Swings, J. (2004). Biodiversity of Vibrios. Journal of Clinical Microbiology. https://doi.org/10.1128/MMBR.68.3.403spa
dc.relation.referencesVelazquez-Roman, J., León-Sicairos, N., Hernández-Díaz, L. de J., & Canizalez-Roman, A. (2014). Pandemic Vibrio parahaemolyticus O3: K6 on the American continent. Frontiers in Cellular and Infection Microbiology, 3(JAN), 1–14. https://doi.org/10.3389/fcimb.2013.00110spa
dc.relation.referencesVezzulli, L., Pezzati, E., Brettar, I., Höfle, M., & Pruzzo, C. (2015). Effects of Global Warming on Vibrio Ecology . Microbiology Spectrum, 3(3). https://doi.org/10.1128/microbiolspec.ve-0004- 2014spa
dc.relation.referencesXu, M., Xu, M., & Tu, Q. (2021). Comparative evaluation of Vibrio delineation methodologies in postgenomic era. Environmental Microbiology Reports, 13, 209–217. https://doi.org/10.1111/1758- 2229.12928spa
dc.relation.referencesZago, V., Veschetti, L., Patuzzo, C., Malerba, G., & Lleo, M. M. (2020). Resistome, mobilome and virulome analysis of shewanella algae and vibrio spp. Strains isolated in italian aquaculture centers. Microorganisms, 8(4). https://doi.org/10.3390/microorganisms8040572spa
dc.relation.referencesZheng, L. L., Li, Y. X., Ding, J., Guo, X. K., Feng, K. Y., Wang, Y. J., Hu, L. Le, Cai, Y. D., Hao, P., & Chou, K. C. (2012). A comparison of computational methods for identifying virulence factors. PLoS ONE, 7(8). https://doi.org/10.1371/journal.pone.0042517spa
dc.relation.referencesBaker-Austin, C.; Oliver, J.D.; Alam, M.; Ali, A.; Waldor, M.K.; Qadri, F.; Martinez-Urtaza, J. Vibrio spp. infections. Nat. Rev. Dis. Primers 2018, 4, 1–19. https://doi.org/10.1038/s41572-018-0005-8.spa
dc.relation.referencesOMS. Cólera. 2019. Available online: https://www.who.int/es/news-room/fact-sheets/detail/cholera (accessed on 25 January 2021).spa
dc.relation.referencesCDC. Vibrio Species Causing Vibriosis. 2020. Available online: https://www.cdc.gov/vibrio/index.html (accessed on 2 February 2021).spa
dc.relation.referencesCDC. Vibrio Species Causing Vibriosis. 2020. Available online: https://www.cdc.gov/vibrio/index.html (accessed on 2 February 2021).spa
dc.relation.referencesMok, J.S.; Ryu, A.; Kwon, J.Y.; Kim, B.; Park, K. Distribution of Vibrio species isolated from bivalves and bivalve culture environments along the Gyeongnam coast in Korea: Virulence and antimicrobial resistance of Vibrio parahaemolyticus isolates. Food Control 2019, 106, 106697. https://doi.org/10.1016/j.foodcont.2019.06.023.spa
dc.relation.referencesBaker-Austin, C.; Trinanes, J.; Gonzalez-Escalona, N.; Martinez-Urtaza, J. Non-Cholera Vibrios: The Microbial Barometer of Climate Change. Trends Microbiol. 2017, 25, 76–84. https://doi.org/10.1016/j.tim.2016.09.008.spa
dc.relation.referencesHernández-Flórez, C.E.; Cáceres-Manrique, F.D.M. Cólera, ¿se aproxima una nueva pandemia? Med. UIS 2014, 27, 67–83. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121- 03192014000200008 (accessed on 12 January 2021).spa
dc.relation.referencesEscobar, L.E.; Ryan, S.J.; Stewart-Ibarra, A.M.; Finkelstein, J.L.; King, C.A.; Qiao, H.; Polhemus, M.E. A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Acta Trop. 2015, 149, 202–211. https://doi.org/10.1016/j.actatropica.2015.05.028.spa
dc.relation.referencesRaszl, S.M.; Froelich, B.A.; Vieira, C.R.W.; Blackwood, A.D.; Noble, R.T. Vibrio parahaemolyticus and Vibrio vulnificus in South America: Water, seafood and human infections. J. Appl. Microbiol. 2016, 121, 1201–1222. https://doi.org/10.1111/jam.13246.spa
dc.relation.referencesLópez, M. Acciones de Vigilancia Intensificada de Cólera Ante Posible Reintroducción en Los Componentes de Vigilancia Epidemiológica y Laboratorio, Colombia, 2011–2012. 2012. Available online: https://www.ins.gov.co/buscadoreventos/IQEN/IQEN%20vol%2018%202013%20num%2024.pdf(accessed on 11 November 2021).spa
dc.relation.referencesInstituto Nacional de Salud. Vigilancia Fenotípica y Genotípica de Vibrio Cholerae 2010–2013. 1–11. 2013. Available online: https://www.ins.gov.co/buscador/Informacin%20de%20laboratorio/Vigilancia%20C%C3%B3lera%20Colo mbia%202013.pdf (accessed on 10 October 2021).spa
dc.relation.referencesMohamad, N.; Amal MN, A.; Saad, M.Z.; Yasin, I.S.M.; Zulkiply, N.A.; Mustafa, M.; Nasruddin, N.S. Virulence-associated genes and antibiotic resistance patterns of Vibrio spp. isolated from cultured marine fishes in Malaysia. BMC Vet. Res. 2019, 15, 1–13. https://doi.org/10.1186/s12917-019-1907-8spa
dc.relation.referencesBruto, M.; Labreuche, Y.; James, A.; Piel, D.; Chenivesse, S.; Petton, B.; Polz, M.F.; Le Roux, F. Ancestral gene acquisition as the key to virulence potential in environmental Vibrio populations. ISME J. 2018, 12, 2954–2966. https://doi.org/10.1038/s41396-018-0245-3.spa
dc.relation.referencesKlein, S.; Pipes, S.; Lovell, C.R. Occurrence and significance of pathogenicity and fitness islands in environmental vibrios. AMB Express 2018, 8, 177. https://doi.org/10.1186/s13568-018-0704-2.spa
dc.relation.referencesNathamuni, S.; Jangam, A.K.; Katneni, V.K.; Selvaraj, A.; Krishnan, K.; Kumar, S.; Avunje, S.; Balasubramaniam, S.; Grover, M.; Alavandi, S.V.; et al. Insights on genomic diversity of Vibrio spp. through Pan-genome analysis. Ann. Microbiol. 2019, 69, 1547–1555. https://doi.org/10.1007/s13213-019-01539-7.spa
dc.relation.referencesMok, J.S.; Ryu, A.; Kwon, J.Y.; Park, K.; Shim, K.B. Abundance, antimicrobial resistance, and virulence of pathogenic Vibrio strains from molluscan shellfish farms along the Korean coast. Mar. Pollut. Bull. 2019, 149, 110559. https://doi.org/10.1016/j.marpolbul.2019.110559spa
dc.relation.referencesThompson, F.L.; Iida, T.; Swings, J. Biodiversity of Vibrios. J. Clin. Microbiol. 2004, 68, 403–431. https://doi.org/10.1128/MMBR.68.3.403-431.2004.spa
dc.relation.referencesCastillo, D.; Kauffman, K.; Hussain, F.; Kalatzis, P.; Rørbo, N.; Polz, M.F.; Middelboe, M. Widespread distribution of prophage-encoded virulence factors in marine Vibrio communities. Sci. Rep. 2018, 8, 2–10. https://doi.org/10.1038/s41598-018-28326-9.spa
dc.relation.referencesDobrindt, U.; Hochhut, B.; Hentschel, U.; Hacker, J. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2004, 2, 414–424. https://doi.org/10.1038/nrmicro884.spa
dc.relation.referencesNishino, K.; Senda, Y.; Yamaguchi, A. CRP regulator modulates multidrug resistance of Escherichia coli by repressing the mdtEF multidrug efflux genes. J. Antibiot. 2008, 61, 120–127. https://doi.org/10.1038/ja.2008.120.spa
dc.relation.referencesRoig, F.J.; González-Candelas, F.; Sanjuán, E.; Fouz, B.; Feil, E.J.; Llorens, C.; Baker-Austin, C.; Oliver, J.D.; Danin-Poleg, Y.; Gibas, C.J.; et al. Phylogeny of Vibrio vulnificus from the analysis of the core-genome: Implications for intra-species taxonomy. Front. Microbiol. 2018, 8, 1–13. https://doi.org/10.3389/fmicb.2017.02613spa
dc.relation.referencesThompson, C.C.; Vicente, A.C.P.; Souza, R.C.; Vasconcelos, A.T.R.; Vesth, T.; Alves, N.; Ussery, D.W.; Iida, T.; Thompson, F.L. Genomic taxonomy of vibrios. BMC Evol. Biol. 2009, 9, 1–16. https://doi.org/10.1186/1471-2148-9-258.spa
dc.relation.referencesGavilan, R.G.; Zamudio, M.L.; Martinez-Urtaza, J. Molecular Epidemiology and Genetic Variation of Pathogenic Vibrio parahaemolyticus in Peru. PLoS Negl. Trop. Dis. 2013, 7, e2210. https://doi.org/10.1371/journal.pntd.0002210spa
dc.relation.referencesBaker-Austin, C.; Jenkins, C.; Dadzie, J.; Mestanza, O.; Delgado, E.; Powell, A.; Bean, T.; Martinez-Urtaza, J. Genomic epidemiology of domestic and travel-associated Vibrio parahaemolyticus infections in the UK, 2008–2018. Food Control 2020, 115, 107244. https://doi.org/10.1016/j.foodcont.2020.107244.spa
dc.relation.referencesGonzalez-Escalona, N.; Gavilan, R.G.; Toro, M.; Zamudio, M.L.; Martinez-Urtaza, J. Outbreak of Vibrio parahaemolyticus sequence type 120, Peru, 2009. Emerg. Infect. Dis. 2016, 22, 1235–1237. https://doi.org/10.3201/eid2207.151896.spa
dc.relation.referencesVelazquez-Roman, J.; León-Sicairos, N.; Hernández-Díaz, L.D.J.; Canizalez-Roman, A. Pandemic Vibrio parahaemolyticus O3: K6 on the American continent. Front. Cell. Infect. Microbiol. 2014, 3, 1–14. https://doi.org/10.3389/fcimb.2013.00110.spa
dc.relation.referencesBoyd, E.F.; Cohen, A.L.V.; Naughton, L.M.; Ussery, D.W.; Binnewies, T.T.; Stine, O.C.; Parent, M.A. Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiol. 2008, 8, 1–14. https://doi.org/10.1186/1471-2180-8-110.spa
dc.relation.referencesKim, Y.R.; Lee, S.E.; Kook, H.; Yeom, J.A.; Na, H.S.; Kim, S.Y.; Chung, S.S.; Choy, H.E.; Rhee, J.H. Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells. Cell. Microbiol. 2008, 10, 848–862. https://doi.org/10.1111/j.1462-5822.2007.01088.x.spa
dc.relation.referencesJones, M.K.; Oliver, J.D. Vibrio vulnificus: Disease and pathogenesis. Infect. Immun. 2009, 77, 1723–1733. https://doi.org/10.1128/IAI.01046-08.spa
dc.relation.referencesXie, Z.Y.; Hu, C.Q.; Chen, C.; Zhang, L.P.; Ren, C.H. Investigation of seven Vibrio virulence genes among Vibrio alginolyticus and Vibrio parahaemolyticus strains from the coastal mariculture systems in Guangdong, China. Lett. Appl. Microbiol. 2005, 41, 202–207. https://doi.org/10.1111/j.1472-765X.2005.01688.x.spa
dc.relation.referencesHernández-Robles, M.F.; Álvarez-Contreras, A.K.; Juárez-García, P.; Natividad-Bonifacio, I.; CurielQuesada, E.; Vázquez-Salinas, C.; Quiñones-Ramírez, E.I. Virulence factors and antimicrobial resistance in environmental strains of Vibrio alginolyticus. Int. Microbiol. 2016, 19, 191–198. https://doi.org/10.2436/20.1501.01.277spa
dc.relation.referencesOsorio, C.R. T3SS effectors in Vibrios: Homology in sequence, diversity in biological functions? Virulence 2018, 9, 721–723. https://doi.org/10.1080/21505594.2018.1435965.spa
dc.relation.referencesSong, J.; Liu, X.; Wu, C.; Zhang, Y.; Fan, K.; Zhang, X.; Wei, Y. Isolation, identification and pathogenesis study of Vibrio diabolicus. Aquaculture 2021, 533, 736043. https://doi.org/10.1016/j.aquaculture.2020.736043spa
dc.relation.referencesChibani, C.M.; Roth, O.; Liesegang, H.; Wendling, C.C. Genomic variation among closely related Vibrio alginolyticus strains is located on mobile genetic elements. BMC Genom. 2020, 21, 1–14. https://doi.org/10.1186/s12864-020-6735-5spa
dc.relation.referencesRamamurthy, T.; Chowdhury, G.; Pazhani, G.P.; Shinoda, S. Vibrio fluvialis: An emerging human pathogen. Front. Microbiol. 2014, 5, 1–8. https://doi.org/10.3389/fmicb.2014.00091.spa
dc.relation.referencesLiu, X.; Pan, J.; Gao, H.; Han, Y.; Zhang, A.; Huang, Y.; Liu, P.; Kan, B.; Liang, W. CqsA/LuxS-HapR Quorum sensing circuit modulates type VI secretion system VflT6SS2 in Vibrio fluvialis. Emerg. Microbes Infect. 2021, 10, 589–601. https://doi.org/10.1080/22221751.2021.1902244.spa
dc.relation.referencesLiu, M.; Li, X.; Xie, Y.; Bi, D.; Sun, J.; Li, J.; Tai, C.; Deng, Z.; Ou, H.Y. ICEberg 2.0: An updated database of bacterial integrative and conjugative elements. Nucleic Acids Res. 2019, 47, D660–D665. https://doi.org/10.1093/nar/gky1123.spa
dc.relation.referencesCattoir, V.; Poirel, L.; Mazel, D.; Soussy, C.J.; Nordmann, P. Vibrio splendidus as the source of plasmidmediated QnrS-like quinolone resistance determinants. Antimicrob. Agents Chemother. 2007, 51, 2650–2651. https://doi.org/10.1128/AAC.00070-07.spa
dc.relation.referencesSarkar, A.; Morita, D.; Ghosh, A.; Chowdhury, G.; Mukhopadhyay, A.K.; Okamoto, K.; Ramamurthy, T. Altered Integrative and Conjugative Elements (ICEs) in Recent Vibrio cholerae O1 Isolated From Cholera Cases, Kolkata, India. Front. Microbiol. 2019, 10, 1–13. https://doi.org/10.3389/fmicb.2019.02072spa
dc.relation.referencesLoo, K.Y.; Letchumanan, V.; Law, J.W.F.; Pusparajah, P.; Goh, B.H.; Ab Mutalib, N.S.; He, Y.W.; Lee, L.H. Incidence of antibiotic resistance in Vibrio spp. Rev. Aquac. 2020, 12, 2590–2608. https://doi.org/10.1111/raq.12460.spa
dc.relation.referencesPaul, B.; Dixit, G.; Murali, T.S.; Satyamoorthy, K. Genome Based Taxonomic Classification. Genome 2019, 62, 1–17. https://doi.org/https://doi.org/10.1139/gen-2018-0072.spa
dc.relation.referencesLepuschitz, S.; Baron, S.; Larvor, E.; Granier, S.A.; Pretzer, C.; Mach, R.L.; Farnleitner, A.H.; Ruppitsch, W.; Pleininger, S.; Indra, A.; et al. Phenotypic and Genotypic Antimicrobial Resistance Traits of Vibrio cholerae Non-O1/Non-O139 Isolated From a Large Austrian Lake Frequently Associated With Cases of Human Infection. Front. Microbiol. 2019, 10, 1–9. https://doi.org/10.3389/fmicb.2019.02600spa
dc.relation.referencesGennari, M.; Ghidini, V.; Caburlotto, G.; Lleo, M.M. Virulence genes and pathogenicity islands in environmental Vibrio strains nonpathogenic to humans. FEMS Microbiol. Ecol. 2012, 82, 563–573. https://doi.org/10.1111/j.1574-6941.2012.01427.xspa
dc.relation.referencesSánchez, L.P.; Martínez, M.; León, T.; Córdoba, T.; Díaz, P.; Calvo, M.; Montaño, A.; Escandón, P.; Narváez, S.; Vivas, J.; et al. Desarrollo e Implementación de una PCR Multiplex Para la Detección de Cuatro Especies de Vibrio spp. Biomédica, Volume 39. 2019. Available online: https://revistabiomedica.org/index.php/biomedica/issue/download/171/58 (accessed on 8 September 2021).spa
dc.relation.referencesInstituto Nacional de Salud. Manual de Procedimientos Para la Toma, Conservación y Envío de Muestras al Laboratorio Nacional de Referencia. Dirección Redes en Salud Pública. Available online: https://www.ins.gov.co/Direcciones/RedesSaludPublica/DocumentosdeInteresSRNL/Manual_toma_envi o_muestras_INS-2019.pdf (accessed on 20 September 2021)spa
dc.relation.referencesWilliams; Wilkins. Bergey’s Manual of Systematic Bacteriology. In The Proteobacteria, 2nd ed.; Garrity, G., Ed.; Springer-Verlag US, 1984; Volume 2.spa
dc.relation.referencesInstituto Nacional de Salud Dirección Redes en Salud Pública. Guía Para la Vigilancia por Laboratorio de Vibrio Cholerae (p. 17). Dirección Redes en Salud Pública. 2017. Available online: https://www.ins.gov.co/buscadoreventos/Informacin%20de%20laboratorio/Gu%C3%ADa%20para%20la%20vigilancia%20por%20laborato rio%20de%20Vibrio%20cholerae.pdf (accessed on 11 November 2021).spa
dc.relation.referencesMenzel, P.; Ng, K.L.; Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 2016, 7, 11257. https://doi.org/10.1038/ncomms11257.spa
dc.relation.referencesOndov, B.D.; Bergman, N.H.; Phillippy, A.M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 2011, 12, 385. https://doi.org/10.1186/1471-2105-12-385.spa
dc.relation.referencesLi, H. Seqtk. 2013. Available online: https://github.com/lh3/seqtk (accessed on 17 August 2021).spa
dc.relation.referencesLischer, H.E.L.; Shimizu, K.K. Reference-guided de novo assembly approach improves genome reconstruction for related species. BMC Bioinform. 2017, 18, 1–12. https://doi.org/10.1186/s12859-017-1911- 6spa
dc.relation.referencesBankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. A J. Comput. Mol. Cell Biol. 2012, 19, 455–477. https://doi.org/10.1089/cmb.2012.0021.spa
dc.relation.referencesAndrews; Simon. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2017. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 10 January 2021).spa
dc.relation.referencesEwels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. https://doi.org/10.1093/bioinformatics/btw354.spa
dc.relation.referencesBolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170.spa
dc.relation.referencesLangmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. https://doi.org/10.1038/nmeth.1923.spa
dc.relation.referencesLi, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352spa
dc.relation.referencesQuinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. https://doi.org/10.1093/bioinformatics/btq033.spa
dc.relation.referencesLi, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011, 27, 2987–2993. https://doi.org/10.1093/bioinformatics/btr509.spa
dc.relation.referencesPop, M.; Phillippy, A.; Delcher, A.L.; Salzberg, S.L. Comparative genome assembly. Brief. Bioinform. 2004, 5, 237–248. https://doi.org/10.1093/bib/5.3.237spa
dc.relation.referencesVan der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. https://doi.org/10.1002/0471250953.bi1110s43spa
dc.relation.referencesMcKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing nextgeneration DNA sequencing data. Genome Res. 2010, 20, 1297–1303. https://doi.org/10.1101/gr.107524.110.spa
dc.relation.referencesDelcher, A.L.; Salzberg, S.L.; Phillippy, A.M. Using MUMmer to identify similar regions in large sequence sets. Curr. Protoc. Bioinform. 2003, 10.3.1–10.3.18. https://doi.org/10.1002/0471250953.bi1003s00.spa
dc.relation.referencesLuo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. GigaScience 2012, 1, 18. https://doi.org/10.1186/2047-217X-1-18.spa
dc.relation.referencesGurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. https://doi.org/10.1093/bioinformatics/btt086.spa
dc.relation.referencesSimão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. https://doi.org/10.1093/bioinformatics/btv351.spa
dc.relation.referencesJain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 1–8. https://doi.org/10.1038/s41467-018-07641-9.spa
dc.relation.referencesWickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. https://doi.org/10.1002/wics.147.spa
dc.relation.referencesGitHub—Tseemann/Mlst: Scan Contig Files against PubMLST Typing Schemes. Available online: https://github.com/tseemann/mlst (accessed on 18 August 2021).spa
dc.relation.referencesJolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 1–20. https://doi.org/10.12688/wellcomeopenres.14826.1spa
dc.relation.referencesTreangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 1–15. https://doi.org/10.1186/s13059-014-0524-xspa
dc.relation.referencesNguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. https://doi.org/10.1093/molbev/msu300.spa
dc.relation.referencesRelease FigTree v1.4.4 · Rambaut/Figtree · GitHub. Available online: https://github.com/rambaut/figtree/releases/tag/v1.4.4 (accessed on 20 August 2021).spa
dc.relation.referencesEren, A.M.; Esen, O.C.; Quince, C.; Vineis, J.H.; Morrison, H.G.; Sogin, M.L.; Delmont, T.O. Anvi’o: An advanced analysis and visualization platformfor’omics data. PeerJ 2015, 2015, 1–29. https://doi.org/10.7717/peerj.1319.spa
dc.relation.referencesTatusov, R.L.; Galperin, M.Y.; Natale, D.A.; Koonin, E.V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28, 33–36. https://doi.org/10.1093/nar/28.1.33.spa
dc.relation.referencesShaiber, A.; Willis, A.D.; Delmont, T.O.; Roux, S.; Chen, L.X.; Schmid, A.C.; Yousef, M.; Watson, A.R.; Lolans, K.; Esen, Ö.C.; et al. Functional and genetic markers of niche partitioning among enigmatic members of the human oral microbiome. BioRxiv 2020, 1–35. https://doi.org/10.1101/2020.04.29.069278.spa
dc.relation.referencesGitHub—Tseemann/Abricate: Mass Screening of Contigs for Antimicrobial and Virulence Genes. Available online: https://github.com/tseemann/abricate (accessed on 18 August 2021).spa
dc.relation.referencesFeldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H.; McDermott, P.F.; et al. Validating the AMRFINder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 2019, 63. https://doi.org/10.1128/AAC.00483-19.spa
dc.relation.referencesJia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. https://doi.org/10.1093/NAR/GKW1004.spa
dc.relation.referencesLiu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019, 47, D687–D692. https://doi.org/10.1093/nar/gky1080.spa
dc.relation.referencesHernández, M., Quijada, N. M., Rodríguez-Lázaro, D., & Eiros, J. M. (2020). Bioinformatics of next generation sequencing in clinical microbiology diagnosis. Revista Argentina de Microbiologia, 52(2), 150–161. https://doi.org/10.1016/j.ram.2019.06.003spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.proposalVibriosisspa
dc.subject.proposalVirulenciaspa
dc.subject.proposalResistenciaspa
dc.subject.proposalGenómica comparativaspa
dc.subject.proposalSalud públicaspa
dc.subject.proposalVibriosiseng
dc.subject.proposalVirulenceeng
dc.subject.proposalAntibiotic resistanceeng
dc.subject.proposalAntibiotic resistanceeng
dc.subject.proposalPangenomeeng
dc.subject.proposalWhole genome sequencingeng
dc.subject.unescoMicroorganismo
dc.subject.unescoMicrobiología
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
dc.description.degreenameMagister en Bioinformática y Biología Computacional (EN CONVENIO)spa
dc.publisher.programMaestría en Bioinformática y Biología Computacional (En convenio)spa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem