Mostrar el registro sencillo del ítem

dc.contributor.advisorMurcia Agudelo, Hugo Fernandospa
dc.contributor.authorSalazar Muñoz, Nataliaspa
dc.contributor.authorRios de la Ossa, Carlos Arturospa
dc.date.accessioned2020-08-27T23:51:16Zspa
dc.date.available2020-08-27T23:51:16Zspa
dc.date.issued2019-10-29spa
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/7763spa
dc.description117 hojasspa
dc.description.abstractspa: El vulcanismo monogenético hace referencia a discretos eventos de salida de magma a superficie y que por definición forman volcanes a partir de una sola erupción. Estos volcanes normalmente aparecen en grupo durante un tiempo y un área definida, formando de esta manera campos volcánicos monogenéticos. El denominado Campo Volcánico Monogenético Villamaría-Termales (CVMVT) es una expresión de este vulcanismo (14 volcanes tipo domos de lava), localizado en el flanco occidental de la Cordillera Central de Colombia. Este trabajo presenta una caracterización petrográfica y química de tres domos de lava: Victoria, Gallinazo y Tesorito, con el objetivo de evaluar las condiciones de cristalización de estos productos eruptivos. Mineralógicamente, estos volcanes están compuestos de plagioclasa (An31-67), piroxeno (Wo2-45 – En39-80 – Fs8-32) y anfíbol. Olivino (Fo71-87) solo es reconocido en el domo Victoria. Químicamente, los volcanes presentan composición andesítica y una firma calcoalcalina alta en K, además de una firma adakítica. Los resultados geotermobarométricos revelan que el olivino fue la primera fase mineral en cristalizar (1215 – 1228 °C) para el magma alimentador del domo Victoria, seguido del ortopiroxeno (1062 – 1067 °C), clinopiroxeno (1026 – 1056 °C), plagioclasa (905 – 1045 °C) y anfíbol (~987 °C). En el domo Gallinazo, el orden de cristalización fue: ortopiroxeno (1050 – 1076 °C), clinopiroxeno (972 – 1025 °C), plagioclasa (900 – 1044 °C) y anfíbol (899 – 964 °C); y para el domo Tesorito el orden de cristalización fue: ortopiroxeno (1138 – 1145 °C), clinopiroxeno (1009 – 1038 °C), plagioclasa (894 – 1050 °C) y anfíbol (921 – 974 °C). En general, las presiones estimadas indican que los procesos de cristalización empezaron a 1.5 GPa y continuaron hasta que el material alcanzó superficie. Estos valores sugieren que la cristalización de las fases minerales de cada domo se dio en numerosas zonas de estancamiento ubicadas a lo largo de los conductos por el cual ascendió el magma. El análisis de microtexturas en plagioclasa y las características del vidrio de cada domo sugieren procesos de cristalización fraccionada y contaminación cortical durante la cristalización del magma. Las características geoquímicas del CVMVT permiten identificar una relación genética con los volcanes poligenéticos Cerro Bravo y Nevado del Ruiz.spa
dc.description.abstracteng: Monogenetic volcanism refers to discrete events of magma extrusion forming volcanoes in a single eruption. Clusters of these volcanoes, localised in a defined time and area, form monogenetic volcanic fields. The so-called Villamaría-Termales Monogenetic Volcanic Field (CVMVT) is an expression of this volcanism (14 lava dome types), which is located on the western flank of the Central Cordillera of Colombia. This work presents a petrographic and chemical characterisation of three lava domes: Victoria, Gallinazo and Tesorito, with the objective of evaluating the crystallisation conditions of these eruptive products. Mineralogically, these volcanoes are composed of plagioclase (An31-67), pyroxene (Wo2-45 – En39-80 – Fs8-32) and amphibole. Olivine (Fo71-87) was only recognised on the Victoria dome. Chemically, the volcanoes have an andesitic composition and a high K calc-alkaline signature, in addition to an adakitic signature. The geothermobarometric results indicate that olivine (1215 – 1228 °C) was the first mineral phase to crystallise in the Victoria dome feeding magma, followed by orthopyroxene (1062 – 1067 °C), clinopyroxene (1026 – 1056 °C), plagioclase (905 – 1045 °C) and amphibole (~ 987 °C). In the Gallinazo dome, the order of crystallisation was: orthopyroxene (1050 – 1076 °C), clinopyroxene (972 – 1025 °C), plagioclase (900 – 1044 °C) and amphibole (899 – 964 °C); and for the Tesorito dome the order of crystallisation was: orthopyroxene (1138 – 1145 °C), clinopyroxene (1009 – 1038 °C), plagioclase (894 – 1050 °C) and amphibole (921 – 974 °C). The estimated pressures indicate that the crystallisation processes started at 1.5 GPa and continued until the magma reached surface. These values suggest that the crystallisation of the mineral phases of each dome occurred in numerous areas of stagnation located along the magma conduits. The analysis of micro-textures in plagioclase and the characteristics of the glass suggest processes of fractional crystallisation and cortical contamination during the magma ascent. Geochemical characteristics of the CVMVT allow evidencing a genetic relationship with the polygenetic volcanoes Cerro Bravo and Nevado del Ruiz.spa
dc.description.tableofcontents1. INTRODUCCIÓN / 2. OBJETIVOS / 2.1 OBJETIVO GENERAL / 2.2 OBJETIVOS ESPECÍFICOS / 3. MARCO GEOLÓGICO / 3.1 CAMPO VOLCÁNICO MONOGENÉTICO VILLAMARÍA-TERMALES / 4. MARCO TEÓRICO / 4.1 VULCANISMO MONOGENÉTICO / 4.2 VOLCANES MONOGENÉTICOS FORMADOS POR ERUPCIÓN MAGMÁTICA /4.2.1 Conos de escoria / 4.2.2 Domos de lava / 4.2.3 Flujos de lava / 4.3 VOLCANES MONOGENÉTICOS FORMADOS POR ERUPCIÓN FREATO-MAGMÁTICA / 4.3.1FUNDAMENTACIÓN BIBLIOGRÁFICA Conos de toba / 4.3.2 Anillos de toba / 4.3.3 Maares / 5. METODOLOGÍA / 5.1 / FUNDAMENTACIÓN BIBLIOGRÁFICA /5.2 TRABAJO DE CAMPO Y MUESTREO / 5.3 ANÁLISIS PETROGRÁFICO / 5.4 ANÁLISIS QUÍMICOS / 5.4.1 Química mineral / 5.4.2 Química de roca total / 6. RESULTADOS / PETROGRAFÍA / 6.1.1 Domo Victoria / 6.1.2 Domo Gallinazo / 6.1.3 Domo Tesorito / 6.2 QUÍMICA MINERAL / 6.2.1 Olivino / 6.2.2 Piroxeno / 6.2.3 Plagioclasa / 6.2.4 Anfíbol / 6.2.5 Óxido de Fe-Ti / 6.2.6 Vidrio / 6.3 QUÍMICA DE ROCA TOTAL / 7. DISCUSIÓN / 7.1 TEXTURAS EN PLAGIOCLASA / 7.2 VIDRIO VOLCÁNICO / 7.3 GEOTERMOBAROMETRÍA / 7.3.1 Olivino / 7.3.2 Ortopiroxeno / 7.3.3 Clinopiroxeno / 7.3.4 Plagioclasa / 7.3.5 Anfíbol / 7.4 MODELO PETROGENÉTICO / 7.4.1 Domo Victoria / 7.4.2 Domo Gallinazo / 7.4.3 Domo Tesorito / 7.5 COMPARACIÓN CON LOS OTROS CAMPOS VOLCÁNICOS MONOGENÉTICOS DE LA PROVINCIA VOLCANO-TECTÓNICA SAN DIEGO – CERRO MACHÍN (PVTSC)/ 7.6 COMPARACIÓN EL CAMPO VOLCÁNICO MOGENÉTICO VILLAMARÍA-TERMALES (CVMVT), VOLCÁN NEVADO DEL RUIZ Y VOLCÁN CERRO BRAVO / 7.7 ADAKITAS / 8. CONCLUSIONES /9. REFERENCIAS BIBLIOGRÁFICASspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.rightsCopyright (c) 2020 Universidad de Caldasspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleCondiciones de cristalización de los volcanes Tesorito, Gallinazo y Victoria, Campo Volcánico Monogenético Villamaría-Termales, Colombiaspa
dc.typeTrabajo de grado - Pregradospa
dc.contributor.educationalvalidatorSchonwalder Angel, Dayanaspa
dc.description.degreelevelUniversitariospa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.localT06019044 / S161spa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesAbrams, M. J. & Siebe, C. (1994). Cerro Xalapaxco: an unusual tuff cone with multiple explosion craters, in central Mexico (Puebla). Journal of Volcanology and Geothermal Research. 63, 183-199spa
dc.relation.referencesAncochea, E., Naranjo, J.L., Fuster, J.M. & Borrero, C. (1991). Geoquímica de las lavas antiguas del Volcán del Ruiz (Colombia), Sector Noroccidental. Simposio sobre Magmatismo Andino y su Marco Tectónico. Manizales, Colombia. Memorias Tomo I: 65-79.spa
dc.relation.referencesAoki, K. & Kushiro, I. (1968). Some clinopyroxenes from Ultramafic Inclusions in Dreiser Weiher, Eifel. Contributions to Mineralogy and Petrology. 18, 326-337.spa
dc.relation.referencesAranda-Gómez, J., Levresse, G. Pacheco Martínez, J., Ramos-Leal, J., Carrasco-Núñez, G., Chacón-Baca, E., González-Naranjo, G., Chávez-Cabello, G., Vega-González, M., Origel, G., & Noyola-Medrano, C. (2013). Active sinking at the bottom of the Rincón de Parangueo Maar (Guanajuato, México) and its probable relation with subsidence faults at Salamanca and Celaya. Boletín de la Sociedad Geológica Mexicana, 65, 169-188.spa
dc.relation.referencesAyala, L. (2009). Petrografía y modelo vulcanológico del volcán Nevado del Ruiz, etapa ancestral. Universidad de Caldas, Manizales, Colombia. Trabajo de grado, 113 p.spa
dc.relation.referencesBidart, NA. (2014). Petrología y geoquímica de lavas recientes, al sureste del campo geotermal del tatio. Universidad de Chile, Santiago de Chile, Chile. Trabajo de grado, 162 p.spa
dc.relation.referencesBorrero C., Toro, L.M., Alvarán M. & Castillo, H. (2009). Geochemistry and tectonic controls of the effusive activity related with the ancestral Nevado del Ruiz Volcano, Colombia. Geofísica Internacional, 48, 149-169.spa
dc.relation.referencesBorrero, C., Murcia, H., Agustín-Flores, J., Arboleda, M.T. & Giraldo, A.M. (2017). Pyroclastic deposits of San Diego maar, central Colombia: an example of a silicic 96 magma-related monogenetic eruption in a hard substrate. Geological Society, London, Special Publications, 446, 361-374.spa
dc.relation.referencesBotero-Gómez, L.A. & Osorio, P.M. (2017). Modelo geológico – estructural del campo volcánico monogenético Villamaría-Termales, flanco occidental de la Cordillera Central de Colombia. Universidad de Caldas, Manizales, Colombia. Trabajo de grado, 132 p.spa
dc.relation.referencesBotero-Gómez, L.A., Osorio, P., Murcia, H., Borrero, C. & Grajales, J.A. (2018). Campo Volcánico Monogenético Villamaría-Termales, Cordillera Central, Andes colombianos (Parte I): Características morfológicas y relaciones temporales. Boletín de Geología, 40, 85-102spa
dc.relation.referencesBourdon, E., Eissen, J.P., Gutscher, M.A., Monzier, M., Hall, M.L., & Cotten, J. (2003). Magmatic response to early aseismic ridge subduction: The Ecuadorian margin case (South America). Earth and Planetary Science Letters, 205, 123-138.spa
dc.relation.referencesBuddington, A.F. & Lindsley, D.H. (1964). Iron-Titanium Oxide Minerals and Synthetic Equivalents. Journal of Petrology, 5, 310-357.spa
dc.relation.referencesCañón-Tapia, E. (2016). Reappraisal of the significance of volcanic fields. Journal of Volcanology and Geothermal Research, 310, 26-38.spa
dc.relation.referencesCañón-Tapia, E. & Walker, G.P. (2004). Global aspects of volcanism: the perspectives of “plate tectonics” and “volcanic systems”. Earth-Science Reviews, 66, 163-182.spa
dc.relation.referencesCastillo, P.R. (2006). An overview of adakite petrogenesis. Chinese Science Bulletin, 51, 257-268spa
dc.relation.referencesChough, S.K. & Sohn, Y.K. (1990). Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology, 37, 1115–1135.spa
dc.relation.referencesCortés, J.A, "CFU-PINGU," https://vhub.org/resources/cfupingu.2015spa
dc.relation.referencesCuellar, M., Sánchez, C., & Valencia, M. (2003). Caracterización petrográfica y deformativa de las rocas aflorantes en los alrededores de la Falla San Jerónimo, al este del municipio de Manizales. Universidad de Caldas, Manizales, Colombia. Trabajo de grado, 179 p.spa
dc.relation.referencesCuéllar, M.A., López, J.A., Aguirre, R., Valencia, M. & Sánchez, C.A. (2007). Evidencias petrográficas y de campo de una intrusión sintectónica en la Cordillera 97 Central de Colombia: El caso de la milonita granítica del Guacaica. En Memorias del XI Congreso Colombiano de Geología, Bucaramanga, 2007. 17 p.spa
dc.relation.referencesDe Silva, S. & Lindsay, J.M. (2015). Primary volcanic landforms. En Sigurdsson (Ed), The Encyclopedia of Volcanoes (Second Edition), Amsterdam: Elsevier, 273-297.spa
dc.relation.referencesDefant, M.J. & Drummond, M.S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662-665.spa
dc.relation.referencesEggler, D.H. (1972). Water-saturated and undersaturated melting relations in a Paricutin andesite and an estimate of water content in the natural magma. Contributions to Mineralogy and Petrology, 34, 261-271.spa
dc.relation.referencesEggler, D.H. & Burnham, C.W. (1973). Crystallization and Fractionation Trends in the System Andesite-H2O-CO2-O2 at Pressures to 10 Kb. Geological Society of America Bulletin, 84, 2517-2532.spa
dc.relation.referencesErlund, E.J., Cashman K.V., Wallace P.J., Pioli L., Rosi M., Johnson E. & Granados H.D. (2009). Compositional evolution of magma from Paricutin Volcano, Mexico: The tephra record. Journal of Volcanology and Geothermal Research 197, 167-187.spa
dc.relation.referencesFink, J.H. & Anderson, S.W. (2000). Lava domes and Coulees. En: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes, first ed. Academic Press, San Diego, p. 307-319.spa
dc.relation.referencesFoshag, W.F. & González R., J. (1956). Birth and development of Paricutin volcano, Mexico. U.S. Geological Survey Bulletin, 965-D, 355--489spa
dc.relation.referencesFrost, B.R. (1991). Stability of oxide minerals in metamorphic rocks. In: Lindsley, D.H. (ed.). Reviews in Mineralogy. Oxide Minerals: Petrologic and magnetic significance. Mineralogical Society of America, 25, 469-487spa
dc.relation.referencesGómez-Cruz, A.D.J., Sánchez, M.M. & Pardo-Trujillo, A. (1995). Edad y origen del “complejo metasedimentario Aranzazu-Manizales” en los alrededores de Manizales (departamento de Caldas, Colombia). Geología Colombiana, 19, 83-93.spa
dc.relation.referencesGonzález, L. & Jaramillo, C.M. (2002). Estudio neotectónico multidisciplinario aplicado a la Falla Villamaría-Termales. Universidad de Caldas, Manizales, Colombia. Trabajo de grado, 298 p.spa
dc.relation.referencesGonzález, P.D. (2008) Textura de los cuerpos ígneos. En Llambías, E.J., & D'Eramo, J. (Ed). Geología de los cuerpos ígneos. Asociación Geológica Argentina. Serie B: Didáctica y complementaria. Universidad Nacional de Salta, Facultad de ciencias naturales. 171-197.spa
dc.relation.referencesGonzález-García, J. & Jessell, M. (2016). A 3D geological model for the Ruiz-Tolima Volcanic Massif (Colombia): Assessment of geological uncertainty using a stochastic approach based on Bézier curve design. Tectonophysics, 687, 139-157spa
dc.relation.referencesIdárraga-García, J., Kendall, J.M. & Vargas, C.A. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry, Geophysics, Geosystems. 17, 3655–3673.spa
dc.relation.referencesIrvine, T. & Baragar, W. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8, 523-5spa
dc.relation.referencesJanoušek, V., Farrow, C.M. & Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of petrology, 47, 1255-1259.spa
dc.relation.referencesJaramillo, J.M. (1978). Determinación de la Edades de algunas Rocas de la Cordillera Central por el Método de Huellas Fisión. En Memorias II Congreso Colombiano de Geología. Bogotá, 1978. 19-20spa
dc.relation.referencesKeiding, J.K. & Sigmarsson, O. (2012). Geothermobarometry of the 2010 Eyjafjallajökull eruption: New constraints on Icelandic magma plumbing systems. Journal of Geophysical Research, 117.spa
dc.relation.referencesKilburn, C.R.J. (2000). Lava flows and flow fields. En: Sigurdsson, H (Editor-in-Chief). Encyclopedia of Volcanoes, 291-305. Academic Press, San Diegspa
dc.relation.referencesKudo, A.M. & Weill, D.F. (1970). An igneous plagioclase thermometer. Contributions to Mineralogy and Petrology, Contributions to Mineralogy and Petrology, 25, 52-65.spa
dc.relation.referencesLe Bas, M.J., Le Maitre, R.W., Streckeisen, A. & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of petrology, 27, 745-750spa
dc.relation.referencesLaeger, K., Halama, R., Hansteen, T., Savov, I.P., Murcia, H.F., Cortés, G.P. & Garbe-Schönberg, D. (2013). Crystallization conditions and petrogenesis of the lava dome from the ∼900 years BP eruption of Cerro Machín Volcano, Colombia. Journal of South American Earth Sciences, 48, 193-208.spa
dc.relation.referencesLeake, B.E., Woolley, A.R., Arps, C.E., Birch, W.D., Gilbert, M.C., Grice, J.D. & Linthout, K. (1997). Report. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical magazine, 61, 295-321.spa
dc.relation.referencesLescinsky, D.T. (1990). Geology, Volcanology, and Petrology of Cerro Bravo, a Young, Dactic, Stratovolcano in West-Central Colombia. LSU Historical Dissertations and Theses.spa
dc.relation.referencesLoomis, T.P. (1982). Numerical simulations of crystallization processes of plagioclase in complex melts: the origin of major and oscillatory zoning in plagioclase. Contributions to Mineralogy and Petrology, 81, 219-229.spa
dc.relation.referencesLosantos, E., Cebriá, J.M., Morán-Zenteno, D.J., Martiny, B.M. & López-Ruiz, J. (2014). Condiciones de cristalización y diferenciación de las lavas del volcán El Metate (Campo Volcánico de Michoacán - Guanajuato, México). Universidad Autónoma de México, 19 p.spa
dc.relation.referencesLosantos, E., Cebriá, J.M., Morán-Zenteno, D.J., Martiny, B.M., López-Ruiz, J. & Solís-Pichardo, G. (2017). Petrogenesis of the alkaline and calcalkaline monogenetic volcanism in the northern sector of the Michoacán-Guanajuato Volcanic Field (Central Mexico). Lithos, 288, 295-310.spa
dc.relation.referencesLuhr, J.F. (2001). Glass inclusions and melt volatile contents at Parícutin Volcano, Mexico. Contributions to Mineralogy and Petrology, 142, 261-283.spa
dc.relation.referencesManville, V., Németh, K., & Kano, K. (2009). Source to sink: A review of three decades of progress in the understanding of volcanoclastic processes, deposits, and hazards. Sedimentary Geology, 220, 136-161.spa
dc.relation.referencesMartel, C., Pichavant, M., Holtz, F., Scaillet, B., Bourdier, J.L. & Traineau, H. (1999). Effects of fO2 and H2O on andesite phase relations between 2 and 4 kbar. Journal of Geophysical Research: Solid Earth, 104, 29-453.spa
dc.relation.referencesMarti, J., López, C., Bartolini, S., Becerril, L. & Geyer, A. (2016). Stress controls of monogenetic volcanism: a review. Frontiers in Earth Science, 4, 106.spa
dc.relation.referencesMartínez, L., Valencia R., Ceballos, J., Narváez, L., Pulgarín, B., Correa, A., Navarro, S., Murcia, H., Zuluaga, I., Rueda, G. & Pardo, N. (2014). Geología y estratigrafía del Complejo Volcánico Nevado del Ruiz. Informe final, Bogotá – Manizales – Popayán. Servicio Geológico Colombiano, 94-381.spa
dc.relation.referencesMaya, M. & González, H. (1995). Unidades litodémicas en la Cordillera Central de Colombia. Bol. Geol. INGEOMINAS, 35, 3.spa
dc.relation.referencesMcCourt, W.J., 1984. The Geology of the Central Cordillera in the Department of Valle del Cauca, Quindío and NW Tolima: British Geological Survey Report, 84, 8-49.spa
dc.relation.referencesMcGee, L.E., Millet, M.A., Smith, I.E.,M., Németh, K., & Lindsay, J.M. (2012). The inception and progression of melting in a monogenetic eruption: Motukorea Volcano, the Auckland Volcanic Field, New Zealand. Lithos, 155, 360-374spa
dc.relation.referencesMejía, V., Sánchez-Duque, A., Opdyke, N., Huang, K., Rosales, A. & Agudelo, C. (2011). Volcano-Tectonic implications for the Ruiz-Tolima Volcanic Complex based on paleomagnetic data. Biennial Meeting of LATINMAG (Latin-American Association of Paleomagnetism and Geomagnetism), Tandil, Argentispa
dc.relation.referencesMiallier, D., Pilleyre, T., Boivin, P., Labazuy, P., Gailler, L.S. & Rico, J. (2017). Grand Sarcoui volcano (Chaîne des Puys, Massif Central, France), a case study for monogenetic trachytic lava domes. Journal of Volcanology and Geothermal Research, 345, 125-141.spa
dc.relation.referencesMollo, S., Del Gaudio, P., Ventura, G., Iezzi, G. & Scarlato, P. (2010). Dependence of clinopyroxene composition on cooling rate in basaltic magmas: Implications for thermobarometry. Lithos, 118, 302-312.spa
dc.relation.referencesMollo, S., Putirka, K., Iezzi, G., Del Gaudio, P. & Scarlato, P. (2011). Plagioclase-melt (dis)equilibrium due to cooling dynamics: Implications for thermometry, barometry and hygrometry. Elsevier Lithos, 125, 221-235.spa
dc.relation.referencesMordick, B.E. & Glazner, A.F. (2006). Clinopyroxene thermobarometry of basalts from the Coso and Big Pine volcanic fields, California. Contributions to Mineralogy and Petrology, 152, 111-124.spa
dc.relation.referencesMontoya, A. & Torres, A.H. (2005). Cartografía, análisis metalográfico y petrográfico de los pórfidos ubicados al este del municipio de Manizales, sector de Gallinazo. Universidad de Caldas, Manizales, Colombia. Trabajo de grado, 107 p.spa
dc.relation.referencesMorimoto, N. (1989). Nomenclature of pyroxenes. Mineralogical Journal, 14, 198-221spa
dc.relation.referencesMurcia, H., Németh, K., Moufti, M.R., Lindsay, J.M., El-Masry, N., Cronin, S.J. & Smith, I.E.,M. (2013). Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: Implications for the description of continental lava fields. Journal of Asian Earth Sciences, 84, 131-145.spa
dc.relation.referencesMurcia, H. (2015). Monogenetic volcanism in the western Arabian Peninsula: Insights from Late Quaternary eruptions in northern Harrat Rahat, Kingdom of Saudi Arabia (Doctoral dissertation), 270 p.spa
dc.relation.referencesMurcia, H., Borrero, C. & Németh, K. (2019). Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes’ volcanic province. Journal of Volcanology and Geothermal Research, 383, 77-87.spa
dc.relation.referencesMosquera, D. (1978). Geología del Cuadrángulo K-8. 1978. Internal Inform, (1763).spa
dc.relation.referencesNakamura, K. (1977). Volcanoes as possible indicators of tectonic stress orientation — principle and proposal. Journal of Volcanology and Geothermal Research, 2, 1–16.spa
dc.relation.referencesNaranjo, J.L. & Ríos, P.A. (1989). Geología de Manizales y sus alrededores y su influencia en los riesgos geológicos. Manizales: Universidad de Caldas, 10, 112 p.spa
dc.relation.referencesNelson, S.T., & Montana, A. (1992). Sieve-textured plagioclases in volcanic rocks produced by rapid decompression. American Mineralogist, 77, 1242-1249.spa
dc.relation.referencesNémeth, K. (2010). Monogenetic volcanic fields: Origin, sedimentary record, and relationship with polygenetic volcanism. Geological Society of America Special Papers, 470, 43-66.spa
dc.relation.referencesNémeth, K., White, J.D.L., Reay, A. & Martin, U. (2003). Compositional variation during monogenetic volcano growth and its implications for magma supply to continental volcanic fields. Journal of the Geological Society, 160, 523-530.spa
dc.relation.referencesO'Neill, H.S.C. & Pownceby, M.I. (1993). Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe-“FeO”, Co-CoO, Ni-NiO and Cu-Cu2O oxygen buffers, and new data for the W-WO2 buffer. Contributions to Mineralogy and Petrology, 114, 296-314.spa
dc.relation.referencesOsorio, P., Botero-Gómez, L.A., Murcia, H., Borrero, C. & Grajales, J.A. (2018). Campo Volcánico Monogenético Villamaría-Termales, Cordillera Central, Andes colombianos (Parte II): Características composicionales. Boletín de Geología, 40, 103-123.spa
dc.relation.referencesPeccerillo, A. & Taylor, S.R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to mineralogy and petrology, 58, 63-81.spa
dc.relation.referencesPinzón-Osorio, C. & Echeverri, J.F. (2017). Petrogénesis y condiciones de cristalización del domo intracratérico del volcán Cerro Bravo, Colombia. Universidad de Caldas, Manizales, Colombia. Trabajo de grado, 88 p.spa
dc.relation.referencesPinzón, C., Echeverri, J.F., Murcia, H. & Schonwalder-Ángel, D. (2018). Petrogénesis y condiciones de cristalización del domo intracratérico del volcán Cerro Bravo, Colombia. Boletín de Geología, 40, 67-84.spa
dc.relation.referencesPutirka, K.D. (2005). Igneous thermometers and barometers based on plagioclase + liquid equilibria. Tests of some existing models and new calibrations. American Mineralogist, 90, 336-346.spa
dc.relation.referencesPutirka, K.D. (2008). Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69, 61-120.spa
dc.relation.referencesRahman, S., & MacKenzie, W.S. (1969). The crystallization of ternary feldspars: a study from natural rocks. American Mineralogist, Journal of Science, 267, 391-406.spa
dc.relation.referencesRestrepo, J.J. & Toussaint, J.F. (1988). Terranes and continental accretion in the colombian Andes. Episodes, 7, 189-193.spa
dc.relation.referencesRenjith, M.L. (2014). Micro-textures in plagioclase from 1994-1995 eruption, Barren Island Volcano: evidence of dynamic magma plumbing system in the Andaman subduction zone. Geoscience Frontiers, 5, 113-126.spa
dc.relation.referencesRidolfi, F., Renzulli, A. & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160, 45-66spa
dc.relation.referencesSánchez-Torres, L. (2017). Caracterización de los productos volcánicos del volcán El Escondido y propuesta de un modelo evolutivo. Universidad de Caldas, Manizales, Colombia. Trabajo de grado, 95 p.spa
dc.relation.referencesSelf, S., Sparks, R.S.J., Booth, B. & Walker, G.P.L. (1974). The 1973 Heimaey strombolian scoria deposit, Iceland. Geological Magazine, 111, 539-548.spa
dc.relation.referencesSelf, S., Kienle, J. and Huot, J.P. (1980). Ukinrek Maars, Alaska, II. Deposits and formation of the 1977 craters. Journal of Volcanology and Geothermal Research, 7, 39-65.spa
dc.relation.referencesShcherbakov, V.D., Plechov, P.Y., Izbekov, P.E., & Shipman, J.S. (2011). Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contributions to Mineralogy and Petrology, 163, 83-99.spa
dc.relation.referencesSmith, I.E.,M. & Németh, K. (2017). Source to surface model of monogenetic volcanism: a critical review. Geological Society, London, Special Publications, 446, 1-28.spa
dc.relation.referencesSohn, Y.K. & Chough, S.K. (1992). The Ilchulbong tuff cone, Cheju Island, South Korea. Sedimentology, 39, 523-544.spa
dc.relation.referencesSun, S.S. & McDonough, W.S. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313-345.spa
dc.relation.referencesTchamabe, B.C., Kereszturi, G., Németh, K., Carrasco-Núñez, G. (2016). How polygenetic are monogenetic volcanoes: case studies of some complex maar-diatreme volcanoes. En: Nemeth, K. (ed). Updates in Volcanology-From Volcano Modelling to Volcano Geology inTech Open. Rijeka, Croatiaspa
dc.relation.referencesThompson, J.B. (1947). Role of aluminum in rock forming silicates. Bulletin of Geological Society of America. 58, 12-32.spa
dc.relation.referencesThouret, J.C., Cantagrel, J.M., Salinas, R. & Murcia, A. (1990). Quaternary eruptive history of Nevado del Ruiz (Colombia). Journal of Volcanology and Geothermal Research, 41, 225-251.spa
dc.relation.referencesToro, L.M., Alvarán-Echeverri, M. & Borrero-Peña, C.A. (2008). Rocas con afinidad adakítica al sur-este de Manizales: rasgos petrogenéticos y geoquímicos. Boletín de Geología, 30, 49-60.spa
dc.relation.referencesToro, L.M., Borrero-Peña, C.A. & Ayala, L.F. (2010). Petrografía y geoquímica de las rocas ancestrales del volcán Nevado del Ruiz. Boletín de Geología. 32, 95-105.spa
dc.relation.referencesValentine, G.A. & Gregg, T.K.P. (2008). Continental basaltic volcanoes – processes and problems. Journal of Volcanology and Geothermal Research, 177, 856-873.spa
dc.relation.referencesValentine, G. A., Shufelt, N.L. & Hintz, A.R.L. (2011). Models of maar volcanoes, Lunar Crater (Nevada, USA). Bulletin of Volcanology, 73, 753-7spa
dc.relation.referencesVelandia, M.J. (2018). Petrogenesis and conditions for the formation of guacharacos and el tabor eruption products: Pijaos Monogenetic Volcanic Field (PMVF)-Ibagué, Colombia. Universidad de Caldas, Manizales, Colombia. Trabajo de grado, 58 p.spa
dc.relation.referencesVesga, C.J. & Barrero, D. (1978). Edades K/Ar en rocas ígneas y metamórficas de la Cordillera Central de Colombia y su implicación geológica. II Congreso Colombiano Geológico, Resúmenes, Bogotá, p. 19.spa
dc.relation.referencesVespermann, D., Schminke, H.U. (2000). Scoria cones and tuff rings. En: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes. Academic Press, San Diego, 683-694.spa
dc.relation.referencesViccaro, M., Giacomoni, P.P., Ferlito, C. & Cristofolini, R. (2010). Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos, 116, 77-91.spa
dc.relation.referencesViccaro, M., Giuffrida, M., Nicotra, E., & Ozerov, A.Y. (2012). Magma storage, ascent and recharge history prior to the 1991 eruption at Avachinsky Volcano, Kamchatka, Russia: Inferences on the plumbing system geometry. Lithos, 140-141, 11-24.spa
dc.relation.referencesVinasco, C.J., Cordani, U.G., González, H., Weber, M. & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic 105 gneises and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21, 355-371.spa
dc.relation.referencesVivas, E.J. (2018). Interpretación de procesos magmáticos aplicando la técnica "distribución de tamaños de cristales en rocas del Campo Volcánico Monogenético Villamaría-Termales, Cordillera Central, Colombia. Universidad Pedagógica y Tecnológica de Colombia, Sogamoso, Colombia. Trabajo de grado, 101 p.spa
dc.relation.referencesWalker, G.P.L. (2000). Basaltic Volcanoes and Volcanic Systems. In: Sigurdsson H, Houghton B, Rymer H, Stix J, McNutt S (eds) Encyclopedia of Volcanoes. Academic, San Diego, 283–290spa
dc.relation.referencesWhite, J.D., Ross, P.-S. (2011). Maar-diatreme volcanoes: a review. Journal of Volcanology and Geothermal Research 201, 1-29.spa
dc.relation.referencesWhitney, D.L., & Evans, B.W. (2010). Abbreviations for names of rock-forming minerals. American mineralogist, 95, 185-187.spa
dc.relation.referencesWinter, J.D. (2001). An introduction to Igneous and Metamorphic Petrology, New Jersey, United States, Prentice Hall.spa
dc.relation.referencesWohletz, K.H. & Sheridan, M.F. (1983). Hydrovolcanic explosions; II, Evolution of basaltic tuff rings and tuff cones. American Journal of Science, 283, 385-413.spa
dc.relation.referencesYazo, J.C. (1991). Estudio petrológico del Intrusivo Gnéisico al Este de Manizales y su relación con el Stock de Manizales. Universidad de Caldas, Manizales, Colombia. Trabajo de grado, 140 p.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercialspa
dc.subject.proposalVulcanismo monogenéticospa
dc.subject.proposalQuímica mineralspa
dc.subject.proposalGeotermobarometríaspa
dc.subject.proposalDomo de lavaspa
dc.subject.proposalMonogenetic volcanismspa
dc.subject.proposalMineral chemistryspa
dc.subject.proposalGeothermobarometryspa
dc.subject.proposalLava domespa
dc.subject.proposalVulcanismo monogenéticospa]
dc.subject.proposalQuímica mineralspa]
dc.subject.proposalGeotermobarometríaspa]
dc.subject.proposalDomo de lavaspa]
dc.subject.proposalMonogenetic volcanismspa]
dc.subject.proposalMineral chemistryspa]
dc.subject.proposalGeothermobarometryspa]
dc.subject.proposalLava domespa]
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
dc.description.degreenameGeólogo(a)spa
dc.publisher.programGeologíaspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Copyright (c) 2020 Universidad de Caldas
Excepto si se señala otra cosa, la licencia del ítem se describe como Copyright (c) 2020 Universidad de Caldas