Mostrar el registro sencillo del ítem

dc.contributor.advisorOcampo-Cardona, Rogelio
dc.contributor.authorChacón P., Julián Camilo
dc.date.accessioned2022-09-26T13:15:34Z
dc.date.available2022-09-26T13:15:34Z
dc.date.issued2022-09-23
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/18090
dc.descriptionIlustraciones, gráficasspa
dc.description.abstractspa:Los estudios de correlación estructura química actividad biológica conocidos por sus siglas en inglés como SAR, son métodos sistemáticos que permiten analizar compuestos candidatos a fármacos anticancerígenos y sus efectos fisiológicos en líneas celulares de cáncer. También, permiten evaluar las tendencias citotóxicas de compuestos en el laboratorio, diseñar o modificar fármacos, realizar estudios farmacocinéticos y de interacción del receptor de algunas drogas. Todo esto abordado desde las áreas de la química, biología y estadística; utilizando descriptores moleculares, resultados de ensayo in vivo e in vitro y métodos quimiométricos que permiten evaluar y determinar cuál es el compuesto óptimo para ser candidato a fármaco anticancerígeno. Este trabajo aborda el acopio y análisis documental, con enfoque principalmente conceptual alrededor de la pregunta ¿en qué consiste una correlación entre la estructura química y la actividad biológica, y su aplicación a algunos compuestos anticancerígenos del tipo taxano (paclitaxel), líquidos iónicos imidazólicos y sales de amonio cuaternaria? Se explica qué es un estudio de correlación estructura actividad, su posible abordaje metodológico investigativo, y en qué datos in vitro se apoya un estudio SAR. Uno de los tratamientos para combatir el cáncer es el uso de fármacos, estos interactúan con una diana específica en la célula cancerígena ocasionando que se inicien procesos apoptóticos, uno de los más utilizados es el paclitaxel (o taxol) el cual interactúa con la β-tubulina afectando la dinámica de los microtúbulos lo que genera una formación anormal del huso mitótico que desencadena en la muerte celular. Por otra parte, los candidatos a fármacos como los líquidos iónicos de imidazolio pueden inducir citotoxicidad mediante estrés oxidativo aumentando las especies reactivas de oxígeno intracelular (ROS) y disminuyendo las actividades enzimáticas antioxidantes. De manera análoga, algunos fármacos que en su estructura tienen la presencia de sales de amonio cuaternario pueden generar inhibición de especies reactivas de oxígeno intracelular o alterar la función normal de proteínas como MPAK y la Hsp90, lo cual da comienzo a los procesos de apoptosis. Con respecto a los estudios SAR del paclitaxel, se demuestra que todas las modificaciones que se realicen en las posiciones C-13, C-4, la posición en el anillo benzoílo del C-2, el anillo oxetano y la fenilisoserina en el C-13 están relacionadas con la pérdida, reducción o aumento de su actividad anticancerígena, además, para que el taxol interactúe con la β-tubulina se indica que debe adoptar una conformación T-taxol. De otra parte, en los LIs de imidazolio se resalta que la aromaticidad del compuesto, el aumento de los carbonos en la cadena lateral y el aumento de la polaridad, pueden contribuir a la actividad anticancerígena. Adicionalmente, las sales de amonio cuaternario se utilizan para generar mayor solubilidad, biodisponibilidad y protección en el fármaco del cual hacen parte. Pero no se argumenta que la presencia de éstas pueda estar relacionada con una actividad anticancerígena.spa
dc.description.abstracteng:Chemical structure biological activity correlation studies, known by its acronym in English as SAR, are systematic methods that allow the analysis of candidate compounds for anticancer drugs and their physiological effects on cancer cell lines. Also, they allow evaluating the cytotoxic tendencies of compounds in the laboratory, designing or modifying drugs, carrying out pharmacokinetic and receptor interaction studies of some drugs. All this approached from the areas of chemistry, biology and statistics; using molecular descriptors, in vivo and in vitro test results and chemometric methods that allow evaluating and determining which is the optimal compound to be an anticancer drug candidate. This work deals with the collection and documentary analysis, with a mainly conceptual approach around the question: what does a correlation between chemical structure and biological activity consist of, and its application to some anticancer compounds of the taxane type (paclitaxel), imidazole ionic liquids and quaternary ammonium salts? It explains what a structure-activity correlation study is, its possible investigative methodological approach, and what in vitro data supports a SAR study. One of the treatments to combat cancer is the use of drugs, these interact with a specific target in the cancer cell causing apoptotic processes to start, one of the most used is paclitaxel (or taxol) which interacts with β- tubulin affecting the dynamics of microtubules which generates an abnormal formation of the mitotic spindle that triggers cell death. On the other hand, drug candidates such as imidazolium ionic liquids can induce cytotoxicity through oxidative stress by increasing intracellular reactive oxygen species (ROS) and decreasing antioxidant enzyme activities. Similarly, some drugs that contain quaternary ammonium salts in their structure can inhibit intracellular reactive oxygen species or alter the normal function of proteins such as MPAK and Hsp90, which initiates apoptotic processes. With respect to the SAR studies of paclitaxel, it is shown that all modifications made at the C-13, C-4 positions, the benzoyl ring position at C-2, the oxetane ring and the phenylisoserine at C- 13 are related to the loss, reduction or increase of its anticancer activity, in addition, for taxol to interact with β-tubulin it is indicated that it must adopt a T-taxol conformation. On the other hand, in imidazolium LIs it is highlighted that the aromaticity of the compound, the increase in carbons in the side chain and the increase in polarity, can contribute to anticancer activity. Additionally, quaternary ammonium salts are used to generate greater solubility, bioavailability and protection in the drug of which they are part. But it is not argued that the presence of these may be related to anticancer activity.eng
dc.description.tableofcontentsLista de siglas o abreviaturas / 1. Resumen / 2. Planteamiento del problema / 3. Justificación / 4. Objetivos / 4.1 General / 4.2 Específicos / 5. Metodología / 5.1 Generalidades / 5.2 Metodología específica por subtemas / 5.2.1 Subtema sobre estudios de relación estructura actividad (SAR) / 5.2.2 Subtema sobre estudios de relación estructura actividad de taxol en cáncer / 5.2.3 Subtema sobre estudios de relación estructura actividad de líquidos iónicos de imidazolio en cáncer / 5.2.4 Subtema sobre estudios de relación estructura actividad de sales de amonio cuaternario en cáncer / 6. Resultados y discusión / 6.1 Estudios de relación estructura actividad (SAR) / 6.1.1 ¿Por qué realizar un estudio SAR? / 6.1.2 Algunas investigaciones que constituyen la historia de SAR / 6.1.3 Generalidades de los estudios SAR / 6.1.3.1 Caracterización de compuestos químicos para los estudios SAR / La estructura molecular y propiedades fisicoquímicas / Descriptores unidimensionales (1D) / Descriptores bidimensionales (2D) / Descriptores tridimensionales (3D) / 6.1.3.2 Determinación de la actividad biológica de los compuestos anticancerígenos / Ensayo de reducción MTT / Ensayo de unión a microtúbulos / 6.1.3.3 Algunos métodos quimiométricos utilizados para los estudios SAR / Análisis de componentes principales / K-vecino más cercano / Árbol de decisión (Decision Tree) / 5 Bosque aleatorio (Random Forest) / 6.1.3.2 Software para estudios SAR / 6.2 El cáncer como área de estudio / 6.3 Estudios de relación estructura actividad de taxol en cáncer / 6.3.1 Generalidades / 6.3.2 Los taxanos y su actividad anticancerígena / 6.3.3 El taxol (paclitaxel) y algunos estudios de relación estructura actividad (SAR) / 6.3.3.1 Efecto de las modificaciones en los anillos del paclitaxel sobre su actividad anticancerígena / 6.3.3.2 Modificaciones en la cadena lateral C-13 y su remoción en el paclitaxel / 6.3.3.3 Estudios SAR del paclitaxel en la actualidad / 6.4 Estudios de relación estructura actividad de líquidos iónicos de imidazolio en cáncer / 6.4.1 Algunas generalidades sobre líquidos iónicos de imidazolio / 6.4.2 Líquido iónico de imidazolio y su actividad anticancerígena / 6.4.3 Líquidos iónicos de imidazolio y algunos estudios de relación estructura actividad (SAR) en cáncer / 6.4.3.1 Efecto de la variación en la cadena lateral del imidazolio en la actividad anticancerígena / 6.4.3.2 Efecto de la variación del anión del imidazolio en la actividad anticancerígena / 6.4.3.3 Técnicas para los estudios SAR en LIs de imidazolio / 6.5 Estudios de relación estructura actividad SAR de sales de amonio cuaternario en cáncer / 6.5.1 Generalidades / 6.5.2 Sales de amonio cuaternario y su actividad anticancerígena / 6.5.3 Sales de amonio cuaternario y algunos estudios de relación estructura actividad (SAR) / 6.5.3.1 Derivados de quitosano de amonio cuaternario / 6.5.3.2 Derivados de diosgenina amonio cuaternario / 6.5.3.3 Derivados de quinuclidina de geldanamicina amonio cuaternario / 7. Conclusiones / 8. Bibliografíaeng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleUn abordaje conceptual y metodológico de la correlación de la estructura química y actividad biológica de tres compuestos anticancerígenos y algunos derivadosspa
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.researchgroupGrupo de Química Teórica y Bioinformática - QTB (Categoría B)spa
dc.description.degreelevelMaestríaspa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesVerma, R. P. & Hansch, C. Cytotoxicity of Organic Compounds against Ovarian Cancer Cells:  A Quantitative Structure−Activity Relationship Study. Mol. Pharm. 3, 441–450 (2006).spa
dc.relation.referencesReece, J. División de la Célula | CancerQuest. https://www.cancerquest.org/es/biologia-delcancer/division-de-la-celula (2017).spa
dc.relation.referencesReece, Urry, Cain, Wasserman, Minorsky, J. Campbell Biology. (2017).spa
dc.relation.referencesMoini, J., Badolato, C. & Ahangari, R. Chapter 21 - Chemotherapy. in Epidemiology of Endocrine Tumors 473–488 (Elsevier, 2020). doi:10.1016/B978-0-12-822187-7.00006-2.spa
dc.relation.referencesAMBOSS. Chemotherapeutic agents - Knowledge @ AMBOSS. https://www.amboss.com/us/knowledge/Chemotherapeutic_agents/.spa
dc.relation.referencesMcKinney, J. D. The Practice of Structure Activity Relationships (SAR) in Toxicology. Toxicol. Sci. 56, 8–17 (2000).spa
dc.relation.referencesGrant, R. L., Combs, A. B. & Acosta, D. Experimental Models for the Investigation of Toxicological Mechanisms. Compr. Toxicol. 203–224 (2010) doi:10.1016/b978-0-08-046884-6.00110-x.spa
dc.relation.referencesPenta, S. Introduction to Coumarin and SAR. in Advances in Structure and Activity Relationship of Coumarin Derivatives 1–8 (Elsevier Inc., 2015). doi:10.1016/B978-0-12-803797-3.00001-1.spa
dc.relation.referencesWaters, M. D. et al. Structure-Activity Relationships: Computerized Systems. Methods to Assess DNA Damage Repair Interspecies Comparsions 201–230 (1994).spa
dc.relation.referencesCruz-Cruz, E. M. ¿Es necesario conocer el proceso de diseño de fármacos antes de su prescripción? Revista Electrónica Dr. Zoilo E. Marinello Vidaurreta. 2015; 40(7) (2015).spa
dc.relation.referencesBreastcancer.org. Taxol. https://www.breastcancer.org/es/medicamentos/taxol (2022).spa
dc.relation.referencesNational Cancer Institute. Drugs Approved for Breast Cancer - National Cancer Institute. Nih-Nci vol. 9 9 https://www.cancer.gov/about-cancer/treatment/drugs/breast (2021)spa
dc.relation.referencesNaaz, F., Haider, M. R., Shafi, S. & Yar, M. S. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur. J. Med. Chem. 171, 310–331 (2019).spa
dc.relation.referencesFauzee, N. J. S., Dong, Z. & Wang, Y. L. Taxanes: Promising anti-cancer drugs. Asian Pacific J. Cancer Prev. 12, 837–851 (2011).spa
dc.relation.referencesBakshi, K. et al. Imidazolium-based ionic liquids cause mammalian cell death due to modulated structures and dynamics of cellular membrane. Biochim. Biophys. Acta - Biomembr. 1862, 183103 (2020).spa
dc.relation.referencesWang, D. et al. Imidazolium-Based Lipid Analogues and Their Interaction with Phosphatidylcholine Membranes. Langmuir 32, 12579–12592 (2016).spa
dc.relation.referencesJovanović-Šanta, S. et al. Anticancer and antimicrobial properties of imidazolium based ionic liquids with salicylate anion. J. Serbian Chem. Soc. 85, 291–303 (2020)spa
dc.relation.referencesLi, X., Ma, J. & Wang, J. Cytotoxicity, oxidative stress, and apoptosis in HepG2 cells induced by ionic liquid 1-methyl-3-octylimidazolium bromide. Ecotoxicol. Environ. Saf. 120, 342–348 (2015).spa
dc.relation.referencesAl-Blewi, F. et al. A Profile of the In Vitro Anti-Tumor Activity and In Silico ADME Predictions of Novel Benzothiazole Amide-Functionalized Imidazolium Ionic Liquids. Int. J. Mol. Sci. 20, (2019).spa
dc.relation.referencesZakharova, L. Y. et al. Chapter 14 - Self-assembled quaternary ammonium surfactants for pharmaceuticals and biotechnology. in Organic Materials as Smart Nanocarriers for Drug Delivery (ed. Grumezescu, A. M.) 601–618 (William Andrew Publishing, 2018). doi:https://doi.org/10.1016/B978-0-12-813663-8.00014-2.spa
dc.relation.referencesCesaretti, A. et al. Spectroscopic Investigation of the pH Controlled Inclusion of Doxycycline and Oxytetracycline Antibiotics in Cationic Micelles and Their Magnesium Driven Release. J. Phys. Chem. B 118, 8601–8613 (2014).spa
dc.relation.referencesGuirao-Goris, S. J. Utilidad y tipos de revisión de literatura. Rev. ENE enfermería 9, 1–12 (2015).spa
dc.relation.referencesGómez-Luna, E., Fernando-Navas, D., Aponte-Mayor, G. & Betancourt-Buitrago, L. A. Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. DYNA 81, 158–163 (2014).spa
dc.relation.referencesBarderas-Manchado, A., Estrada-Lorenzo, J. M. & González-Gil, T. Estrategias para la búsqueda bibliográfica. Educare21 55, 1–9 (2009).spa
dc.relation.referencesMontana, M., Mathias, F., Terme, T. & Vanelle, P. Antitumoral activity of quinoxaline derivatives: A systematic review. Eur. J. Med. Chem. 163, 136–147 (2019).spa
dc.relation.referencesMatos, L. H. S., Masson, F. T., Simeoni, L. A. & Homem-de-Mello, M. Biological activity of dihydropyrimidinone (DHPM) derivatives: A systematic review. Eur. J. Med. Chem. 143, 1779–1789 (2018).spa
dc.relation.referencesMoher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, T. P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Med. 6, e1000097 (2009).spa
dc.relation.referencesNing, X. & Karypis, G. In silico structure-activity-relationship (SAR) models from machine learning: A review. Drug Development Research vol. 72 138–146 (2011).spa
dc.relation.referencesWermuth, C. G., Grisoni, S., Villoutreix, B. & Rocher, J. P. Application Strategies for the Primary Structure-Activity Relationship Exploration. in The Practice of Medicinal Chemistry: Fourth Edition 301–318 (Elsevier Inc., 2015). doi:10.1016/B978-0-12-417205-0.00012-2.spa
dc.relation.referencesFrey, K. M. Structure activity relationship (SAR) maps: A student-friendly tool to teach medicinal chemistry in integrated pharmacotherapy courses. Curr. Pharm. Teach. Learn. 12, 339–346 (2020).spa
dc.relation.referencesTong, W., Welsh, W. J., Shi, L. & Perkins, R. Structure-activity relationship aprproaches and aplications. Environ. Toxicol. Chem. 22, 1680–1695 (2003).spa
dc.relation.referencesCros, A. F. A. Action de l’alcool amylique sur l’organisme. (Strasbourg, 1863).spa
dc.relation.referencesBotana López, L. M., Landoni, F. & Martín Jiménez, T. Farmacología y Terapéutica Veterinaria. (2002).spa
dc.relation.referencesCrum Brown, A. & Fraser, T. R. On the connection between chemical constitution and physiological action; with special reference to the physiological action of the salts of the ammonium bases derived from strychnia, brucia, thebata, codeia, morphia, and nicotia. J. Anat. 2, 224–242 (1868).spa
dc.relation.referencesMata, E. Qsar Relación Estructura-Actividad Cuantitativa (Quantitative Structure-Activity Relationship) Historia. in 1–40 (1939).spa
dc.relation.referencesPerouansky, M., Penna S., A. & Gutiérrez R., R. The overton in meyer-overton: A biographical sketch commemorating the 150th anniversary of Charles Ernest Overton’s birth. Rev. Médica Clínica Las Condes 28, 537–541 (2015)spa
dc.relation.referencesTong, W., Welsh, W. J., Shi, L. & Fang, H. Enfoques y aplicaciones de la relación estructura-actividad. Toxicol. Ambient. y Química 22, (2009).spa
dc.relation.referencesHansch, C., Hoekman, D., Leo, A., Weininger, D. & Selassie, C. D. Chem-bioinformatics: Comparative QSAR at the interface between chemistry and biology. Chem. Rev. 102, 783–812 (2002).spa
dc.relation.referencesFrank, I. & Todeschini, R. The Data Analysis Handbook. Data Handling in Science and Technology vol. 14 1–352 (1994)spa
dc.relation.referencesCárdenas, F., Tripaldi, P. & Rojas, C. Estudio de la Relación Cuantitativa Estructura-Actividad de pesticidas mediante técnicas de clasificación. ACI Av. en Ciencias e Ing. 6, (2014).spa
dc.relation.referencesSchultz, T. W., Cronin, M. T. D., Walker, J. D. & Aptula, A. O. Quantitative structure-activity relationships (QSARS) in toxicology: A historical perspective. J. Mol. Struct. THEOCHEM 622, 1–22 (2003)spa
dc.relation.referencesBogyo, M. & Ward, G. Toxoplasma gondii Chemical Biology. Toxoplasma Gondii: The Model Apicomplexan - Perspectives and Methods: Second Edition (Elsevier, 2013). doi:10.1016/B978-0-12- 396481-6.00021-0.spa
dc.relation.referencesZhang, D. & Meng, F. A Comprehensive Overview of Structure-Activity Relationships of SmallMolecule Splicing Modulators Targeting SF3B1 as Anticancer Agents. ChemMedChem 15, 2098–2120 (2020).spa
dc.relation.referencesLiu, H., Long, S., Rakesh, K. P. & Zha, G. F. Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents. Eur. J. Med. Chem. 185, 111804 (2020).spa
dc.relation.referencesSilverman, R. B. & Holladay, M. The Organic Chemistry of Drug Design and Drug Action. The Organic Chemistry of Drug Design and Drug Action (2014). doi:10.1016/b978-0-08-051337-9.50010- 9.spa
dc.relation.referencesLin, X., Li, X. & Lin, X. A Review on Applications of Computational Methods in Drug Screening and Design. Molecules 25, (2020).spa
dc.relation.referencesMacina, O. T., Zhang, Y. P. & Rosenkranz, H. S. Improved Predictivity of Chemical Carcinogens: The Use of a Battery of SAR Models. in Carcinogenicity 227–250 (CRC Press, 2021). doi:10.1201/9781003067641-9.spa
dc.relation.referencesChoudhuri, S., Arvidson, K. & Chanderbhan, R. Carcinogenesis. Mechanisms and models. Veterinary Toxicology (Elsevier Inc., 2012). doi:10.1016/B978-0-12-385926-6.00026-0.spa
dc.relation.referencesLozano-Aponte, J. & Scior, T. ¿Qué sabe Ud. acerca de…QSAR? Rev. Mex. Ciencias Farm. 43, 82–84 (2012).spa
dc.relation.referencesBrown, S. D., Blank, T. B., Sum, S. T. & Weyer, L. G. Chemometrics. Anal. Chem. 66, 315–359 (1994)spa
dc.relation.referencesTodeschini, R. & Consonni, V. Handbook of Molecular Descriptors. Wiley-VCH 11, 688 (2000).spa
dc.relation.referencesBajusz, D., Rácz, A. & Héberger, K. Chemical Data Formats, Fingerprints, and Other Molecular Descriptions for Database Analysis and Searching. in Comprehensive Medicinal Chemistry III vols 3– 8 329–378 (2017).spa
dc.relation.referencesVisco, D. P. & Chen, J. J. The Signature Molecular Descriptor in Molecular Design: Past and Current Applications. Comput. Aided Chem. Eng. 39, 315–343 (2016).spa
dc.relation.referencesFaulon, J.-L. & Bender, A. Handbook of Chemoinformatics Algorithms. (2010)spa
dc.relation.referencesDanishuddin & Khan, A. U. Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discov. Today 21, 1291–1302 (2016).spa
dc.relation.referencesGrisoni, F., Ballabio, D., Todeschini, R. & Consonni, V. Molecular Descriptors for Structure–Activity Applications: A Hands-On Approach. 1800, 287–311 (2018)spa
dc.relation.referencesParthasarathi, R. & Dhawan, A. In Silico Approaches for Predictive Toxicology. in In Vitro Toxicology 91–109 (Elsevier Inc., 2018). doi:10.1016/B978-0-12-804667-8.00005-5spa
dc.relation.referencesReyes, L. M. S. Aplicaciones biológicas de la teoría QSAR en el control del mosquito Aedes aegypti L. (Universidad Nacional De la Plata, 2020).spa
dc.relation.referencesRodríguez, M. & María Narvaez, A. Un Acercamiento Didáctico Entre Química Orgánica Y Álgebra Lineal a Didactic Approach Between Organic Chemistry and Linear Algebra. Acta Latinoam. Mat. Educ. 32, 222–230 (2019).spa
dc.relation.referencesCherkasov, A. et al. QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 57, 4977–5010 (2014).spa
dc.relation.referencesMosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).spa
dc.relation.referencesGanot, N., Meker, S., Reytman, L., Tzubery, A. & Tshuva, E. Y. Anticancer metal complexes: synthesis and cytotoxicity evaluation by the MTT assay. J. Vis. Exp. 1–6 (2013) doi:10.3791/50767spa
dc.relation.referencesGutiérrez, L. et al. Nanotechnology in Drug Discovery and Development. in Comprehensive Medicinal Chemistry III (eds. Chackalamannil, S., Rotella, D. & Ward, S. E.) 264–295 (Elsevier, 2017). doi:https://doi.org/10.1016/B978-0-12-409547-2.12292-9.spa
dc.relation.referencesCastro de Pardo, C. Pruebas de tamizaje para determinar efectos citotóxicos en extractos, fracciones o sustancias, utilizando la prueba del MTT. vol. 1 317–321 (2006).spa
dc.relation.referencesBaya, A. el. Tubulin polymerisation measurement – made easy! https://www.tebubio.com/blog/2016/01/07/tubulin-polymerisation-measurement-made-easy/ (2016).spa
dc.relation.referencesMirigian, M., Mukherjee, K., Bane, S. L. & Sackett, D. L. Measurement of In vitro microtubule polymerization by turbidity and fluorescence. in Methods in Cell Biology vol. 115 215–229 (© 2013 Elsevier, Inc. All rights reserved., 2013).spa
dc.relation.referencesDesai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83– 117 (1997).spa
dc.relation.referencesHeusele, C., Dominique, B. & Marie, C. Is microtubule assembly a biphasic process ? A fluorimetric study using 4 ’, 6-diamidino-2-phenylindole as a probe. Eur. J. Biochem. 165, 613–620 (1987).spa
dc.relation.referencesBonne, D., Heuséle, C., Simon, C. & Pantaloni, D. 4’,6-Diamidino-2-phenylindole, a fluorescent probe for tubulin and microtubules. J. Biol. Chem. 260, 2819–2825 (1985).spa
dc.relation.referencesGaskin, F. Analysis of Microtubule Assembly Kinetics Using Turbidimetry. in Microtubule Dynamics:Methods and Protocols (ed. Straube, A.) 99–105 (2011). doi:10.1007/978-1-61779-252-6.spa
dc.relation.referencesInc., C. HTS-Tubulin Polymerization Assay Biochem Kit TM Manual V 7.0. vol. Manual V 7 6–7.spa
dc.relation.referencesGiuliani, A. The application of principal component analysis to drug discovery and biomedical data. Drug Discov. Today 22, 1069–1076 (2017).spa
dc.relation.referencesBURT, C. Factor analysis and canonical correlations. Br. J. Stat. Psychol. 1, 95–106 (1948).spa
dc.relation.referencesRencher, A. C. Methods of Multivariate Analysis. Methods of Multivariate Analysis (2002). doi:10.1002/0471271357.spa
dc.relation.referencesZhang, Z. & Castelló, A. Principal components analysis in clinical studies. Ann. Transl. Med. 5, 3–9 (2017).spa
dc.relation.referencesBagnato, J. I. Clasificar con K-Nearest Neighbor ejemplo en Python. July, 10th https://www.aprendemachinelearning.com/clasificar-con-k-nearest-neighbor-ejemplo-en-python/ (2018).spa
dc.relation.referencesZapata-Tapasco, A., Pérez-Londoño, S. & Mora-Flórez, J. Método basado en clasificadores k-NN parametrizados con algoritmos genéticos y la estimación de la reactancia para localización de fallas en sistemas de distribución. Rev. Fac. Ing. 220–232 (2014)spa
dc.relation.referencesMoujahid, A., Inza, I. & Larrañaga, P. Tema 5. Clasificadores K-NN. Dep. ciencias la Comput. e inteligancia Artif. (2019).spa
dc.relation.referencesZaidi, S. A. R. Nearest neighbour methods and their applications in design of 5G & beyond wireless networks. ICT Express 7, 414–420 (2021)spa
dc.relation.referencesLiu, H., Zhao, Y., Zhang, L. & Chen, X. Anti-cancer Drug Response Prediction Using Neighbor-Based Collaborative Filtering with Global Effect Removal. Mol. Ther. - Nucleic Acids 13, 303–311 (2018).spa
dc.relation.referencesArian, R., Hariri, A., Mehridehnavi, A., Fassihi, A. & Ghasemi, F. Protein kinase inhibitors’ classification using K-Nearest neighbor algorithm. Comput. Biol. Chem. 86, 107269 (2020).spa
dc.relation.referencesRajaguru, H. & Sannasi Chakravarthy, S. R. Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer. Asian Pacific J. Cancer Prev. 20, 3777–3781 (2019)spa
dc.relation.referencesShi, G. Decision Trees. in Data Mining and Knowledge Discovery for Geoscientists 111–138 (Elsevier, 2014). doi:10.1016/B978-0-12-410437-2.00005-9.spa
dc.relation.referencesKingsford, C. & Salzberg, S. L. What are decision trees? Classifying with decision trees. Nat. Biotechnol. 26, 1011–1013 (2008)spa
dc.relation.referencesGehrke, J., Loh, W. Y. & Ramakrishnan, R. Tutorial 1. classification and regression: Motiey ∗Can∗ grow on trees. in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1–72 (Association for Computing Machinery (ACM), 1999). doi:10.1145/312179.312185spa
dc.relation.referencesCarlos, A. : & López, P. Predicción de la interacción de proteínas relacionadas con el Alzheimer a partir de su estructura primaria. (Universitat Oberta de Catalunya (UOC), 2020).spa
dc.relation.referencesLantz, B. Machine Learning with R. Machine Learning with R (2015). doi:10.1007/978-981-10-6808- 9.spa
dc.relation.referencesArboles de decisión. https://medium.com/greyatom/decision-trees-asimple-way-to-visualize-a-decision-dc506a403aeb.spa
dc.relation.referencesBarrientos, R. et al. Árboles de decisión como herramienta en el diagnóstico Médico. Rev. Médica la Univ. Veracruzana 20–24 (2009).spa
dc.relation.referencesBreiman, L., Friedman, J.H., Olshen, R.A., & Stone, C. J. Classification And Regression Trees. (1984)spa
dc.relation.referencesCutler, A. & Stevens, J. R. [23] Random Forests for Microarrays. Methods in Enzymology vol. 411 422–432 (2006).spa
dc.relation.referencesSchierz, A. C. Virtual screening of bioassay data. J. Cheminform. 1, 1–12 (2009)spa
dc.relation.referencesMocak, J. Chemometrics in Medicine and Pharmacy. Nov. Biotechnol. Chim. 11, 11–26 (2012).spa
dc.relation.referencesAli, J., Khan, R., Ahmad, N. & Maqsood, I. Random forests and decision trees. IJCSI Int. J. Comput. Sci. Issues 9, 272–278 (2012)spa
dc.relation.referencesBreiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001)spa
dc.relation.referencesAmat Rodrigo, J. Árboles de predicción: bagging, random forest, boosting y C5.0. GitHub https://rpubs.com/Joaquin_AR/255596 (2017).spa
dc.relation.referencesRahman, R., Haider, S., Ghosh, S. & Pal, R. Design of probabilistic random forests with applications to anticancer drug sensitivity prediction. Cancer Inform. 15, 57–73 (2016).spa
dc.relation.referencesLind, A. P. & Anderson, P. C. Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PLoS One 14, 1–20 (2019).spa
dc.relation.referencesKadioglu, O., Klauck, S. M., Fleischer, E., Shan, L. & Efferth, T. Selection of safe artemisinin derivatives using a machine learning-based cardiotoxicity platform and in vitro and in vivo validation. Arch. Toxicol. 95, 2485–2495 (2021).spa
dc.relation.referencesZhang, X. et al. Prediction of Chemosensitivity in Multiple Primary Cancer Patients Using Machine Learning. Anticancer Res. 41, 2419 LP – 2429 (2021).spa
dc.relation.referencesMATLAB - MathWorks - MATLAB & Simulink. MathWorks https://www.mathworks.com/products/matlab.html (2022).spa
dc.relation.referencesSybyl - csic.es. http://sitios.csic.es/web/calculo-cientifico/sybyl.spa
dc.relation.referencesRobb, M. New Chemistry with Gaussian 16 & GaussView 6. Expanding the limits of computational chemistry https://gaussian.com/g16new/ (2022).spa
dc.relation.referencesRStudio Team. RStudio | Open source & professional software for data science teams - RStudio. RStudio Inc. https://www.rstudio.com/ (2020).spa
dc.relation.referencesKNIME. KNIME | Open for Innovation. KNIME https://www.knime.com/ (2021)spa
dc.relation.referencesQuiminformática reproducible a través de flujos de trabajo visuales | KNIME. https://www.knime.com/reproducible-cheminformatics-visual-workflowsspa
dc.relation.referencesGuha, R. Chemical informatics functionality in R. J. Stat. Softw. 18, 1–16 (2007).spa
dc.relation.referencesVoicu, A., Duteanu, N., Voicu, M., Vlad, D. & Dumitrascu, V. The rcdk and cluster R packages applied to drug candidate selection. J. Cheminform. 12, 1–8 (2020).spa
dc.relation.referencesBeisken, S., Meinl, T., Wiswedel, B., Figueiredo, L. F. De & Berthold, M. KNIME-CDK : Workflowdriven cheminformatics. BMC Bioinformatics 2–5 (2013).spa
dc.relation.referencesHoran, K., Yiqun, C., Tyler, B. & Thomas, G. ChemmineR: Cheminformatics Toolkit para R. https://www.bioconductor.org/packages/devel/bioc/vignettes/ChemmineR/inst/doc/ChemmineR.htmlspa
dc.relation.referencesMatesanz R., R. Optimización de la interacción microtúbulo-taxol: diseño de taxanos de alta afinidad. (Universidad Autónoma de Madrid, 2011).spa
dc.relation.referencesNogales, E. et al. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 424–427 (1995).spa
dc.relation.referencesNogales, E. Structural insights into microtubule function. Rev. Lit. Arts Am. 278–298 (2000) doi:10.1146/annurev.biochem.73.011303.074048.spa
dc.relation.referencesViñas Domínguez, S. Enfermedades de tubulinas. (Universidad de Cantabria, 2016).spa
dc.relation.referencesNogales, E. & Wang, H.-W. Structural intermediates in microtubule assembly and disassembly: how and why? Curr. Opin. Cell Biol. 18, 179–184 (2006).spa
dc.relation.referencesNogales, E. & Wang, H.-W. Structural intermediates in microtubule assembly and disassembly: how and why? Curr. Opin. Cell Biol. 18, 179–184 (2006).spa
dc.relation.referencesLöwe, J., Li, H., Downing, K. H. & Nogales, E. Refined structure of αβ-tubulin at 3.5 Å resolution. J. Mol. Biol. 313, 1045–1057 (2001).spa
dc.relation.referencesMarcano, D. & Hasegawa, M. Fitoquímica Orgánica. (Consejo de Desarrollo Científico y Humanistico, 2018).spa
dc.relation.referencesKingston, D. G. ., Molinero, A. . & Rimoldi, J. . Progress in the chemistry of organic natural products. (Springer-Verlag/Wien, 1993). doi:10.1007/978-3-7091-9242-9.spa
dc.relation.referencesChanbner, B. & Mujagic, H. Taxano y sus derivados. in HARRISON. manual de oncología (ed. Fraga, J. de L.) 24–31 (2009).spa
dc.relation.referencesCentelles, J. J. & Imperial, S. Paclitaxel Descubrimiento, Propiedades y uso Clínico. Offram 29, 68–75 (2010).spa
dc.relation.referencesJair Barrales-Cureño, H. & Marco, S. H. Bioquímica de los Taxoides utilizados contra el cáncer. Rev. Educ. Bioquímica 30, 12–20 (2011).spa
dc.relation.referencesMosca, L., Ilari, A., Fazi, F., Assaraf, Y. G. & Colotti, G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist. Updat. 54, 100742 (2021).spa
dc.relation.referencesUbeda, R. A. Biotransformaciones en la síntesis de antitumorales. (universidad complutense, 2016).spa
dc.relation.referencesSánchez-Murcia, P. A., Mills, A., Cortés-Cabrera, Á. & Gago, F. Unravelling the covalent binding of zampanolide and taccalonolide AJ to a minimalist representation of a human microtubule. J. Comput. Aided. Mol. Des. 33, 627–644 (2019).spa
dc.relation.referencesZheng, L. L., Wen, G., Yao, Y. X., Li, X. H. & Gao, F. Design, Synthesis, and Anticancer Activity of Natural Product Hybrids With Paclitaxel Side Chain Inducing Apoptosis in Human Colon Cancer Cells. Nat. Prod. Commun. 15, 1–11 (2020).spa
dc.relation.referencesSharma, S. et al. Dissecting Paclitaxel–Microtubule Association: Quantitative Assessment of the 2′-OH Group. Biochemistry 52, 2328–2336 (2013).spa
dc.relation.referencesKellogg, E. H. et al. Insights into the Distinct Mechanisms of Action of Taxane and Non-Taxane Microtubule Stabilizers from Cryo-EM Structures. J. Mol. Biol. 429, 633–646 (2017).spa
dc.relation.referencesRisinger, A. L., Hastings, S. D. & Du, L. Taccalonolide C-6 Analogues, Including Paclitaxel Hybrids, Demonstrate Improved Microtubule Polymerizing Activities. J. Nat. Prod. 84, 1799–1805 (2021).spa
dc.relation.referencesNuijen, B., Bouma, M., Schellens, J. H. M. & Beijnen, J. H. Progress in the development of alternative pharmaceutical formulations of taxanes. Invest. New Drugs 19, 143–153 (2001).spa
dc.relation.referencesEngblom, P. et al. Effects of paclitaxel with or without cremophor EL on cellular clonogenic survival and apoptosis. Eur. J. Cancer 35, 284–288 (1999).spa
dc.relation.referencesElhissi, A. M. A. et al. Chapter 18 - Taxane anticancer formulations: challenges and achievements. in Advances in Medical and Surgical Engineering (eds. Ahmed, W., Phoenix, D. A., Jackson, M. J. & Charalambous, C. P.) 347–358 (Academic Press, 2020). doi:https://doi.org/10.1016/B978-0-12- 819712-7.00018-8.spa
dc.relation.referencesEngels, F. K., Mathot, R. A. A. & Verweij, J. Alternative drug formulations of docetaxel: a review. Anticancer. Drugs 18, 95–103 (2007).spa
dc.relation.referencesImmordino, M. L. et al. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel. J. Control. release 91, 417–429 (2003).spa
dc.relation.referencesTannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).spa
dc.relation.referencesKhan, M. A., Carducci, M. A. & Partin, A. W. The evolving role of docetaxel in the management of androgen independent prostate cancer. J. Urol. 170, 1709–1716 (2003).spa
dc.relation.referencesNabell, L. & Spencer, S. Docetaxel with Concurrent Radiotherapy in Head and Neck Cancer. Semin. Oncol. 30, 89–93 (2003).spa
dc.relation.referencesJordan, M. A. et al. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res. 56, 816–825 (1996).spa
dc.relation.referencesJordan, M. A., Toso, R. J., Thrower, D. & Wilson, L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. 90, 9552–9556 (1993).spa
dc.relation.referencesDeVita, V. T. & Lawrence, T. S. Rosenberg’s cancer: principles \& practice of oncology. DeVita, Vincent T 1855–1893 (2008).spa
dc.relation.referencesChecchi, P. M., Nettles, J. H., Zhou, J., Snyder, J. P. & Joshi, H. C. Microtubule-interacting drugs for cancer treatment. Trends Pharmacol. Sci. 24, 361–365 (2003).spa
dc.relation.referencesCrown, J. & O’Leary, M. The taxanes: An update. Lancet 355, 1176–1178 (2000).spa
dc.relation.referencesHevia, L. G. & Fanarraga, M. L. Microtubule cytoskeleton-disrupting activity of MWCNTs: applications in cancer treatment. J. Nanobiotechnology 18, 181 (2020).spa
dc.relation.referencesAlushin, G. M. et al. High-resolution microtubule structures reveal the structural transitions in αβtubulin upon GTP hydrolysis. Cell 157, 1117–1129 (2014).spa
dc.relation.referencesZhang, R., Alushin, G. M., Brown, A. & Nogales, E. Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins. Cell 162, 849–859 (2015).spa
dc.relation.referencesArnal, I. & Wade, R. H. How does taxol stabilize microtubules? Curr. Biol. 5, 900–908 (1995).spa
dc.relation.referencesSchiff, P. B. & Horwitz, S. B. Taxol stabilizes microtubules. Proc. Natl. Acad. Sci. U. S. A. 77, 1561– 1565 (1980).spa
dc.relation.referencesTurner, P. F. & Margolis, R. L. Taxol-induced Bundling of Brain-derived Microtubules. J Cell Biol. 99, (1984).spa
dc.relation.referencesYvon, A. M. C., Wadsworth, P. & Jordan, M. A. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol. Biol. Cell 10, 947–959 (1999).spa
dc.relation.referencesJordan, M. A., Toso, R. J., Thrower, D. & Wilson, L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. U. S. A. 90, 9552–9556 (1993).spa
dc.relation.referencesSwindell, C. S. Taxane diterpene synthesis strategies. A review. Org. Prep. Proced. Int. 23, 465–543 (1991).spa
dc.relation.referencesXiang, F., Yu, J., Yin, R., Ma, Y. & Yu, L. Structure-activity relationship of taxol inferring from docking taxol analogues to microtubule binding site. Zeitschrift fur Naturforsch. - Sect. C J. Biosci. 64, 551–556 (2009).spa
dc.relation.referencesKingston, D. G. I. Taxol: The chemistry and structure-activity relationships of a novel anticancer agent. Trends Biotechnol. 12, 222–227 (1994).spa
dc.relation.referencesMellado, W. et al. Preparation and Biological Activity of Taxol Acetates. Biochem. Biophys. Res. Commun. 124, 329 (1984).spa
dc.relation.referencesShanker, N. et al. Enhanced microtubule binding and tubulin assembly properties of conformationally constrained paclitaxel derivatives. Biochemistry 46, 11514 (2007).spa
dc.relation.referencesBaloglu, E., Kingston, D. G. ., Patel, P., Chatterjee, S. K. & Bane, S. L. Synthesis and microtubule binding of fluorescent paclitaxel derivatives. Bioorganic Med. Chem. Lett. 11, 2249–2252 (2001).spa
dc.relation.referencesJagtap, P. G., Baloglu, E., Barron, D. M., Bane, S. & Kingston, D. G. I. Design and synthesis of a combinatorial chemistry library of 7-acyl, 10-acyl, and 7,10-diacyl analogues of paclitaxel (taxol) using solid phase synthesis. J. Nat. Prod. 65, 1136–1142 (2002).spa
dc.relation.referencesBaloglu, E. et al.Synthesis and biological evaluation of C-3′NH/C-10 and C-2/C-10 modified paclitaxel analogues. Bioorganic Med. Chem. 11, 1557–1568 (2003).spa
dc.relation.referencesLiu, C., Schilling, J. K., Ravindra, R., Bane, S. & Kingston, D. G. I. Syntheses and bioactivities of macrocyclic paclitaxel bis-lactones. Bioorganic Med. Chem. 12, 6147–6161 (2004).spa
dc.relation.referencesPaik, Y. et al. Rotational-echo double-resonance NMR distance measurements for the tubulin-bound paclitaxel conformation. J. Am. Chem. Soc. 129, 361–370 (2007).spa
dc.relation.referencesGanesh, T. et al. Evaluation of the tubulin-bound paclitaxel conformation: Synthesis, biology, and SAR studies of C-4 to C-3′ bridged paclitaxel analogues. J. Med. Chem. 50, 713–725 (2007).spa
dc.relation.referencesKingston, D. G. I. & Newman, D. J. Taxoids: Cancer-fighting compounds from nature. Curr. Opin. Drug Discov. Dev. 10, 130–144 (2007).spa
dc.relation.referencesKingston, D. G. I. The shape of things to come: Structural and synthetic studies of taxol and related compounds. Phytochemistry 68, 1844–1854 (2007).spa
dc.relation.referencesParness, J., Kingston, D. G. I., Powell, R. G., Harracksingh, C. & Horwitz, S. B. Structure-activity study of cytotoxicity and microtubule assembly in vitro by taxol and related taxanes. Biochem. Biophys. Res. Commun. 105, 1082–1089 (1982).spa
dc.relation.referencesKingston, D. G. I. The chemistry of Taxol. Pharmacol. Ther. 52, 1–34 (1991).spa
dc.relation.referencesKingston, D. G. I. Taxol : the chemistry and structure-activity relationships of a novel anticancer agent. 222–227 (1994).spa
dc.relation.referencesGrover, S. et al. Differential Effects of Paclitaxel (Taxol) Analogs Modified at Positions C-2, C-7, and C-3′ on Tubulin Polymerization and Polymer Stabilization: Identification of a Hyperactive Paclitaxel Derivative. Biochemistry 34, 3927–3934 (1995).spa
dc.relation.referencesRan, Y. et al. Interaction of a fluorescent derivative of paclitaxel (taxol) with microtubules and tubulincolchicine. Biochemistry 35, 14173–14183 (1996).spa
dc.relation.referencesWatson, J. M. et al. Identification of the structural region of taxol that may be responsible for cytokine gene induction and cytotoxicity in human ovarian cancer cells. Cancer Chemother. Pharmacol. 41, 391–397 (1998).spa
dc.relation.referencesKingston, D. G. I. et al. Synthesis and biological evaluation of 2-acyl analogues of paclitaxel (Taxol). J. Med. Chem. 41, 3715–3726 (1998).spa
dc.relation.referencesHe, L. et al. A common pharmacophore for taxol and the epothilones based on the biological activity of a taxane molecule lacking a C-13 side chain. Biochemistry 39, 3972–3978 (2000).spa
dc.relation.referencesChordia, M. D., Chaudhary, A. G., Kingston, D. G. I., Qing Jiang, Y. & Hamel, E. Synthesis and biological evaluation of 4-deacetoxypaclitaxel. Tetrahedron Lett. 35, 6843–6846 (1994).spa
dc.relation.referencesNeiding, K. A., Gharpure, J. M., Kingston, D. G. I. & Rimoldi, K. Synthesis and Biological Evaluation of 4-deacetylpaclitaxel. Tamhdiom Lett. 35, 6839–6842 (1994).spa
dc.relation.referencesChaudhary, A. G., Rimoldi, J. M. & Kingston, D. G. I. Interconversion of Taxol and 7-epi-Taxoll. J. Org. Chem. 58, 3798–3799 (1993)spa
dc.relation.referencesChen, S. H. et al. Synthesis of 7-deoxy- and 7,10-dideoxytaxol via radical intermediates. J. Org. Chem. 58, 5028–5029 (1993).spa
dc.relation.referencesKingston, D. G. I. The shape of things to come: Structural and synthetic studies of taxol and related compounds. Phytochemistry 68, 1844–1854 (2007).spa
dc.relation.referencesChen, S. H. et al. Synthesis of 7-Deoxy- and 7,10-Dideoxytaxol via Radical Intermediates. J. Org. Chem. 58, 5028–5029 (1993).spa
dc.relation.referencesChaudhary, A. G., Rimoldi, J. M. & Kingston, D. G. I. Modified taxols. 10. Preparation of 7-deoxytaxol, a highly bioactive taxol derivative, and interconversion of taxol and 7-epi-taxol. J. Org. Chem. 58, 3798–3799 (1993).spa
dc.relation.referencesChaudhary, A. & Kingston, D. Synthesis of 10-deacetoxytaxol and 10-deoxytaxotere. Tetrahedron Lett. 34, 4921–4924 (1993).spa
dc.relation.referencesAlcaraz, A. A., Mehta, A. K., Johnson, S. A. & Snyder, J. P. T-Taxol conformation. J. Med. Chem. 49, 2478 (2006).spa
dc.relation.referencesSnyder, J. P., Nettles, J. H., Cornett, B., Downing, K. H. & Nogales, E. The binding conformation of Taxol in beta-tubulin: a model based on electron crystallographic density. Proc. Natl. Acad. Sci. U. S. A. 98, 5312–5316 (2001).spa
dc.relation.referencesGeorg, G. I. et al. Synthesis and biology of substituted 3′-phenyl taxol analogues. Bioorganic Med. Chem. Lett. 4, 2331–2336 (1994).spa
dc.relation.referencesXie, C. et al. Synthesis and biological activity of C-7, C-9 and C-10 modified taxane analogues from 1-deoxybaccatin VI. Bioorg. Med. Chem. 28, 115736 (2020).spa
dc.relation.referencesSheng, J. et al. Synthesis of Paclitaxel Side Chain via Multi-Component Reaction and Its Application to the Synthesis of Paclitaxel Analogues. Chinese J. Org. Chem. 39, 377–389 (2019).spa
dc.relation.referencesHayes, R., Warr, G. G. & Atkin, R. Structure and Nanostructure in Ionic Liquids. Chem. Rev. 115, 6357–6426 (2015).spa
dc.relation.referencesDean, P. M., Pringle, J. M. & MacFarlane, D. R. Structural analysis of low melting organic salts: Perspectives on ionic liquids. Phys. Chem. Chem. Phys. 12, 9144–9153 (2010).spa
dc.relation.referencesvan Rantwijk, F. Ionic Liquids in biotransformations and organocatalysis. Solvents and Beyond. Edited by Pablo Domínguez de María. Angew. Chemie Int. Ed. 52, 3065–3066 (2013).spa
dc.relation.referencesEgorova, K. S., Gordeev, E. G. & Ananikov, V. P. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem. Rev. 117, 7132–7189 (2017).spa
dc.relation.referencesVerdia, P. Diseño y síntesis de Líquidos Iónicos para aplicaciones específicas. (Universidad de Vigo, 2012).spa
dc.relation.referencesHolbrey, J. D. & Seddon, K. R. Ionic Liquids. Clean Technol. Environ. Policy 1, 223–236 (1999).spa
dc.relation.referencesMarrucho, I. M., Branco, L. C. & Rebelo, L. P. N. Ionic liquids in pharmaceutical applications. Annu. Rev. Chem. Biomol. Eng. 5, 527–546 (2014).spa
dc.relation.referencesDobler, D., Schmidts, T., Klingenhöfer, I. & Runkel, F. Ionic liquids as ingredients in topical drug delivery systems. Int. J. Pharm. 441, 620–627 (2013).spa
dc.relation.referencesFerraz, R. et al. Antitumor Activity of Ionic Liquids Based on Ampicillin. ChemMedChem 10, 1480– 1483 (2015).spa
dc.relation.referencesReslan, M. & Kayser, V. Ionic liquids as biocompatible stabilizers of proteins. Biophysical Reviews vol. 10 781–793 (2018)spa
dc.relation.referencesOzokwelu, D., Zhang, S., Okafor, O. C., Cheng, W. & Litombe, N. Preparation and Characterization of Ionic Liquids. in Novel Catalytic and Separation Processes Based on Ionic Liquids 13–44 (2017). doi:10.1016/b978-0-12-802027-2.00002-9.spa
dc.relation.referencesWeingärtner, H. Understanding ionic liquids at the molecular level: Facts, problems, and controversies. Angew. Chemie - Int. Ed. 47, 654–670 (2008).spa
dc.relation.referencesRodríguez, I. Líquidos iónicos. propiedades, síntesis y aplicaciones. (Universidad nacional de educación a distancia , 2017).spa
dc.relation.referencesOlivier-Bourbigou, H., Magna, L. & Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A Gen. 373, 1–56 (2010).spa
dc.relation.referencesHallett, J. P. & Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev. 111, 3508–3576 (2011).spa
dc.relation.referencesSigma-Aldrich. Imidazolium - Ionic Liquids | Sigma-Aldrich | Sigma-Aldrich. https://www.sigmaaldrich.com/chemistry/chemistry-products.html?TablePage=1 (2020).spa
dc.relation.referencesImidazolium Ionic Liquids. https://www.alfa-chemistry.com/products/imidazolium-ionic-liquids151.htm.spa
dc.relation.referencesAmeta, K. L. & Dandia, A. Green chemistry: Synthesis of bioactive heterocycles. Green Chem. Synth. Bioact. Heterocycles 1–412 (2014) doi:10.1007/978-81-322-1850-0.spa
dc.relation.referencesHardacre, C., Holbrey, J. D., Nieuwenhuyzen, M. & Youngs, T. G. A. Structure and solvation in ionic liquids. Acc. Chem. Res. 40, 1146–1155 (2007).spa
dc.relation.referencesKumar, A. & Venkatesu, P. The stability of insulin in the presence of short alkyl chain imidazoliumbased ionic liquids. RSC Adv. 4, 4487–4499 (2014).spa
dc.relation.referencesMahkam, M., Hosseinzadeh, F. & Galehassadi, M. Preparation of Ionic Liquid Functionalized Silica Nanoparticles for Oral Drug Delivery. J. Biomater. Nanobiotechnol. 03, 391–395 (2012).spa
dc.relation.referencesAraki, S., Wakabayashi, R., Moniruzzaman, M., Kamiya, N. & Goto, M. Ionic liquid-mediated transcutaneous protein delivery with solid-in-oil nanodispersions. Medchemcomm 6, 2124–2128 (2015).spa
dc.relation.referencesLin, X., Su, Z., Yang, Y. & Zhang, S. The potential of ionic liquids in biopharmaceutical engineering. Chinese J. Chem. Eng. 30, 236–243 (2021).spa
dc.relation.referencesFlieger, J. & Flieger, M. Ionic liquids toxicity—benefits and threats. International Journal of Molecular Sciences vol. 21 1–41 (2020).spa
dc.relation.referencesRoma-Rodrigues, C. et al. Synthesis of new hetero-arylidene-9(10H)-anthrone derivatives and their biological evaluation. Bioorg. Chem. 99, 103849 (2020).spa
dc.relation.referencesMiskiewicz, A., Ceranowicz, P., Szymczak, M., Bartuś, K. & Kowalczyk, P. The use of liquids ionic fluids as pharmaceutically active substances helpful in combating nosocomial infections induced by Klebsiella Pneumoniae new delhi strain, Acinetobacter Baumannii and Enterococcus species. Int. J. Mol. Sci. 19, (2018).spa
dc.relation.referencesWang, D. et al. Anti-tumor activity and cytotoxicity in vitro of novel 4,5-dialkylimidazolium surfactants. Biochem. Biophys. Res. Commun. 467, 1033–1038 (2015).spa
dc.relation.referencesGuncheva, M. et al. Rapana thomasiana hemocyanin modified with ionic liquids with enhanced anti breast cancer activity. Int. J. Biol. Macromol. 82, 798–805 (2016).spa
dc.relation.referencesUddin, M., Basak, D., Hopefl, R. & Minofar, B. Potential application of ionic liquids in pharmaceutical dosage forms for small molecule drug and vaccine delivery system. J. Pharm. Pharm. Sci. 23, 158–176 (2020).spa
dc.relation.referencesThuy Pham, T. P., Cho, C. W. & Yun, Y. S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 44, 352–372 (2010).spa
dc.relation.referencesDias, A. R. et al. The Anticancer Potential of Ionic Liquids. ChemMedChem 120, 342–348 (2017).spa
dc.relation.referencesThuy Pham, T. P., Cho, C. W. & Yun, Y. S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 44, 352–372 (2010).spa
dc.relation.referencesKumar, V. & Malhotra, S. V. Antitumor activity of ionic liquids on human tumor cell lines. ACS Symp. Ser. 1038, 91–102 (2010)spa
dc.relation.referencesKumar, A. In Vitro Cytotoxicities of Ionic Liquids: Effect of Cation Rings, Functional Groups, and Anions. Far East. Entomol. 165, 16 (2008).spa
dc.relation.referencesStasiewicz, M. et al. Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicol. Environ. Saf. 71, 157–165 (2008).spa
dc.relation.referencesStolte, S. et al. Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem. 9, 1170–1179 (2007).spa
dc.relation.referencesPeric, B., Sierra, J., Martí, E., Cruañas, R. & Garau, M. A. Quantitative structure-activity relationship (QSAR) prediction of (eco)toxicity of short aliphatic protic ionic liquids. Ecotoxicol. Environ. Saf. 115, 257–262 (2015).spa
dc.relation.referencesMalhotra, S. V., Kumar, V., Velez, C. & Zayas, B. Imidazolium-derived ionic salts induce inhibition of cancerous cell growth through apoptosis. Medchemcomm 5, 1404–1409 (2014).spa
dc.relation.referencesMalhotra, S. V. & Kumar, V. A profile of the in vitro anti-tumor activity of imidazolium-based ionic liquids. Bioorganic Med. Chem. Lett. 20, 581–585 (2010).spa
dc.relation.referencesGamini, G. Sal de amonio cuaternario - Chemistry LibreTexts. https://chem.libretexts.org/Ancillary_Materials/Reference/Organic_Chemistry_Glossary/Quaternary_ Ammonium_Salt.spa
dc.relation.referencesWeston, C. W., Papcun, J. R. & Dery, M. Ammonium Compounds. Kirk-Othmer Encycl. Chem. Technol. (2003) doi:10.1002/0471238961.0113131523051920.A01.PUB2.spa
dc.relation.referencesLonza, L. Antimicrobial Active Ingredients for Use in Global Disinfectant Formulation. https://microbialmanagement.arxada.com/- /media/CoCo/hygiene/Antimicrobial_Actives_For_Global_Use_TDS.pdf (2017).spa
dc.relation.referencesTrimethyloctylammonium chloride ≥97.0% (AT) | 10108-86-8. https://www.sigmaaldrich.com/CO/es/product/aldrich/75094?gclid=Cj0KCQjwNaJBhDsARIsAAja6dO5YHjjD9GDCM_NDMYwBO8WgwQHob6JlzxZIeo9UKlYR4j8DrC3jMaAqBcEALw_wcB.spa
dc.relation.referencesBureš, F. Quaternary Ammonium Compounds: Simple in Structure, Complex in Application. Top. Curr. Chem. 377, 1–21 (2019).spa
dc.relation.referencesFletcher, J. H., Dermer, O. C. & Fox, R. B. Nomenclature of Organic Compounds. vol. 126 (AMERICAN CHEMICAL SOCIETY, 1974).spa
dc.relation.referencesGerba, C. P. Quaternary ammonium biocides: Efficacy in application. Applied and Environmental Microbiology vol. 81 464–469 (2015).spa
dc.relation.referencesRE Dixon, R. K. D. M. Aqueous quaternary ammonium antiseptics and disinfectants: use and misuse. JJ Am Med Assoc 236, 2415–2417 (1976).spa
dc.relation.referencesP Zhu, G. S. Antimicrobial finishing of wool fabrics using quaternary ammonium salts. J Appl Polym Sci 93, 1037–1041 (2004).spa
dc.relation.referencesLi, Q., Li, Q., Tan, W., Zhang, J. & Guo, Z. Phenolic-containing chitosan quaternary ammonium derivatives and their significantly enhanced antioxidant and antitumor properties. Carbohydr. Res. 498, 108169 (2020).spa
dc.relation.referencesMaldonado Garcia, H. J., Guzmán Lezama, E. G., Márquez Cabezas, S., Tupayachi, A. & Joaquina, A. Estudio De Sapogeninas Esteroidales De Especies Peruanas Del Género Dioscorea. Rev. la Soc. Química del Perú 78, 208–218 (2012).spa
dc.relation.referencesSkrzypczak, N. et al. Anticancer activity and toxicity of new quaternary ammonium geldanamycin derivative salts and their mixtures with potentiators. J. Enzyme Inhib. Med. Chem. 36, 1898–1904 (2021).spa
dc.relation.referencesCarvajal, C. Especies reactivas del oxígeno: formación, funcion y estrés oxidativo. Med. Leg. Costa Rica 36, 91–100 (2019).spa
dc.relation.referencesSchmidt, H. H. H. W. et al. Antioxidants in Translational Medicine. Antioxidants Redox Signal. 23, 1130–1143 (2015)spa
dc.relation.referencesDi Meo, S., Reed, T. T., Venditti, P. & Victor, V. M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016, 1245049 (2016).spa
dc.relation.referencesOrtuño-Sahagún, D., Pallàs, M. & Rojas-Mayorquín, A. E. Oxidative Stress in Aging: Advances in Proteomic Approaches. Oxid. Med. Cell. Longev. 2014, 573208 (2014).spa
dc.relation.referencesNavarro-Yepes, J. et al. Oxidative Stress, Redox Signaling, and Autophagy: Cell Death Versus Survival. Antioxidants \& Redox Signal. 21, 66–85 (2014).spa
dc.relation.referencesXia, X. et al. Synthesis of diosgenyl quaternary ammonium derivatives and their antitumor activity. Steroids 166, 108774 (2021).spa
dc.relation.referencesSethi, G. et al. Pro-Apoptotic and Anti-Cancer Properties of Diosgenin: A Comprehensive and Critical Review. Nutrients 10, (2018).spa
dc.relation.referencesWang, S.-L. et al. Diosgenin-3-O-α-l-Rhamnopyranosyl-(1→4)-β-d-glucopyranoside obtained as a new anticancer agent from Dioscorea futschauensis induces apoptosis on human colon carcinoma HCT15 cells via mitochondria-controlled apoptotic pathway. J. Asian Nat. Prod. Res. 6, 115–125 (2004).spa
dc.relation.referencesLópez-Muñoz, M. et al. Novel fluorinated quaternary ammonium salts and their in vitro activity as trypanocidal agents. Med. Chem. Res. 28, 300–319 (2019).spa
dc.relation.referencesJorge, P. M. & Alejandro, E. Apoptosis, mecanismo de acción. Rev. ciencias médicas La Habana (En línea) 18, (2012)spa
dc.relation.referencesWikinski, W. De et al. Instituto de Fisiopatología y Bioquímica Clínica - INFIBIOC de la Universidad de Buenos Aires. Acta bioquímica clínica Latinoam. 44, 385–433 (2010).spa
dc.relation.referencesReap, E. A. et al. bcl-2 transgenic Lpr mice show profound enhancement of lymphadenopathy. J. Immunol. 155, 5455–5462 (1995).spa
dc.relation.referencesTartas, N. E., Foncuberta, M. C. & Sanchez Avalos, J. C. Tratamiento de las neoplasias hematologicas en el embarazo. Medicina (B. Aires). 67, 729–736 (2007).spa
dc.relation.referencesMuñoz Cendales, D. R. & Cuca Suárez, L. E. Compuestos citotóxicos de origen vegetal y su relación con proteínas inhibidoras de apoptosis (IAP). Rev. Colomb. Cancerol. 20, 124–134 (2016).spa
dc.relation.referencesYin, H. et al. Diosgenin Derivatives as Potential Antitumor Agents: Synthesis, Cytotoxicity, and Mechanism of Action. J. Nat. Prod. 84, 616–629 (2021).spa
dc.relation.referencesDziegielewska, B., Brautigan, D. L., Larner, J. M. & Dziegielewski, J. T-Type Ca2+ Channel Inhibition Induces p53-Dependent Cell Growth Arrest and Apoptosis through Activation of p38-MAPK in Colon Cancer Cells. Mol. Cancer Res. 12, 348–358 (2014)spa
dc.relation.referencesJin, X. et al. The p38 MAPK inhibitor BIRB796 enhances the antitumor effects of VX680 in cervical cancer. Cancer Biol. Ther. 17, 566–576 (2016).spa
dc.relation.referencesHsieh, S.-C. et al. α-Mangostin induces mitochondrial dependent apoptosis in human hepatoma SK- Hep-1 cells through inhibition of p38 MAPK pathway. Apoptosis 18, 1548–1560 (2013).spa
dc.relation.referencesKoul, H. K., Pal, M. & Koul, S. Role of p38 MAP Kinase Signal Transduction in Solid Tumors. Genes Cancer 4, 342–359 (2013).spa
dc.relation.referencesLiu, H., He, J. & Yang, J. Tumor cell p38 MAPK: A trigger of cancer bone osteolysis. Cancer cell Microenviron. 2, (2015).spa
dc.relation.referencesKim, H.-G., Shi, C., Bode, A. M. & Dong, Z. p38α MAPK is required for arsenic-induced cell transformation. Mol. Carcinog. 55, 910–917 (2016).spa
dc.relation.referencesPlotnikov, A., Zehorai, E., Procaccia, S. & Seger, R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta 1813, 1619–1633 (2011).spa
dc.relation.referencesTsuchiya, T. et al. Apoptosis induction by p38 MAPK inhibitor in human colon cancer cells. Hepatogastroenterology. 55, 930–935 (2008).spa
dc.relation.referencesFu, Y., O’Connor, L. M., Shepherd, T. G. & Nachtigal, M. W. The p38 MAPK inhibitor, PD169316, inhibits transforming growth factor beta-induced Smad signaling in human ovarian cancer cells. Biochem. Biophys. Res. Commun. 310, 391–397 (2003).spa
dc.relation.referencesFurukawa, T. Impacts of activation of the mitogen-activated protein kinase pathway in pancreatic cancer. Front. Oncol. 5, 23 (2015).spa
dc.relation.referencesDolado, I. et al. p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 11, 191–205 (2007).spa
dc.relation.referencesPorras, A. & Guerrero, C. Role of p38α in apoptosis: implication in cancer development and therapy. Atlas Genet. Cytogenet. Oncol. Haematol. (2011) doi:10.4267/2042/44993.spa
dc.relation.referencesUniversidad de Salamanca. La Hsp90: una Chaperona molecular especializada. vol. 11 18477 http://proteinasestructurafuncion.usal.es/moleculas/hsp90/index.html (2011).spa
dc.relation.referencesOrtiz, L. Participación de la proteína de choque térmico 90 en la infección por el calicivirus felino. (Centro de investigaciones y de estudios avanzados del instituto politécnico nacional, 2015).spa
dc.relation.referencesAhmed, T. A. & Aljaeid, B. M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Devel. Ther. 10, 483–507 (2016).spa
dc.relation.referencesFabiano, A., Beconcini, D., Migone, C., Piras, A. M. & Zambito, Y. Quaternary Ammonium Chitosans: The Importance of the Positive Fixed Charge of the Drug Delivery Systems. Int. J. Mol. Sci. 21, (2020).spa
dc.relation.referencesLi, Q., Tan, W., Zhang, C., Gu, G. & Guo, Z. Synthesis of water soluble chitosan derivatives with halogeno-1,2,3-triazole and their antifungal activity. Int. J. Biol. Macromol. 91, 623–629 (2016).spa
dc.relation.referencesJesus, M., Martins, A., Gallardo, E. & Silvestre, S. Diosgenin: Recent Highlights on Pharmacology and Analytical Methodology. J. Anal. Methods Chem. 2016, (2016).spa
dc.relation.referencesMendoza-lara, D. F., Berenice, G., Vela, S. & Chama-Martinez, yair E. El potencial de la diosgenina en el área médica. Rev. RD-icuap 6, 50–62 (2020)spa
dc.relation.referencesPorras, A. & Marzo, I. Apoptosis: una forma controlada de muerte celular. SEBBM Divulg. 1–3 (2010).spa
dc.relation.referencesDeboer, C., Meulman, P. A., Wnuk, R. J. & Peterson, D. H. Geldanamycin, a new antibiotic. J. Antibiot. (Tokyo). 23, 442–447 (1970).spa
dc.relation.referencesHuryn, D. M. & Wipf, P. Chapter 3 - Natural Product Chemistry and Cancer Drug Discovery. in (ed. Neidle, S. B. T.-C. D. D. and D. (Second E.) 91–120 (Academic Press, 2014). doi:https://doi.org/10.1016/B978-0-12-396521-9.00003-6.spa
dc.relation.referencesGrenert, J. P. et al. The Amino-terminal Domain of Heat Shock Protein 90 (hsp90) That Binds Geldanamycin Is an ATP/ADP Switch Domain That Regulates hsp90 Conformation*. J. Biol. Chem. 272, 23843–23850 (1997).spa
dc.relation.referencesStebbins, C. E. et al. Crystal Structure of an Hsp90–Geldanamycin Complex: Targeting of a Protein Chaperone by an Antitumor Agent. Cell 89, 239–250 (1997).spa
dc.relation.referencesDuerfeldt, A. S. & Blagg, B. S. J. Hsp90 inhibition: Elimination of shock and stress. Bioorg. Med. Chem. Lett. 20, 4983–4987 (2010).spa
dc.relation.referencesTaldone, T., Sun, W. & Chiosis, G. Discovery and development of heat shock protein 90 inhibitors. Bioorg. Med. Chem. 17, 2225–2235 (2009).spa
dc.relation.referencesSharp, S., Jones, K. & Workman, P. Chapter 9 - Exploiting Cancer Dependence on Molecular Chaperones: HSP90 Inhibitors Past, Present, and Future. in Cancer Drug Design and Discovery (Second Edition) (ed. Neidle, S.) 239–274 (Academic Press, 2014). doi:https://doi.org/10.1016/B978- 0-12-396521-9.00009-7spa
dc.relation.referencesMira, M., Monsalve, Á., Revuelta, D. & San jose, Ó. La Hsp90: una Chaperona molecular especializada. http://proteinasestructurafuncion.usal.es/moleculas/hsp90/index.html.spa
dc.relation.referencesGonzalez-Pastor, R. et al. Coating an adenovirus with functionalized gold nanoparticles favors uptake, intracellular trafficking and anti-cancer therapeutic efficacy. Acta Biomater. (2021) doi:https://doi.org/10.1016/j.actbio.2021.07.047.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalSales de amonio cuaternariospa
dc.subject.proposalSARspa
dc.subject.proposalEstudios de relación estructura actividadspa
dc.subject.proposalLíquidos iónicos de imidazoliospa
dc.subject.proposalPaclitaxelspa
dc.subject.proposalTaxolspa
dc.subject.unescoQuímica
dc.subject.unescoAnálisis químico
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.description.degreenameMagister en Químicaspa
dc.publisher.programMaestría en Químicaspa
dc.description.researchgroupSales de amonio cuaternariospa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem