Mostrar el registro sencillo del ítem

dc.contributor.advisorGomes Dias, Lucimar
dc.contributor.advisorRamírez, Yuly Paulina
dc.contributor.authorGómez Rojas, Diana
dc.date.accessioned2023-01-27T19:52:24Z
dc.date.available2024-03-30
dc.date.available2023-01-27T19:52:24Z
dc.date.issued2023-01-27
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/18750
dc.descriptionIlustraciones, mapasspa
dc.description.abstractspa:En Colombia, la agricultura es una de las actividades que más impactan los recursos hídricos, generando la remoción de la cobertura vegetal. Caldas es uno de los principales productores de aguacate, la variedad Hass es la que más se cultiva con un total de 11.300 hectáreas. Para evaluar estos impactos son utilizados análisis fisicoquímicos y macroinvertebrados acuáticos, debido a que son organismos sensibles a la alteración ambiental. El presente estudio tuvo como objetivo evaluar la diversidad composición y estructura trófica de macroinvertebrados acuáticos en un gradiente ambiental inmerso en matrices de aguacate en quebradas presentes en la cuenca alta del rio Chinchiná, teniendo en cuenta la calidad del agua y del hábitat por medio de respuestas biológicas, parámetros fisicoquímicos e índices de integridad. Se Seleccionaron seis puntos que cuentan con un gradiente de cambio en la vegetación ribereña, se muestrearon con red D y red surber. Se realizaron análisis de diversidad q, ordenamiento y de correspondencia canónica. Encontrando que la eliminación de la vegetación ribereña conlleva a la diminución de la diversidad del sitio y a la perdida de taxones sensibles, además de la dominancia de ciertos grupos funcionales alimenticios capaces de tolerar y adaptarse a los cambios del ambiente.spa
dc.description.abstracteng:Diversity, composition, and trophic structure of aquatic macroinvertebrates in an environmental gradient immersed in avocado matrices in Caldas, Colombia. In Colombia, agriculture is one of the activities that most impact water resources, generating the discharge of different pollutants into the water and the removal of vegetation cover. The department of Caldas is one of the main avocado producers, and the Hass variety is the most cultivated with a total of 11,300 hectares. To assess these impacts, physicochemical analyses and aquatic macroinvertebrates are used, since they are sensitive organisms to environmental alterations in addition to presenting a wide distribution and diversity. The objective of this study was to evaluate the diversity, composition, and trophic structure of aquatic macroinvertebrates in an environmental gradient immersed in avocado matrices in streams present in the upper basin of the Chinchiná River, taking into account the quality of the water and the habitat through responses to biological, physicochemical parameters and integrity indices. Six points that have a gradient of change in the riparian vegetation were selected and sampled with net D and net surber. Analyzes of q diversity, ordering, and correspondence canonical were performed. Finding that the influence of agricultural activities results in marked changes in the structural and functional integrity of riparian habitats since the elimination of riparian vegetation leads to a decrease in the diversity of the site and the loss of sensitive taxa, in addition to the dominance of certain nutritional functional groups capable of tolerating and adapting to changes in the environment. Therefore, maintaining riparian vegetation in agricultural processes is of vital importance to cushion the different impacts caused, thus preserving the diversity of macroinvertebrates and their functional feeding groups.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleDiversidad, composición y estructura trófica de macroinvertebrados acuáticos en un gradiente ambiental inmerso en matrices de aguacate en Caldas Colombiaspa
dc.typeTrabajo de grado - Pregradospa
dc.contributor.researcherTesista de pregrado
dc.description.degreelevelUniversitariospa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.cospa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesAlba-Tercedor, J. (1996). Macroinvertebrados acuáticos y calidad de las aguas de los Ríos. IV Simposio del Agua en Andalucía, 2, 203- 213.spa
dc.relation.referencesAl-Taani, A. A., Nazzal, Y., Howari, F. M., Iqbal, J., Bou Orm, N., Xavier, C. M., Bărbulescu, A., Sharma, M., y Dumitriu, C. S. (2021). Contamination Assessment of Heavy Metals in Agricultural Soil, in the Liwa Area (UAE). Toxics, 9(3), 53. https://doi.org/10.3390/toxics9030053spa
dc.relation.referencesBeltrán-Tolosa, L. M., Navarro-Racines, C., Pradhan, P., Cruz-Garcia, G., Solis, R., y Quintero, M. (2020). Action needed for staple crops in the Andean-Amazon foothills because of climate change. Mitig Adapt Strateg Glob Change 25, 1103–1127. https://doiorg.ezproxy.ucaldas.edu.co./10.1007/s11027 -020-09923-4spa
dc.relation.referencesBerger, E., Haase, P., Schäfer, R. B., y Sundermann, A. (2018). Towards stressor-specific macroinvertebrate indices: Which traits and taxonomic groups are associated with vulnerable and tolerant taxa? Science of the Total Environment, 619-620, 144–154. https://doi.org/10.1016/j.scitotenv.2017.11.0 22spa
dc.relation.referencesBernasconi, C., Demetrio, P. M., Alonso, L. L., Mac Loughlin, T. M., Cerdá, E., Sarandón, S. J., y Marino, D. J. (2021). Evidence for soil pesticide contamination of an agroecological farm from a neighboring chemical-based production system. Agriculture, Ecosystems y Environment, 313, 107-341. https://doi.org/10.1016/j.agee.2021.107341spa
dc.relation.referencesBirk, S. y D. Hering. (2006). Direct comparison of assessment methods using benthic macroinvertebrates: a contribution to the EU Water Framework Directive intercalibration exercise. Hydrobiologia 566 (1), 401-415. https://doi.org/10.1007/s10750-006-0081-8spa
dc.relation.referencesCaspers, H. (1961). Hynes, H. B. N.: The Biology of Polluted Waters. With 22 Fig. Liverpool: Liverpool University Press 1980. 202 p. 25 s. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 46(3), 496. https://doi.org/10.1002/iroh.19610460321spa
dc.relation.referencesChará Serna, A., Chará, J., Zúiga, M., Pedraza, G., y Giraldo, L. (2010). Clasificación trófica de insectos acuáticos en ocho quebradas protegidas de la ecorregión cafetera Colombiana. Universitas Scientiarum, 15, 27–36spa
dc.relation.referencesChará-Serna, A. M., Chará, J. D., Zúñiga, M. D. C., Pearson, R. G. y Boyero, L. (2012). Diets of leaf litter-associated invertebrates in three tropical streams. Annales de Limnologie - International Journal of Limnology, 48(2), 139-144. https://doi.org/10.1051/limn/2012013spa
dc.relation.referencesChellaiah, D. y Yule, C. M. (2018). Riparian buffers mitigate impacts of oil palm plantations on aquatic macroinvertebrate community structure in tropical streams of Borneo. Ecological Indicators, 95, 53-62. https://doi.org/10.1016/j.ecolind.2018.07.02 5spa
dc.relation.referencesCho, K., Goldstein, B., Gounaridis, D., y Newell, J. P. (2021). Where does your guacamole come from? Detecting deforestation associated with the export of avocados from Mexico to the United States. Journal of Environmental Management, 278, 111482. https://doi.org/10.1016/j.jenvman.2020.1114 82spa
dc.relation.referencesCummins, K. W., Merritt, R. W. y Andrade, P. C. (2005). The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment, 40(1), 69-89. https://doi.org/10.1080/01650520400025720spa
dc.relation.referencesDuque, G. (2022, 1 marzo). BOLETÍN 01: Visión del aguacate Hass. Red Ambiental de caldas (RAC). https://godues.wordpress.comspa
dc.relation.referencesDragoeva, A., Kalcheva, V., y Slanev, S. (2009). Genotoxicity of Agricultural Soils after One Year of Conversion Period and Under Conventional Agriculture. Biotechnology y Biotechnological Equipment, 23(1), 163– 166. https://doi.org/10.1080/13102818.2009.1081 8390spa
dc.relation.referencesEdegbene, A. O., Arimoro, F. O., y Odume, O. N. (2020). How does Urban Pollution Influence Macroinvertebrate Traits in Forested Riverine Systems? Water, 12(11), 3111. https://doi.org/10.3390/w12113111spa
dc.relation.referencesEl-Feky, M., E. Alprol, A., M. M. Heneash, A., A. Abo-Taleb, H., y Y. Omer, M. (2019). Evaluation of Water Quality and Plankton for Mahmoudia Canal in Northern West of Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 22(5 (Special Issue)), 461-474. https://doi.org/10.21608/ejabf.2019.26384spa
dc.relation.referencesErazo-Mesa, E., Gómez, E. H., y Sánchez, A. E. (2022). Surface soil water content as an indicator of Hass avocado irrigation scheduling. Agricultural Water Management, 273, 107864. https://doi.org/10.1016/j.agwat.2022.107864spa
dc.relation.referencesFerrari, C. R., do Nascimento, H. D. A. F., Rodgher, S., Almeida, T., Bruschi, A. L., Nascimento, M. R. L. D., y Bonifácio, R. L. (2017). Effects of the discharge of uranium mining effluents on the water quality of the reservoir: an integrative chemical and ecotoxicological assessment. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-14100- wspa
dc.relation.referencesFierro, P., Bertrán, C., Tapia, J., Hauenstein, E., Peña-Cortés, F., Vergara, C., Cerna, C. y Vargas-Chacoff, L. (2017). Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Science of The Total Environment, 609, 724-734. https://doi.org/10.1016/j.scitotenv.2017.07.1 97spa
dc.relation.referencesGaufin, A. R. y Tarzwell, C. M. (1952). Aquatic invertebrates as indicators of stream 23 Pollution. Amer. Public health reports. 67(1), 57–64.spa
dc.relation.referencesGomiero, T., Pimentel, D., y Paoletti, M. G. (2011). Is There a Need for a More Sustainable Agriculture? Critical Reviews in Plant Sciences, 30(1–2), 6–23. https://doi.org/10.1080/07352689.2011.5535 15spa
dc.relation.referencesGonzález del Tánago, M., Martínez-Fernández, V., Aguiar, F. C., Bertoldi, W., Dufour, S., García de Jalón, D., Garófano-Gómez, V., Mandzukovski, D. y Rodríguez-González, P. M. (2021). Improving river hydromorphological assessment through better integration of riparian vegetation: Scientific evidence and guidelines. Journal of Environmental Management, 292, 112730. https://doi.org/10.1016/j.jenvman.2021.1127 30spa
dc.relation.referencesGonzález-Estudillo, J. C., González-Campos, J. B., Nápoles-Rivera, F., Ponce-Ortega, J. M., y El-Halwagi, M. M. (2017). Optimal Planning for Sustainable Production of Avocado in Mexico. Process Integration and Optimization for Sustainability, 1(2), 109- 120. https://doi.org/10.1007/s41660-017- 0008-zspa
dc.relation.referencesGranados-Martínez, C., Zúñiga-Céspedes, B. y Acuña-Vargas, J. (2016). Diets and trophic guilds of aquatic insects in Molino River, La Guajira, Colombia. Journal of Limnology, 75(s1). https://doi.org/10.4081/jlimnol.2016.1396spa
dc.relation.referencesGuevara Cardona, G. (2016). Leaf decomposition and colonization by aquatic macroinvertebrates in two tropical microcatchments (Manizales, Colombia). Hidrobiológica, 26(3), 347-357. https://doi.org/10.24275/uam/izt/dcbs/hidro/ 2016v26n3/guevaraspa
dc.relation.referencesGuevara, G., Godoy, R. y Franco, M. (2018). Linking riparian forest harvest to benthic macroinvertebrate communities in Andean headwater streams in southern Chile. Limnologica, 68, 105-114. https://doi.org/10.1016/j.limno.2017.07.007spa
dc.relation.referencesHeneash, A. M., Alprol, A. E., Abd El-Hamid, H. T. et al. (2021). Assessment of water pollution induced by anthropogenic activities on zooplankton community in Mariout Lake using statistical simulation. Arab J Geosci 14, 641. https://doiorg.ezproxy.ucaldas.edu.co/10.1007/s12517- 021-06977-9spa
dc.relation.referencesHou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C. W., Sparks, D. L., Yamauchi, Y., Rinklebe, J., y Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth y Environment, 1(7), 366–381. https://doi.org/10.1038/s43017-020-0061-yspa
dc.relation.referencesKulkarni S. V. y Tapase B. S. (2011) Physicochemical parameters and water quality index of Gandhisagar Lake of Umrer in Nagpur district, Journal of Bioscience, 2(3), 366-369spa
dc.relation.referencesLet, M., Špaček, J., Ferenčík, M., Kouba, A., y Bláha, M. (2021). Insecticides and Drought as a Fatal Combination for a Stream Macroinvertebrate Assemblage in a Catchment Area Exploited by Large-Scale Agriculture. Water, 13(10), 1352. https://doi.org/10.3390/w13101352spa
dc.relation.referencesMangadze, T., Wasserman, R. J., Froneman, P. W. y Dalu, T. (2019). Macroinvertebrate functional feeding group alterations in response to habitat degradation of headwater Austral streams. Science of The Total Environment, 695, 133910. https://doi.org/10.1016/j.scitotenv.2019.133 910spa
dc.relation.referencesMeza-Salazar, A. M., Guevara, G., Gomes-Dias, L., y Cultid-Medina, C. A. (2020). Density and diversity of macroinvertebrates in Colombian Andean streams impacted by mining, agriculture and cattle production. PeerJ, 8, e9619. https://doi.org/10.7717/peerj.9619spa
dc.relation.referencesMinAgricultura ‘Juntos por el Campo’. (2020). Minagricultura impulsa el agro de Caldas con el programa de reactivación. https://www.minagricultura.gov.co/paginas/ default.aspxspa
dc.relation.referencesMinaya, V., McClain, M. E., Moog, O., Omengo, F., y Singer, G. A. (2013). Scale-dependent effects of rural activities on benthic macroinvertebrates and physico-chemical characteristics in headwater streams of the Mara River, Kenya. Ecological Indicators, 32, 116–122. https://doi.org/10.1016/j.ecolind.2013.03.01 1spa
dc.relation.referencesMontilla, V., Márquez, J. A. y Principe, R. E. (2022). Aquatic macroinvertebrates as bioindicators of the harvest effect on mountain streams afforested with exotic pines. Limnologica, 95, 125988. https://doi.org/10.1016/j.limno.2022.125988spa
dc.relation.referencesMotta, R. y Uieda, V. (2004). Diet and trophic groups of an aquatic insect community in a tropical stream. Brazil Journal Biologica, 64(3), 809–9017. https://doi.org/10.1111/j.1346- 8138.1981.tb02541.xspa
dc.relation.referencesOrrego-Meza, J. G., Hernández-Cortés, I. C., Marulanda-López, J. F., Rivera-Pérez, J. M., Viteri-Delgado, J. P., Franco-Torres, M., Llano-Arias, C. A., y Gomes Dias, L. (2020). Diversidad de macroinvertebrados acuáticos en el Parque Nacional Natural Selva de Florencia, Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(171), 560–571. https://doi.org/10.18257/raccefyn.1027spa
dc.relation.referencesPérez, B., y Segnini, S. (2005). Variación espacial de la composición y diversidad de géneros de Ephemeroptera (Insecta) en un río tropical altiandino. Entomotropica, 20(1), 49–57. http://www.ephemeropteragalactica.com/pubs/pub_p/pubperezb2005p4 9.pdfspa
dc.relation.referencesQuoreshi, A., Suleiman, M. K., Manuvel, A. J., Sivadasan, M. T., Jacob, S., y Thomas, R. (2019). Biofertilizers for Agriculture and Reclamation of Disturbed Lands: An Ecofriendly Resource for Plant Nutrition. JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 1(4), 231–243. https://doi.org/10.26782/jmcms.spl.4/2019.1 1.00023spa
dc.relation.referencesRamírez, Y. P., Giraldo, L. P., Zúñiga, M. C., Ramos, B. C., y Chará, J. (2018). Influencia de la ganadería en los macroinvertebrados acuáticos en microcuencas de los Andes centrales de Colombia. Revista de Biología Tropical, 63(3), 1244–1257. ISSN-0034- 7744spa
dc.relation.referencesRamírez, Y.P. (2018). Estructura trófica de la macrofauna bentónica asociada con paquetes de hojarasca en quebradas de cabecera de un paisaje ganadero en Colombia. [Tesis de maestría no publicada - en preparación]. Universidad de Caldas.spa
dc.relation.referencesResh, V. H., Norris, R. H., y Barbour, M. T. (1995). Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebrates. Austral Ecology, 20(1), 108–121. https://doi.org/10.1111/j.1442- 9993.1995.tb00525.xspa
dc.relation.referencesRivers-Moore, N., Ramulifho, P. y Foord, S. (2021). Baetid abundances are a rapid indicator of 25 thermal stress and riparian zone intactness. Journal of Thermal Biology, 102, 103125. https://doi.org/10.1016/j.jtherbio.2021.1031 25spa
dc.relation.referencesRoldán, G. (1988). Guía para el estudio de los macroinvertebrados acuáticos del Departamento de Antioquia. Fondo FENColombia- Conciencias - Universidad de Antioquia, Editorial Presencia Ltda. Santafé de Bogotá.spa
dc.relation.referencesRoldán, G. (2016). Los macroinvertebrados como bioindicadores de la calidad del agua: cuatro décadas de desarrollo en Colombia y Latinoamérica. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 40(155), 254-274. https://doi.org/10.18257/raccefyn.335spa
dc.relation.referencesRoldán, G., Zúñiga, M. del C., Zamora, H., Álvarez, L. F., Reinoso, G. y Longo, M. (2014). Capítulo de Colombia. En: Perla AlonsoEguíalis, José Manuel Mora, Bruce Campbell y Monika Springer, Editores 2014. Diversidad, conservación y uso de los macroinvertebrados dulceacuícolas de México, Centroamérica, Colombia, Cuba y Puerto Rico. IMTA México.spa
dc.relation.referencesSamboni-Ruiz, N. E., Carvajal Escobar, Y., y Escobar, J. C. (2007). Revisión de parámetros fisicoquímicos como indicadores de calidad y contaminación del agua. Ingeniería e Investigación, 27(3), 172-181. ISSN 0120- 5609.spa
dc.relation.referencesShibabaw, T., Beyene, A., Awoke, A., Tirfie, M., Azage, M., y Triest, L. (2021). Diatom community structure in relation to environmental factors in human influenced rivers and streams in tropical Africa. PLOS ONE, 16(2), e0246043. https://doi.org/10.1371/journal.pone.024604 3spa
dc.relation.referencesSitati, A., Raburu, P. O., Yegon, M. J. y Masese, F. O. (2021). Land-use influence on the functional organization of Afrotropical macroinvertebrate assemblages. Limnologica, 88, 125875. https://doi.org/10.1016/j.limno.2021.125875spa
dc.relation.referencesSmalling, K. L., Devereux, O. H., Gordon, S. E., Phillips, P. J., Blazer, V. S., Hladik, M. L., Kolpin, D. W., Meyer, M. T., Sperry, A. J., y Wagner, T. (2021). Environmental and anthropogenic drivers of contaminants in agricultural watersheds with implications for land management. Science of the Total Environment, 774, 145687. https://doi.org/10.1016/j.scitotenv.2021.145 687spa
dc.relation.referencesSolis, M., Arias, M., Fanelli, S., Bonetto, C. y Mugni, H. (2019). Agrochemicals’ effects on functional feeding groups of macroinvertebrates in Pampas streams. Ecological Indicators, 101, 373-379. https://doi.org/10.1016/j.ecolind.2019.01.03 6spa
dc.relation.referencesSylvester, J., Valencia, J., Verchot, L. V., Chirinda, N., Romero Sanchez, M. A., Quintero, M., y Castro-Nunez, A. (2020). A rapid approach for informing the prioritization of degraded agricultural lands for ecological recovery: A case study for Colombia. Journal for Nature Conservation, 58, 125921. https://doi.org/10.1016/j.jnc.2020.125921spa
dc.relation.referencesTamaris-Turizo, C. E. (2018). Relaciones Tróficas de Macroinvertebrados Acuáticos en un Río Tropical de la Sierra Nevada de Santa Marta. Universidad Nacional de Colombia.spa
dc.relation.referencesTomanova, S., Goitia, E. y Helešic, J. (2006). Trophic Levels and Functional Feeding Groups of Macroinvertebrates in Neotropical Streams. Hydrobiologia, 556(1), 251-264. https://doi.org/10.1007/s10750-005-1255-5spa
dc.relation.referencesVila, I., Hermosilla, V., Gonzalez, F., Sobarzo, G. y Rojas, P. (2020). Macroinvertebrate community structure in an extreme altiplanic environment from Chile: The Ascotán salt pan. Global Ecology and Conservation, 24, e01260. https://doi.org/10.1016/j.gecco.2020.e01260spa
dc.relation.referencesVillada-Bedoya, S., Ospina Bautista, F., Dias, L. G. y Estévez Varón, J. V. (2017). Diversidad de insectos acuáticos en quebradas impactadas por agricultura y minería, Caldas, Colombia. Revista de Biología Tropical, 65(4), 1635. https://doi.org/10.15517/rbt.v65i4.26903spa
dc.relation.referencesVillada-Bedoya, S., Triana-Moreno, L. A. y GomesDias, L. (2017). Grupos funcionales alimentarios de insectos acuáticos en quebradas andinas afectadas por agricultura y minería. Caldasia, 39(2), 370-387. https://doi.org/10.15446/caldasia.v39n2.628 00spa
dc.relation.referencesVillada-Bedoya, S., Triana-Moreno, L. A. y GomesDias, L. (2017). Grupos funcionales alimentarios de insectos acuáticos en quebradas andinas afectadas por agricultura y minería. Caldasia, 39(2), 370-387. https://doi.org/10.15446/caldasia.v39n2.628 00spa
dc.relation.referencesVimos-Lojano, D., Hampel, H., Vázquez, R. F. y Martínez-Capel, F. (2020). Community structure and functional feeding groups of macroinvertebrates in pristine Andean streams under different vegetation cover. Ecohydrology y Hydrobiology, 20(3), 357- 368. https://doi.org/10.1016/j.ecohyd.2020.04.00 4spa
dc.relation.referencesWilliams-Subiza, E. A., Brand, C. y Miserendino, M. L. (2022). Compositional shifts in freshwater macroinvertebrate communities over 30 years of urbanization. Ecological Engineering, 183, 106738. https://doi.org/10.1016/j.ecoleng.2022.1067 38spa
dc.relation.referencesYates, A. G., Brua, R. B., Culp, J. M., Chambers, P. A., y Wassenaar, L. I. (2014). Sensitivity of structural and functional indicators depends on type and resolution of anthropogenic activities. Ecological Indicators, 45, 274– 284. https://doi.org/10.1016/j.ecolind.2014.02.01 4.spa
dc.relation.referencesYildirim, E., Ekinci, M., Turan, M., Ağar, G., Dursun, A., Kul, R., Alim, Z., y Argin, S. (2021). Humic + Fulvic acid mitigated Cd adverse effects on plant growth, physiology and biochemical properties of garden cress. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86991-9spa
dc.relation.referencesZhang, Y., Wang, J., y Feng, Y. (2021). The effects of biochar addition on soil physicochemical properties: A review. CATENA, 202, 105284. https://doi.org/10.1016/j.catena.2021.105284spa
dc.relation.referencesZhou, B., Zhao, L., Sun, Y., Li, X., Weng, L., y Li, Y. (2021). Contamination and human health risks of phthalate esters in vegetable and crop soils from the Huang-Huai-Hai region of China. Science of the Total Environment, 778, 146–281. https://doi.org/10.1016/j.scitotenv.2021.146 281.spa
dc.relation.referencesZilli, F. L., Montalto, L. y Marchese, M. R. (2008). Benthic invertebrate assemblages and functional feeding groups in the Paraná River floodplain (Argentina). Limnologica, 38(2), 159-171. https://doi.org/10.1016/j.limno.2008.01.001spa
dc.relation.referencesZúñiga, María del Carmen, Julián Chará, Lina Paola Giraldo, Ana Marcela Chará- Serna, and Ximena Pedraza. 2013. Composición de La Comunidad de Macroinvertebrados Acuáticos En Pequeñas Quebradas de La Región Andina Colombiana, Con Énfasis En La Entomofauna. Dugesiana 20(2):263–277. ISSN: 1405-4094.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.proposalAguacatespa
dc.subject.proposalAgriculturaspa
dc.subject.proposalCaldasspa
dc.subject.proposalComposiciónspa
dc.subject.proposalDiversidadspa
dc.subject.proposalGrupos funcionalesspa
dc.subject.proposalMacroinvertebradosspa
dc.subject.unescoConservación de la naturaleza
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
dc.description.degreenameBiólogo(a)spa
dc.publisher.programBiologíaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem