Mostrar el registro sencillo del ítem

dc.contributor.advisorMacias, Mario
dc.contributor.advisorRíos, Amalia
dc.contributor.authorMolina Giraldo, Deysy Andrea
dc.date.accessioned2022-09-26T14:41:52Z
dc.date.available2023-05-05
dc.date.available2022-09-26T14:41:52Z
dc.date.issued2022-09-26
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/18091
dc.descriptionIlustraciones, fotos, gráficasspa
dc.description.abstractspa:El estudio de las interacciones supramoleculares ha tomado cada vez más importancia en el campo de la química, debido al papel que juega en el análisis del auto-ensamble molecular, la catálisis enzimática y el estudio farmacológico de nuevos compuestos. Por un lado, el objetivo de la química supramolecular es estudiar las interacciones entre moléculas mediante uniones no covalentes como el enlace de hidrógeno, las interacciones CH•••π, π•••π, catión•••π, anión•••π, el enlace de halógeno, entre otras. Además, los métodos cristalográficos se han convertido en una técnica importante en varias disciplinas científicas, gracias a la alta resolución y precisión de los equipos disponibles, lo cual soporta los estudios supramoleculares de múltiples compuestos de interés clínico y farmacológico. Las investigaciones previas realizadas por nuestro grupo de investigación sobre una serie de sales cuaternarias de amonio de la forma [X-CH2-N(CH3)2-(CH2)n-CH=C(Ph)2]+I- donde n= 2, 3 y 4; X= H, Cl y I, han permitido establecer a algunas moléculas como posibles candidatas en el tratamiento de la leishmaniasis y la enfermedad de Chagas, así mismo, algunos análogos fluorados se han reportado con una actividad antitumoral promisoria. Adicionalmente, se ha reportado en la literatura un análisis cristalográfico de tres sales N-halometiladas, las cuales presentaban interacciones del tipo: enlaces de hidrógeno (C-H•••I y C-H•••π) e interacciones de halógeno C-I•••I-. Por esta razón y con el fin de avanzar con los estudios supramoleculares desarrollados por el grupo, en esta investigación se realizó una variación estructural al integrar átomos de flúor en la posición para de los anillos aromáticos periféricos y se realizó un intercambio iónico del contraión yoduro (I-) por tetrafluoroborato (BF4-), en total se estudiaron 10 sales cuaternarias de amonio. Las modificaciones estructurales de las sales cuaternarias de amonio sobre la longitud de la cadena, así como la presencia o ausencia de flúor en la posición para de los anillos periféricos, fueron llevadas a cabo previamente. En cuanto al intercambio iónico, que se realizó en este trabajo del anión I- por BF4- se utilizó AgBF4 en metanol y las sales obtenidas se recristalizaron en acetona-agua (2:1), aunque algunos de los cristales crecieron en acetona-isopropanol (2:1). Los datos de difracción de rayos X se midieron a diferentes temperaturas y las estructuras cristalinas se refinaron 17 utilizando el programa SHELXL2016. El material gráfico se preparó utilizando el software Mercury 4.1, para los cálculos estructurales se utilizó el software PLATON y para el análisis de las superficies de Hirshfeld se utilizó CrystalExplorer 17.5. Al analizar el efecto de la presencia de flúor en la posición para en los grupos fenilos de las sales cuaternarias de amonio, se encontró, que al igual que las sales no fluoradas, presentan interacciones no covalentes de tipo enlaces de hidrógeno (C-H•••I- y C-H•••π), además se logró detectar un enlace de hidrógeno de tipo C-H•••F, tanto de los -CH2 de la cadena carbonada como de los -CH de los anillos aromáticos y se evidenció una interacción C-F•••π (dispersión de London). Estos cálculos se hicieron usando el software Platón. Por otro lado, las interacciones o enlaces de halógeno tipo C-I•••I-, a partir de los análisis de las superficies de Hirshfeld, permanecen en igual porcentaje a las presentes en las sales análogas no fluoradas, demostrando de esta manera que al incorporar átomos de flúor a los anillos aromáticos no interfiere en esta última interacción. A partir del análisis comparativo de las sales portadoras del anión yoduro vs anión tetrafluoroborato se determinaron las interacciones supramoleculares inherentes sólo al catión amonio orgánico, además de estudiar qué otras interacciones supramoleculares emergen con la presencia del anión tetrafluoroborato. Así, se evidenciaron dos interacciones en las sales con contraión BF4-, la primera conocida en la literatura como enlace de halógeno de tipo C-I•••F, en donde el aceptor del enlace de halógeno es un flúor perteneciente al BF4- y la segunda conocida como enlace de hidrógeno tipo C-H•••F, tanto de los -CH2 de la cadena carbonada como de los -CH de los anillos aromáticos; las demás interacciones (C-H•••I- y C-H•••π) también se presentan, al igual que en las sales análogas con el anión yoduro, pero en diferentes porcentajes calculados a partir de los análisis de las huellas dactilares bidimensionales.spa
dc.description.abstracteng:The study of supramolecular interactions has become increasingly important in the field of chemistry, due to the role it plays in the analysis of molecular self-assembly, enzymatic catalysis and pharmacological study of new compounds. On the one hand, the aim of supramolecular chemistry is to study interactions between molecules through non-covalent bonds such as hydrogen bonding, CH•••π, π•••π, cation•••π, anion•••π, halogen bonding interactions, among others. In addition, crystallographic methods have become an important technique in several scientific disciplines, thanks to the high resolution and precision of the available equipment, which supports supramolecular studies of multiple compounds of clinical and pharmacological interest. Previous investigations carried out by our research group on a series of quaternary ammonium salts of the form [X-CH2-N(CH3)2-(CH2)n-CH=C(Ph)2]+I- where n= 2, 3 and 4; X= H, Cl and I, have allowed establishing some molecules as possible candidates in the treatment of leishmaniasis and Chagas disease, likewise, some fluorinated analogues have been reported with promising antitumor activity. Additionally, a crystallographic analysis of three N-halomethylated salts has been reported in the literature, which presented interactions of the type: hydrogen bonds (C-H•••I and C-H•••π) and halogen C-I•••I- interactions. For this reason and in order to advance with the supramolecular studies developed by the group, in this research a structural variation was performed by integrating fluorine atoms in the para position of the peripheral aromatic rings and an ionic exchange of the iodide counterion (I-) by tetrafluoroborate (BF4-) was performed, in total 10 quaternary ammonium salts were studied. The structural modifications of the quaternary ammonium salts on the chain length, as well as the presence or absence of fluorine in the para position of the peripheral rings, were previously carried out. As for the ion exchange, which was carried out in this work of the I- anion by BF4- AgBF4 in methanol was used and the salts obtained were recrystallized in acetone-water (2:1), although some of the crystals were grown in acetone-isopropanol (2:1). X-ray diffraction data were measured at different temperatures and crystal structures were refined using the SHELXL2016 program. 15 Graphical material was prepared using Mercury 4.1 software, PLATON software was used for structural calculations and CrystalExplorer 17.5 was used for analysis of Hirshfeld surfaces. When analysing the effect of the presence of fluorine in the para position in the phenyl groups of the quaternary ammonium salts, it was found that, like the non-fluorinated salts, they present non-covalent interactions of the hydrogen bond type (C-H•••I- and C-H•••π), in addition a hydrogen bond of the C-H•••F type was detected, both of the -CH2 of the carbon chain and of the -CH of the aromatic rings and a C-F•••π interaction was evidenced (London dispersion). These calculations were made using Plato software. On the other hand, the C-I•••I- type halogen interactions or bonds, from the analysis of the Hirshfeld surfaces, remain in equal percentage to those present in the analogous non-fluorinated salts, thus demonstrating that incorporating fluorine atoms into the aromatic rings does not interfere with the latter interaction. From the comparative analysis of the salts carrying the iodide anion vs. tetrafluoroborate anion, the supramolecular interactions inherent only to the organic ammonium cation were determined, in addition to studying what other supramolecular interactions emerge with the presence of the tetrafluoroborate anion. Thus, two interactions were evidenced in the salts with BF4- counterion, the first one known in the literature as C-I•••F type halogen bonding, where the acceptor of the halogen bond is a fluorine belonging to BF4- and the second one known as C-H•••F type hydrogen bonding, both of the -CH2 of the carbon chain and of the -CH of the aromatic rings; the other interactions (C-H•••I- and C-H•••π) also occur, as in the analogous salts with the iodide anion, but in different percentages calculated from the analyses of the two-dimensional fingerprints.eng
dc.description.tableofcontentsTabla de contenido / Índice de figuras / Índice de tablas / Summary / Resumen / 1. Introducción / 2. Marco teórico / 2.1 Enlaces covalentes vs interacciones no covalentes / 2.2 Energías estabilizadoras de las interacciones no covalentes / 2.3 Química supramolecular / 2.3.1 Principales interacciones supramoleculares / 2.4 Estructura cristalina, cristales y simetría cristalográfica / 2.5 Generalidades de las sales cuaternarias de amonio / 2.5.1 Estudios con sales cuaternarias de amonio en estado cristalino / 2.5.2 Importancia del flúor en productos farmacéuticos / 2.6 Uso de herramientas para el análisis de las interacciones supramoleculares / 2.6.1 Uso del software Mercury para visualización de estructuras cristalinas / 2.6.2 Uso del software Platón para análisis de estructuras cristalinas / 2.6.3 Uso de las superficies de Hirshfeld en el análisis cuantitativo de interacciones intermoleculares (CrystalExplorer 17.5) / 3.1 Estudios con sales cuaternarias de amonio con potencial actividad biológica / 3.2 Síntesis de las sales cuaternarias de amonio usadas como material de partida en este estudio / 3.3 Estudio de interacciones supramoleculares en sales cuaternarias de amonio N-halometiladas 1a, 1b y 1c / 4. Objetivos / 4.1 Objetivo general / 4.2 Objetivos específicos / 5. Parte experimental / 5.1 Generalidades / 5.2 Síntesis de sales cuaternarias de amonio con tetrafluoroborato (BF4 - ) como contraión / 5.2.1 Síntesis de sales cuaternarias de amonio no fluoradas con tetrafluoroborato (BF4 - ) como contraión (3a, 3b y 3c) / 8 5.3 Metodología para la obtención de monocristales de las sales cuaternarias de amonio 3a, 3b y 3c / 5.3.1 Purificación de las sales cuaternarias de amonio no fluoradas con tetrafluoroborato (BF4 - ) como contraión (3a, 3b y 3c) / 5.4 Difracción de monocristales de rayos X y refinamiento estructural de las 10 sales cuaternarias de amonio / 6. Resultados y discusión / 6.1 Aspectos sintéticos y caracterización química de las sales cuaternarias de amonio / 6.1.1 Sales cuaternarias de amonio estudiadas en esta investigación / 6.1.2 Intercambio del contraión yoduro de las sales cuaternarias de amonio por tetrafluoroborato / 6.1.3 Obtención de monocristales de 3a, 3b y 3c / 6.1.4 Caracterización química de las sales cuaternarias de amonio / 6.2 Análisis estructural y supramolecular de las sales cuaternarias de amonio estudiadas / 6.2.1 Datos cristalográficos para los 10 compuestos estudiados / 6.3.1 Análisis estructural para [C4IpF2] + I - (2a), [C5IpF2] + I - (2b) y [C6IpF2] + I - (2c) / 6.3.2 Análisis supramolecular y de la superficie de Hirshfeld para [C4IpF2] + I - (2a), [C5IpF2] + I - (2b) y [C6IpF2] + I - (2c) / 6.3.3 Comparación de las interacciones supramoleculares de las sales [C4IpF2] + I - (2a), [C5IpF2] + I - (2b) y [C6IpF2] + I - (2c) / 6.4.1 Análisis estructural para [C4I] +BF4 - (3a) y [C5I] +BF4 - (3b) / 6.4.2 Análisis supramolecular y de la superficie de Hirshfeld para [C4I] +BF4 - (3a) y [C5I] +BF4 - (3b) / 6.4.3 Comparación de las interacciones supramoleculares de las sales [C4I] +BF4 - (3a) y [C5I] +BF4 - (3b) / 6.5.1 Análisis estructural para [C4CH3pF2] + I - (4a), [C5CH3pF2] + I - (4b) y [C6CH3pF2] + I - (4c) / 6.5.2 Análisis supramolecular y de la superficie de Hirshfeld para [C4CH3pF2] + I - (4a), [C5CH3pF2] + I - (4b) y [C6CH3pF2] + I - (4c) / 6.5.3 Comparación de las interacciones supramoleculares de las sales [C4CH3pF2] + I - (4a), [C5CH3pF2] + I - (4b) y [C6CH3pF2] + I - (4c) / 6.6.1 Análisis estructural para [C5CH3] + I - (5b) y [C6CH3] + I - (5c) / 6.6.2 Análisis supramolecular y de la superficie de Hirshfeld para [C5CH3] + I - (5b) y [C6CH3] + I - (5c).... 106 6.6.3 Comparación de las interacciones supramoleculares de las sales [C5CH3] + I - (5b) y [C6CH3] + I - (5c)109 6.3 Comparación de las interacciones supramoleculares de las sales cuaternarias de amonio preparadas en este estudio / 7. Conclusiones / 8. Perspectivas / Bibliografía / Anexos / Anexo A. Divulgación científica a partir de los resultados de esta investigación / Anexo B. Espectros de RMN1H, RMN13C y RMN13C DEPT-135 de las sales con contraión BF4 -spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleEfectos del intercambio del contraión y la presencia del flúor en los anillos de fenilo laterales sobre las interacciones supramoleculares en sales cuaternarias de amoniospa
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.researchgroupGrupo de Química Teórica y Bioinformática - QTB (Categoría B)spa
dc.description.degreelevelMaestríaspa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesSteed, J. W., Atwood, J. L. & Gale, P. A. Definition and Emergence of Supramolecular ChemistryAdapted in part from Supramolecular Chemistry , J. W. Steed and J. L. Atwood, Wiley: Chichester, 2nd Ed., 2009. . Supramolecular Chemistry (2012). doi:10.1002/9780470661345.smc002.spa
dc.relation.referencesJan-Albert van den Berg* and Kenneth R. Seddon*. Critical Evaluation of C-H--X Hydrogen Bonding in the Crystalline State. Am. Chem. Soc. 3, 643–661 (2003).spa
dc.relation.referencesDuque-Benítez, S. M. Síntesis y evaluación biológica de derivados halometilados de sales de amonio y sus análogos como posibles agentes terapeúticos contra la infección de parásitos de la especie Leishmania (Viannia) panamensis. (Universidad de Caldas, 2010).spa
dc.relation.referencesRios Vasquez, L. A. et al. QUATERNARY N-(HALOMETHYL) AMMONUMI SALTS AS THERAPEUTIC AGENTS. 1–13 (2015).spa
dc.relation.referencesDuque-Benítez, S. M. et al. Synthesis of Novel Quaternary Ammonium Salts and Their in Vitro Antileishmanial Activity and U-937 Cell Cytotoxicity. Molecules 21, 1–16 (2016).spa
dc.relation.referencesLópez-Muñoz, M. et al. Novel fluorinated quaternary ammonium salts and their in vitro activity as trypanocidal agents. Med. Chem. Res. 28, 300–319 (2019).spa
dc.relation.referencesDuque-Benítez, S. M. et al. Synthesis of Novel Quaternary Ammonium Salts and Their in Vitro Antileishmanial Activity and U-937 Cell Cytotoxicity. Molecules 21, 1–16 (2016).spa
dc.relation.referencesMúnera-Orozco, C., Ocampo-Cardona, R., Cedeño, D. L., Toscano, R. A. & RíosVásquez, L. A. Crystal structures of three new N-halomethylated quaternary ammonium salts. Acta Crystallogr. Sect. E Crystallogr. Commun. (2015) doi:10.1107/S2056989015017181.spa
dc.relation.referencesLewis, G. N. Valence and the structure of atoms and molecules,. (monograph series, 1923).spa
dc.relation.referencesLehn, J. supramolecular chemistry concepts and prespectives. (1995). doi:10.1002/3527607439.spa
dc.relation.referencesDesiraju, G. & Steiner, T. The Weak Hydrogen Bond. The Weak Hydrogen Bond (2010). doi:10.1093/acprof:oso/9780198509707.001.0001.spa
dc.relation.referencesHobza, P. & Řezáč, J. Introduction: Noncovalent Interactions. Chem. Rev. 116, 4911–4912 (2016).spa
dc.relation.referencesSteed, J. W. & Atwood, J. L. Supramolecular chemistry. Tetrahedron vol. 62 (Wiley, 2009).spa
dc.relation.referencesAriga K.; Kunitake T. Supramolecular Chemistry – Fundamentals and Applications. Materials Science (2006).spa
dc.relation.referencesMuller-Dethlefs P, K. H. Noncovalent interactions: A challenge for experiment and theory. Chem. Rev. 100, 143–167 (2000).spa
dc.relation.referencesArroyo, M. M. Materiales Supramoleculares basados en Redes Autoensambladas por Interacciones de Enlace de Hidrógeno Cooperativas. (Universidad Autónoma de Madrd, 2019).spa
dc.relation.referencesJeziorski, B., Moszynski, R. & Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem. Rev. 94, 1887–1930 (1994).spa
dc.relation.referencesDesiraju, G. R. Hydrogen bridges in crystal engineering: Interactions without borders. Acc. Chem. Res. 35, 565–573 (2002).spa
dc.relation.referencesSteiner, T. The Hydrogen Bond in the Solid State. Angewandte Chemie - International Edition vol. 41 (2002).spa
dc.relation.referencesPauling Linus. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Mode (9780801403330): Pauling, Linus: Books. (Cornell University Press, 1960).spa
dc.relation.referencesChemistry, P. M.-P. and A. & 1994, undefined. Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994). old2015.iupac.org.spa
dc.relation.referencesUmeyama, H. & Morokuma, K. The Origin of Hydrogen Bonding. An Energy Decomposition Study. J. Am. Chem. Soc. 99, 1316–1332 (1977).spa
dc.relation.referencesArunan, E. et al. Defining the hydrogen bond: An account (IUPAC Technical Report). Pure Appl. Chem. 83, (2011).spa
dc.relation.referencesSteiner, T. & Desiraju, G. Distinction between the weak hydrogen bond and the van der Waals interaction. Chem. Commun. 0, 891–892 (1998).spa
dc.relation.referencesDannenberg, J. J. An Introduction to Hydrogen Bonding By George A. Jeffrey (University of Pittsburgh). Oxford University Press: New York and Oxford. 1997. ix + 303 pp. $60.00. ISBN 0-19-509549-9. J. Am. Chem. Soc. 120, 5604–5604 (1998).spa
dc.relation.referencesPernak, J. & Chwała, P. Synthesis and anti-microbial activities of choline-like quaternary ammonium chlorides. Eur. J. Med. Chem. 38, 1035–1042 (2003).spa
dc.relation.referencesKandasamy, E. Synthesis and Crystal Structure of 1-Methyl-3-(2-pyridyl)imidazolium Hexafluorophosphate. J. Crystallogr. 2014, 1–4 (2014).spa
dc.relation.referencesMotohiro Nishio, Minoru Hirota & Yoji Umezawa. The CH/π Interaction: Evidence, Nature, and Consequences. (John Wiley & Sons., 1998).spa
dc.relation.referencesNishio, M., Umezawa, Y., Fantini, J., Weiss, M. S. & And Chakrabarti, P. CH/π hydrogen bonds in biological macromolecules. Phys. Chem. Chem. Phys. 13, 13873–1390 (2011).spa
dc.relation.referencesNishio, M. The CH/π Hydrogen Bond: Implication in Chemistry. J. Mol. Struct. 1018, 2–7 (2012).spa
dc.relation.referencesPlevin, M. J., Bryce, D. L. & Boisbouvier, J. Direct detection of CH/π interactions in proteins. Nat. Chem. 2, 466–471 (2010)spa
dc.relation.referencesNovoa, J. J. & Mota, F. The C-Hπ bonds: Strength, identification, and hydrogen-bonded nature: A theoretical study. Chem. Phys. Lett. 318, 345–354 (2000).spa
dc.relation.referencesBrandl, M., Weiss, M. S., Jabs, A., Sühnel, J. & Hilgenfeld, R. C-H···π-interactions in proteins. J. Mol. Biol. 307, 357–377 (2001).spa
dc.relation.referencesRobledo, P. Las anfetaminas. Trastor. Adict. 10, 166–174 (2008)spa
dc.relation.referencesNishio, M. CH/π hydrogen bonds in organic reactions. Tetrahedron 61, 6923–6950 (2005).spa
dc.relation.referencesPace, C. J. & Gao, J. Exploring and exploiting polar-π interactions with fluorinated aromatic amino acids. Acc. Chem. Res. 46, 907–915 (2013).spa
dc.relation.referencesMatthews, R. P., Welton, T. & Hunt, P. A. Competitive pi interactions and hydrogen bonding within imidazolium ionic liquids. Phys. Chem. Chem. Phys. 16, 3238–3253 (2014).spa
dc.relation.referencesJaniak, C. A critical account on n-n stacking in metal complexes with aromatic nitrogencontaining ligands. J. Chem. Soc. Dalt. Trans. 3885–3896 (2000) doi:10.1039/b003010o.spa
dc.relation.referencesMeyer, E. A., Castellano, R. K. & Diederich, F. Interactions with Arenes Interactions with Aromatic Rings in Chemical and Biological Recognition Angewandte. Angew. Chem. Int. Ed. 42, 1210–50 (2003).spa
dc.relation.referencesBurattini, S. et al. A healable supramolecular polymer blend based on aromatic π-π Stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 132, 12051–12058 (2010).spa
dc.relation.referencesJennings, W. B., Farrell, B. M. & Malone, J. F. Attractive intramolecular edge-to-face aromatic interactions in flexible organic molecules. Acc. Chem. Res. 34, 885–894 (2001).spa
dc.relation.referencesMuralikrishna, A., Kannan, M., Padmavathi, V., Padmaja, A. & Krishna, R. N-(4- Chlorophenyl)-1-(5-{[(2-phenyl-ethenyl)sulfonyl]methyl}-1,3, 4-oxadiazol-2- yl)methanesulfonamide. Acta Crystallogr. Sect. E Struct. Reports Online 68, (2012).spa
dc.relation.referencesCosta, P. J. The halogen bond: Nature and applications. Phys. Sci. Rev. 2, 1–16 (2019).spa
dc.relation.referencesGilday, L. C. et al. Halogen bonding in supramolecular chemistry. Chemical Reviews vol. 115 (2015).spa
dc.relation.referencesOdd Hassel Source. Structural Aspects of Interatomic Charge-Transfer Bonding. Science (80-. ). 170, 497–502 (1970).spa
dc.relation.referencesMarquardt, R. et al. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl. Chem. 85, 1711–1713 (2013).spa
dc.relation.referencesPolitzer, P., Murray, J. S. & Clark, T. Halogen bonding: An electrostatically-driven highly directional noncovalent interaction. Phys. Chem. Chem. Phys. 12, 7748–7757 (2010).spa
dc.relation.referencesCavallo, G. et al. The halogen bond. Chem. Rev. 116, 2478–2601 (2016).spa
dc.relation.referencesScholfield, M. R., Vander Zanden, C. M., Carter, M. & Ho, P. S. Halogen bonding (Xbonding): A biological perspective. Protein Sci. 22, 139–152 (2013).spa
dc.relation.referencesFourmigue, M., Batail, P. & Chimie, L. Activation of Hydrogen- and Halogen-Bonding Interactions in Tetrathiafulvalene-Based Crystalline Molecular Conductors. (2004).spa
dc.relation.referencesFourmigué, M. Halogen bonding: Recent advances. Curr. Opin. Solid State Mater. Sci. 13, 36–45 (2009).spa
dc.relation.referencesMendez, L., Henriquez, G., Sirimulla, S. & Narayan, M. Looking back, looking forward at halogen bonding in drug discovery. Molecules 22, 22–25 (2017).spa
dc.relation.referencesScholfield, M. R., Vander Zanden, C. M., Carter, M. & Ho, P. S. Halogen bonding (Xbonding): A biological perspective. Protein Sci. 22, 139–152 (2013).spa
dc.relation.referencesSirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. Halogen Interactions in Protein−Ligand Complexes: Implications of Halogen Bonding for Rational Drug Design. J. Chem. Inf. Mode 53, 2781–2791 (2013).spa
dc.relation.referencesClark, T., Hennemann, M., Murray, J. S. & Politzer, P. Halogen bonding: the σ-hole. J. Mol. Model. 13, 291–296 (2007).spa
dc.relation.referencesMetrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. Halogen bonding in supramolecular chemistry. Angewandte Chemie - International Edition vol. 47 (2008).spa
dc.relation.referencesPavan, M. S., Prasad, K. D. & Row, T. N. G. Halogen bonding in fluorine: Experimental charge density study on intermolecular F⋯F and F⋯S donor–acceptor contacts. Chem. Commun. 49, 7558–7560 (2013).spa
dc.relation.referencesPérez-Torralba, M. et al. Structural investigation of weak intermolecular interactions (Hydrogen and Halogen Bonds) in fluorine-substituted benzimidazoles. Cryst. Growth Des. 14, 3499–3509 (2014).spa
dc.relation.referencesSaccone, M. et al. Photoresponsive Halogen-Bonded Liquid Crystals: The Role of Aromatic Fluorine Substitution. Chem. Mater. 31, 462–470 (2019).spa
dc.relation.referencesReichenbächer, K., Süss, H. I. & Hulliger, J. Fluorine in crystal engineering - ‘The little atom that could’. Chem. Soc. Rev. 34, 22–30 (2005).spa
dc.relation.referencesTang, W. et al. Formation of 2-Trifluoromethylphenyl Grignard Reagent via Magnesium - Halogen Exchange : Process Safety Evaluation and Concentration Effect Abstract : 13, 1426–1430 (2009).spa
dc.relation.referencesMatsumoto, S., Kikuchi, S., Norita, N., Masu, H. & Akazome, M. Formation of benzimidazoisoquinolinium and benzimidazoisoindolinum cyclic systems by the reaction of 2-(2-alkynylphenyl)benzimidazoles with iodine and iodine-iodine interaction including halogen bonding in their crystal structures. J. Org. Chem. 81, 5322–5329 (2016).spa
dc.relation.referencesHammond, C. The Basics of Crystallography and Diffraction. INTERNATIONAL UNION OF CRYSTALLOGRAPHY (Oxford University Press, 2009).spa
dc.relation.referencesPina, C. Los fundamentos de la Cristalografía: una reseña histórica. Los Fundam. la Cristalogr. una reseña histórica 110, 294–302 (2014).spa
dc.relation.referencesBlake, A. J. et al. Crystal Structure Analysis principles and practice. INTERNATIONAL UNION OF CRYSTALLOGRAPHY (Oxford University Press, 2009).spa
dc.relation.referencesLadd, M. F. C. & Palmer, R. A. Structure Determination by X-Ray Crystallography. Structure Determination by X-Ray Crystallography (springer, 1985). doi:10.1007/978-1- 4614-3954-7.spa
dc.relation.referencesSouvignier, B. A general introduction to space groups. Acta Crystallogr. Sect. A Found. Crystallogr. 22–41 (2016) doi:10.1107/97809553602060000921.spa
dc.relation.referencesVarughese, P. Quaternary Ammonium Salts Some Recent Applications in Organic Synthesis. J. Chem. Educ. 54, 666–669 (1977).spa
dc.relation.referencesJennings, M. C., Minbiole, K. P. C. & Wuest, W. M. Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance. ACS Infect. Dis. 1, 288–303 (2016).spa
dc.relation.referencesd’Arcy, P. F., & Taylor, E. P. Quaternary ammonium compounds in medicinal chemistry I. J. Pharm. Pharmacol. 14, 129–146 (1962).spa
dc.relation.referencesLemke, T. L.; Williams, D. A.; Roche, V. F.; Zito, S. W. Foye´s Principles of Medicinal Chemistry. (Lippincott Williams & Wilkins, 2012).spa
dc.relation.referencesEgorova, K. S., Gordeev, E. G. & Ananikov, V. P. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem. Rev. 117, 7132–7189 (2017).spa
dc.relation.referencesJiao, Y. et al. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog. Polym. Sci. 71, 53–90 (2017).spa
dc.relation.referencesBasilico, N. et al. Modified quaternary ammonium salts as potential antimalarial agents. Bioorganic Med. Chem. 23, 4681–4687 (2015).spa
dc.relation.referencesEgorova, K. S., Gordeev, E. G. & Ananikov, V. P. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem. Rev. 117, 7132–7189 (2017).spa
dc.relation.referencesXie, X. et al. Synthesis, physiochemical property and antimicrobial activity of novel quaternary ammonium salts. J. Enzyme Inhib. Med. Chem. 33, 98–105 (2018).spa
dc.relation.referencesNg, C. K. L. et al. Correlation of antifungal activity with fungal phospholipase inhibition using a series of bisquaternary ammonium salts. J. Med. Chem. 49, 811–816 (2006).spa
dc.relation.referencesObłąk, E., Piecuch, A., Maciaszczyk-Dziubińska, E. & Wawrzycka, D. Quaternary ammonium salt N-(dodecyloxycarboxymethyl)-N,N,N-trimethyl ammonium chloride induced alterations in Saccharomyces cerevisiae physiology. J. Biosci. 41, 601–614 (2016).spa
dc.relation.referencesShiraishi, M. et al. Discovery of novel, potent, and selective small-molecule CCR5 antagonists as anti-HIV-1 agents: Synthesis and biological evaluation of anilide derivatives with a quaternary ammonium moiety. J. Med. Chem. 43, 2049–2063 (2000).spa
dc.relation.referencesRusew, R., Kurteva, V. & Shivachev, B. Novel quaternary ammonium derivatives of 4- pyrrolidino pyridine: Synthesis, structural, thermal, and antibacterial studies. Crystals 10, 1–14 (2020).spa
dc.relation.referencesBrycki, B. et al. Synthesis, structure, surface and antimicrobial properties of new oligomeric quaternary ammonium salts with aromatic spacers. Molecules 22, (2017).spa
dc.relation.referencesWang, J. et al. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev. 114, 2432–2506 (2014).spa
dc.relation.referencesWang, B.-C. et al. Application of Fluorine in Drug Design During 2010-2015 Years: A Mini-Review. Mini Rev. Med. Chem. 17, 683–692 (2017).spa
dc.relation.referencesPurser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).spa
dc.relation.referencesSmart, B. E. Fluorine substituent effects (on bioactivity). J. Fluor. Chem. 109, 3–11 (2001).spa
dc.relation.referencesChambers, R. D. Fluorine in organic chemistry. Journal of Chemical Education (Blackwell Publishing, 2004). doi:10.1021/ed053pa271.2.spa
dc.relation.referencesO’Hagan, D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev. 37, 308–319 (2008).spa
dc.relation.referencesIsmail, F. M. D. Important fluorinated drugs in experimental and clinical use. J. Fluor. Chem. 118, 27–33 (2002).spa
dc.relation.referencesPeer, K. Modern fluoroorganic chemistry: synthesis, reactivity, applications. (Wiley-VCH Verlag GmbH & Co. KGaA, 2013).spa
dc.relation.referencesMacRae, C. F. et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 53, 226–235 (2020).spa
dc.relation.referencesMacrae, C. F. et al. Mercury CSD 2.0 - New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41, 466–470 (2008).spa
dc.relation.referencesBruno, I. J. et al. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr. Sect. B Struct. Sci. 58, 389–397 (2002).spa
dc.relation.referencesMacrae, C. F. et al. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr. 39, 453–457 (2006).spa
dc.relation.referencesSheldrick, G. M. Program for Crystal Structure Determination— SHELX79. Curr. contents 41, (1989).spa
dc.relation.referencesSheldrick, G. M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 64, 112–122 (2008).spa
dc.relation.referencesSpek, A. L. CheckCIF validation ALERTS: What they mean and how to respond. Acta Crystallogr. Sect. E Crystallogr. Commun. 76, 1–11 (2020).spa
dc.relation.referencesSpek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003).spa
dc.relation.referencesSpek, A. L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. Sect. C Struct. Chem. 71, 9–18 (2015).spa
dc.relation.referencesSpackman, P. R. et al. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 54, 1006–1011 (2021).spa
dc.relation.referencesMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 4, 575–587 (2017).spa
dc.relation.referencesTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. Energy frameworks: Insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Commun. 51, 3735–3738 (2015).spa
dc.relation.referencesMahesha et al. Analysis of supramolecular self-assembly of two chromene derivatives: Synthesis, crystal structure, Hirshfeld surface, quantum computational and molecular docking studies. J. Mol. Struct. 1225, 129104 (2021).spa
dc.relation.referencesSpackman, M. A. & Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 11, 19–32 (2009).spa
dc.relation.referencesMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 3814–3816 (2007) doi:10.1039/b704980c.spa
dc.relation.referencesNaghiyev, F. N. et al. Crystal structure and hirshfeld surface analysis of acetoacetanilide based reaction products. Molecules 25, 1–13 (2020).spa
dc.relation.referencesRios, L. A. et al. Generation and study of the reactivity of α-ammonium distonic radical cations in solution. J. Am. Chem. Soc. 118, 11313–11314 (1996).spa
dc.relation.referencesRíos, L. A.; Ocampo, R.; Duque, S. M.; Robledo, S.M.; Vélez, I. D.; Cedeño, D. L.; Jones, M. A. “Quaternary N-(Halomethyl) Ammonium Salts as Therapeutic Agents” Patent US 9145352 B2, 29 September. (2015).spa
dc.relation.referencesZapata Galindo, D. M. Incorporación de núcleos fluorados a sales cuaternarias de amonio con potencial leishmanicida. (Universidad de Caldas, 2014).spa
dc.relation.referencesPulido, S. A. et al. Insights into the phosphatidylcholine and phosphatidylethanolamine biosynthetic pathways in Leishmania parasites and characterization of a choline kinase from Leishmania infantum. Comp. Biochem. Physiol. Part - B Biochem. Mol. Biol. 213, 45–54 (2017).spa
dc.relation.referencesAgilent. CrysAlisPro Data Collection and Processing Software for Agilent X-ray Diffractometers. Technol. UK Ltd, Yarnton, Oxford, UK 44, (2014).spa
dc.relation.referencesAgilent. CrysAlisPro Data Collection and Processing Software for Agilent X-ray Diffractometers. Technol. UK Ltd, Yarnton, Oxford, UK 44, (2014).spa
dc.relation.referencesPalatinus, L. & Chapuis, G. SUPERFLIP - A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 40, 786–790 (2007).spa
dc.relation.referencesSheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 71, 3–8 (2015).spa
dc.relation.referencesTurner, M. J., Mckinnon, S.K., Wolff, S. . CrystalExplorer17. Univ. West. Aust. 63, (2017)spa
dc.relation.referencesSpackman, M. A. & McKinnon, J. J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4, 378–392 (2002).spa
dc.relation.referencesRybalova, T. V. & Bagryanskaya, I. Y. C-F...π, F...H, and F...F intermolecular interactions and F-aggregation: Role in crystal engineering of fluoroorganic compounds. J. Struct. Chem. 50, 741–753 (2009).spa
dc.relation.referencesWood, P. A., McKinnon, J. J., Parsons, S., Pidcock, E. & Spackman, M. A. Analysis of the compression of molecular crystal structures using Hirshfeld surfaces. CrystEngComm 10,368–376 (2008).spa
dc.relation.referencesDesiraju, G. R. & Parthasarathy, R. The Nature of Halogen•••Halogen Interactions: Are Short Halogen Contacts Due to Specific Attractive Forces or Due to Close Packing of Nonspherical Atoms? J. Am. Chem. Soc. 111, 8725–8726 (1989).spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.proposalInteracciones supramolecularesspa
dc.subject.proposalsales cuaternarias de amoniospa
dc.subject.proposalCristalografíaspa
dc.subject.unescoQuímica
dc.subject.unescoAnálisis químico
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
dc.description.degreenameMagister en Químicaspa
dc.publisher.programMaestría en Químicaspa
dc.description.researchgroupQuímica Orgánicaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem