Mostrar el registro sencillo del ítem

dc.contributor.advisorRamírez Chaves, Héctor Emilio
dc.contributor.authorSanchez Corrales, Juan José
dc.date.accessioned2023-04-14T16:06:55Z
dc.date.available2023-04-14T16:06:55Z
dc.date.issued2023-07-01
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/18905
dc.descriptionIlustraciones, fotosspa
dc.description.abstractspa:La morfología del cráneo de los mamíferos cuenta con adaptaciones y trayectorias alométricas asociadas con su dieta, ecología, y afinidades filogenéticas. En particular, el tipo de hábito (e.g., terrestre, arborícola) de una especie de mamífero puede influenciar la alometría de sus cráneos. Para evaluar lo anterior, se obtuvieron medidas craneales lineales de representantes de nueve de 27 órdenes taxonómicos de mamíferos vivientes, con hábitos contrastantes, las cuales fueron analizadas mediante un análisis de componentes principales y discriminantes lineares. Los resultados indicaron patrones alométricos que pueden ser asociados a la selección de un comportamiento o habito terrestre, arborícola o mixto. Esto visto en grupos que se segregaron con tendencias hacia un eje geométrico en específico como Folivora, Primates, algunos individuos de las familias Procyoinidae y Felidae, grupos con preferencias por hábitos más arborícolas. En contraste, otros grupos como Artiodactyla, Canidae, Cingulata, Didelphimorphia, Paucituberculata y demás individuos de la familia Procyonidae que comparten tendencias más terrestres o mixtas se agruparon en el eje opuesto del espacio geométrico. Adicional a este tipo de patrones, también se encontró un fuerte remanente filogenético que definen la forma de los cráneos de algunos grupos, como lo fueron la cercanía de dos órdenes de Ameridelphia (Didelphimorphia y Paucituberculata) en el espacio morfométrico y la agrupación formada por las familias de Rodentia evaluadas y el orden Lagomorpha que conforman el clado Glires. Esto demuestra que, a pesar de las presiones ecológicas, en algunos grupos aún se conserva una morfología en el cráneo asociada a líneas evolutivas. En conclusión, si bien se observan remanentes filogenéticos en la composición de los cráneos de los mamíferos, presiones ecológicas como lo es el hábito, también afectan la alometría craneana en estos organismos.spa
dc.description.abstracteng:Skull morphology of mammals exhibits adaptations and allometric trajectories associated with their diet, ecology, and phylogenetic affinities. In particular, the type of habit (e.g., terrestrial, arboreal) of a mammal species can influence its skulls allometry. To assess this, linear measurements of the skull of species of nine of 27 taxonomic orders of living mammals with contrasting habits were obtained and analyzed by principal component and linear discriminant analysis. The results indicated allometric patterns that may be associated with the selection of a terrestrial, arboreal, or mixed behavior or habitus. This was seen in assemblages that segregated with tendencies towards a specific geometric axis such as Folivora, Primates, some individuals of the families Procyoinidae and Felidae, groups with preferences for habits more arboreal. In contrast, other groups such as Artiodactyla, Canidae, Cingulata, Didelphimorphia, Paucituberculata and other individuals of the family Procyonidae that share more terrestrial or mixed tendencies were grouped on the opposite axis of the geometric space. In addition to this type of patterns, a strong phylogenetic remnant was also found that define the shape of the skulls of some groups, such as the proximity of two orders of Ameridelphia (Didelphimorphia and Paucituberculata) in the morphometric space and the grouping formed by the families of Rodentia evaluated and the order Lagomorpha that make up the Glires clade. This demonstrates that, despite ecological pressures, skull morphology associated with evolutionary lines is still preserved in some groups. In conclusion, although phylogenetic remnants are observed in the composition of mammalian skulls, ecological pressures such as habitus also affect cranial allometry in these organisms.eng
dc.description.tableofcontentsIntroducción / Materiales y métodos / Toma de datos / Análisis de datos / Resultados / Discusión / Conclusión / Referencias bibliográficasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleAlometría craneana de mamíferos y su posible asociación con los hábitos arborícolas y terrestresspa
dc.typeTrabajo de grado - Pregradospa
dc.contributor.researchgroupGEBIOME Genética, biodiversidad y manejo de ecosistemas (Categoría A1)spa
dc.description.degreelevelUniversitariospa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesAnderson, R.A., Macbrayer, L.D. & Herrel, A. (2008). Bite force in vertebrates: opportunities and caveats for use of a nonpareil whole-animal performance measure. Biol. J. Linn. Soc. 93, 709–720.spa
dc.relation.referencesBertrand, O. C., Amador-Mughal, F., & Silcox, M. T. (2017). Virtual endocast of the early Oligocene Cedromus wilsoni (Cedromurinae) and brain evolution in squirrels. Journal of Anatomy, 230(1), 128–151. doi:10.1111/joa.12537spa
dc.relation.referencesBertrand, O. C. & Silcox, M. T. (2016) First virtual endocasts of a fossil rodent: Ischyromys typus (Ischyromyidae) and brain evolution in rodents. J Vert Paleontol 36, 1–19.spa
dc.relation.referencesBininda-Emonds, O. R. P., Jeffrey J. E. & Richardson, M. K. (2003). Is sequence heterochrony an important evolutionary mechanism in mammals? J. Mammal. Evol. 10, 335–361.spa
dc.relation.referencesBubadué, J., Cáceres, N., dos Santos Carvalho, R., & Meloro, C. (2016). Ecogeographical variation in skull shape of South- American Canids: Abiotic or biotic processes? Evolutionary Biology, 43, 145–159. https ://doi.org/10.1007/s1169 2-015-9362- 3.spa
dc.relation.referencesCamargo, N. F., Machado, L. F., Mendonça, A. F. & Vieira, E. M. (2019). Cranial shape predicts arboreal activity of Sigmodontinae rodents. Journal of Zoology, 308(2), 128– 138. doi:10.1111/jzo.12659spa
dc.relation.referencesCardini, A. & Polly, P. D. (2013). Larger mammals have longer faces because of size-related constraints on skull form. Nature Communications, 4(1), 2458 doi:10.1038/ncomms3458.spa
dc.relation.referencesCheverud, J. M. (1982). Relationships among ontogenetic, static, and evolutionary allometry. American Journal of Physical Anthropology, 59(2), 139–149. doi:10.1002/ajpa.1330590204.spa
dc.relation.referencesD'Elía, G. & Teta, P. (2021). Illustrated Checklist of the Mammals of the World. Journal of Mammalogy 102(5), 1445-1446. https://doi.org/10.1093/jmammal/gyab075.spa
dc.relation.referencesDamasceno, E. M., Hingst-Zaher, E., & Astúa, D. (2013). Bite force and encephalization in the Canidae (Mammalia: Carnivora). Journal of Zoology, 290, 246–254. https ://doi.org/10.1111/ jzo.12030.spa
dc.relation.referencesDepew, M. J., Tucker, A.S. & Sharpe, P. T. (2002). Craniofacial development. In: Rossant J., Tam P.P.L. (Eds.) Mouse development: patterning, morphogenesis, and organogenesis. Academic Press, San Diego. 421–498p.spa
dc.relation.referencesDrake, A. G. & Klingenberg, C. P. (2010). Large-scale diversification of skull shape in domestic dogs: disparity and modularity. Am. Nat. 175, 289–301.spa
dc.relation.referencesEisenberg, J.F & Wilson, D.E. (1983). Relative brain size and demographic strategies in didelphid marsupials. Am. Nat. 118, 1–15.spa
dc.relation.referencesEmerson, S. B., & Bramble, D. M. (1993). Scaling, allometry and skull design. In J. Hanken & B. K. Hall (Eds.), The skull (pp. 384–416). Chicago: The University of Chicago Press.spa
dc.relation.referencesGalatius, A., Berta, A., Frandsen, M. S., & Goodall, R. N. P. (2011). Interspecific variation of ontogeny and skull shape among porpoises (Phocoenidae). Journal of Morphology, 272, 136–148. https ://doi.org/10.1002/jmor.10900.spa
dc.relation.referencesGoswami, A. (2006a). Cranial modularity shifts during mammalian evolution. Am. Nat. 168, 270–280.spa
dc.relation.referencesGoswami, A. (2006b). Morphological integration in the carnivoran skull. Evolution 60, 169–183.spa
dc.relation.referencesGoswami, A., Milne, N. & Wroe, S. (2011). Biting through constraints: cranial morphology, disparity and convergence across living and fossil carnivorous mammals. Proc. R. Soc. Lond. B Biol. Sci. 278, 1831–1839.spa
dc.relation.referencesGoswami, A. & Polly, P. D. (2010). The influence of modularity on cranial morphological disparity in Carnivora and Primates (Mammalia). PLoS ONE 5(3): e9517. doi:10.1371/ journal. pone.0009517.spa
dc.relation.referencesGoswami, A., Polly, P. D., Mock, O. B., & Sánchez-Villagra, M. R. (2012). Shape, variance and integration during craniogenesis: contrasting marsupial and placental mammals. Journal of Evolutionary Biology, 25(5), 862–872. doi:10.1111/j.1420- 9101.2012.02477. xspa
dc.relation.referencesGould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587–638.spa
dc.relation.referencesHenderson, K., Pantinople, J., McCabe, K., Richards, H. L. & Milne, N. (2017). Forelimb bone curvature in terrestrial and arboreal mammals. Virginia Abdala. PeerJ 5, e3229; DOI 10.7717/peerj.3229spa
dc.relation.referencesHill, J. (1990). J. F. Eisenberg 1989. Mammals of the Neotropics. Volume 1. The Northern Neotropics. University of Chicago Press, USA. x 449 pages. Clothbound: ISBN 0- 23 226-19539-2. Paperback: ISBN 0-226-19540-6. Journal of Tropical Ecology, 6(3), 290-290. doi:10.1017/S0266467400004521spa
dc.relation.referencesJames, F. C. (1982). The ecological morphology of birds. Ann. Zool. Fenn. 19: 265– 275.spa
dc.relation.referencesKassambara, A. & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.Rproject.org/package=factoextraspa
dc.relation.referencesKlingenberg, C. P. (2010). Evolution and development of shape: integrating quantitative approaches. Nat. Genet. 11, 623–635.spa
dc.relation.referencesKlingenberg, C. P. (2013). Cranial integration and modularity: insights into evolution and development from morphometric data. Hystrix It. J. Mammal. 24, 43–58.spa
dc.relation.referencesLieberman, D. E. (2011). The evolution of the human head. Harvard University Press, Cambridge, MA.spa
dc.relation.referencesMace, G. M., Harvey, P. H. & Clutton-Brock, T. H. (1981) Brain size and ecology in small mammals. J Zool 193, 333–354.spa
dc.relation.referencesMaestri, R., Patterson, B. D., Fornel, R., Monteiro, L. R., & de Freitas, T. R. O. (2016). Diet, bite force and skull morphology in the generalist rodent morphotype. Journal of Evolutionary Biology, 29(11), 2191–2204. doi:10.1111/jeb.12937spa
dc.relation.referencesMarcus L. F., Hingst-Zaher E. & Zaher H. (2000). Application of landmark morphometrics to skulls representing the orders of living mammals. Hystrix 11(1), 27–47. doi:10.4404/ hystrix-11.1-4135.spa
dc.relation.referencesMarroig, G., Shirai, L. T., Porto, A., de Oliveira, F. B. & De Conto V. (2009). The evolution of modularity in the mammalian skull II: evolutionary consequences. Evol. Biol. 36, 136–148.spa
dc.relation.referencesMartinez, P. A., Marti, D. A., Molina, W. F., & Bidau, C. J. (2013). Bergmann’s rule across the equator: A case study in Cerdocyon thous (Canidae). Journal of Animal Ecology, 82, 997–1008. https ://doi.org/10.1111/1365-2656.12076.spa
dc.relation.referencesMitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K., & Bookstein, F. L. (2004). Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution, 46(6), 679–698. doi:10.1016/j.jhevol.2004.03.006.spa
dc.relation.referencesMoore, W. J. (1981). The mammalian skull. Cambridge: Cambridge University Press.spa
dc.relation.referencesMorales, M. M., & Giannini, N. P. (2010). Morphofunctional patterns in Neotropical felids: Species co-existence and historical assembly. Biological Journal of the Linnean Society, 100, 711–724. https://doi.org/10.1111/j.1095-8312.2010.01461. x.spa
dc.relation.referencesPilleri, G., Gihr M. & Kraus, C. (1984). Cephalization in rodents with particular reference to the Canadian beaver (Castor canadensis). In: Investigations on Beavers. (ed. Pilleri G), pp. 11–102. Berne, Switzerland: Brain Anatomy Institute.spa
dc.relation.referencesPorto, A., De Oliveira, F. B., Shirai, L. T., De Conto, V. & Marroig, G. (2009). The evolutionof modularity in the mammalian skull I: Morphological integration patterns and magnitudes. Evol. Biol. 36, 118–135.spa
dc.relation.referencesR Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.spa
dc.relation.referencesRoth, V. L. & Thorington, R. W. (1982). Relative brain size among African squirrels. J Mammal 63, 168–173.spa
dc.relation.referencesSanchez-Villagra, M. R. (2010). Developmental palaeontology in synapsids: the fossil record of ontogeny in mammals and their closest relatives. Proceedings of the Royal Society B: Biological Sciences, 277(1685), 1139–1147. doi:10.1098/rspb.2009.2005.spa
dc.relation.referencesSantana, S. E., Dumont, E. R. & Davis, J. L. (2010). Mechanics of bite force production and its relationship to diet in bats. Funct. Ecol. 24, 776–784.spa
dc.relation.referencesSantana, S. E., Dumont, E. R. & Davis, J. L. (2010). Mechanics of bite force production and its relationship to diet in bats. Funct. Ecol. 24, 776–784.spa
dc.relation.referencesLe, S., Josse, J. & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1), 1-18. 10.18637/jss.v025.i01.spa
dc.relation.referencesSicuro, F. L. (2011). Evolutionary trends on extant cat skull morphology (Carnivora: Felidae): A three-dimensional geometrical approach. Biological Journal of the Linnean Society, 103, 176– 190. https ://doi.org/10.1111/j.1095-8312.2011.01636. x.spa
dc.relation.referencesSicuro, F. L., & Oliveira, L. F. B. (2011). Skull morphology and functionality of extant Felidae (Mammalia: Carnivora): A phylogenetic and evolutionary perspective. Zoological Journal of the Linnean Society, 161, 414–462. https ://doi.org/10.111 1/j.1096- 3642.2010.00636. x.spa
dc.relation.referencesSingleton, M. (2005). Functional shape variation in the cercopithecine masticatory complex. Mod. Morphometric. Phys. Anthropol. 319–348.spa
dc.relation.referencesThomason, J. J. (1991). Cranial strength in relation to estimated biting forces in some mammals. Canadian Journal of Zoology, 69, 2326–2333. https ://doi.org/10.1139/z91-327.spa
dc.relation.referencesVenables, W. N. & Ripley, B. D. (2002). Modern Applied Statistics with S. Fourth Edition. Springer, New York.spa
dc.relation.referencesWainwright, P. C. (1994). Functional morphology as a tool in ecological research. In: Ecological Morphology: Integrative Organismal Biology (P.C. Wainwright & S.M. Reilly, eds), pp. 42–59. The University of Chicago Press, Chicago, IL.spa
dc.relation.referencesWickham, H., François, R., Henry, L. & Müller, K. (2021). dplyr: A Grammar of Data Manipulation. R package version 1.0.7. https://CRAN.R-project.org/package=dplyr.spa
dc.relation.referencesZelditch, M. L., & Carmichael, A. C. (1989). Growth and intensity of integration through postnatal growth in the skull of Sigmodon fulviventer. Journal of Mammalogy, 70, 477–484. https ://doi. org/10.2307/13814 19.spa
dc.relation.referencesZurano, J. P., Martinez, P. A., Canto-Hernandez, J., Montoya-Burgos, J. I., & Costa, G. C. (2017). Morphological and ecological divergence in south American canids. Journal of Biogeography, 44, 821–833. https://doi.org/10.1111/jbi.12984.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalAdaptacionesspa
dc.subject.proposalHábitosspa
dc.subject.proposalMammaliaspa
dc.subject.proposalMorfologíaspa
dc.subject.proposalMorfometríaspa
dc.subject.proposalAdaptationseng
dc.subject.proposalHabitseng
dc.subject.proposalMammaliaeng
dc.subject.proposalMorphologyeng
dc.subject.proposalMorphometricseng
dc.subject.proposalMorphologyeng
dc.subject.unescoMamíferos
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.description.degreenameBiólogo(a)spa
dc.publisher.programBiologíaspa
dc.description.researchgroupSistemática y Ecología de Organismos Acuáticos y Terrestresspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem