Mostrar el registro sencillo del ítem

dc.contributor.advisorTaborda-Ocampo, Gonzalo
dc.contributor.authorFlorez Arenas, Albeiro
dc.date.accessioned2022-02-04T16:21:15Z
dc.date.available2022-12-01
dc.date.available2022-02-04T16:21:15Z
dc.date.issued2022-02-04
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/17374
dc.descriptionIlustraciones, gráficas, fotografíasspa
dc.description.abstractSpa: El proceso de fermentación del café se ha establecido como una etapa determinante sobre su calidad y aroma. El objetivo de este estudio fue evaluar las diferencias que existen entre cinco procesos de fermentación y dentro de cada proceso (a diferentes tiempos de fermentación) en base a su perfil volátil y sensorial. Los procesos evaluados fueron: seco o natural (NA), semiseco o Honey (HO), y tres variantes del proceso húmedo, denominadas: aeróbico convencional (AC), aeróbico con fermentación previa en cereza (AFC) y anaeróbico con fermentación previa en cereza (ANFC). El proceso NA obtuvo la puntuación más alta en el perfil sensorial y estadísticamente diferente a los demás procesos. El perfil de volátil se determinó mediante microextracción en fase sólida del espacio de cabeza (HS-SPME) y cromatografía de gases acoplada a espectrometría de masas (GC-MS). Se identificaron tentativamente 51 compuestos orgánicos volátiles (COVs). Las principales familias químicas que permitieron diferenciar entre grupos de procesos fueron las cetonas y los pirroles; y los COVs que principalmente contribuyeron a diferenciar entre procesos o grupos de procesos son: 2-acetilpirrol, 2,5-dimetilpirazina, 2-furanmetanol, 4- vinilguayacol, 2-metilfurano, 2-butanona, 2,3-dimetilpirazina, acetilpirazina, 1-(2-furanilmetil)-1H-pirrol, 2,2'-bifurano, acetaldehído y 2-(5H)-furanona. Dentro de cada proceso de fermentación (entre tratamientos) no se encontraron diferencias en la puntuación final del análisis sensorial, pero sí en los perfiles volátiles.spa
dc.description.abstractEng: The coffee fermentation process has been established as a determining stage regarding its quality and aroma. The objective of this study was to evaluate the differences that exist between five fermentation processes and within each process (at different fermentation times) based on their volatile and sensory profile. The processes evaluated were dry or natural (NA), semi-dry or honey (HO), and three variations of the wet process, called: conventional aerobic (AC), aerobic with previous fermentation in cherry (AFC) and anaerobic with previous fermentation in cherry (ANFC). The NA process obtained the highest score in the sensory profile and statistically different from the other processes. The volatile profile was determined by headspace solid phase micro-extraction (HS-SPME) and gas chromatography coupled to mass spectrometry (GC-MS). 51 volatile organic compounds (VOCs) were tentatively identified. The main chemical families that allowed differentiating between groups of processes were ketones and pyrroles, and the VOCs that mainly contribute to differentiate between process or groups of processes are: 2-acetylpyrrole, 2,5-dimethylpyrazine, 2-furanmethanol, 4-vinylguayacol, 2-methylfuran, 2- butanone, 2,3-dimethylpyrazine, acetylpy-razine, 1- (2-furanylmethyl) -1H-pyrrole, 2,2'-bifuran, acetaldehyde and 2-(5H) -furanone. Within each fermentation process (between treatments) no differences were found from the final score of the sensory analysis, but differences were found from volatile profile.eng
dc.description.tableofcontentsAcrónimos / Resumen/ 1 Introducción / 2 Objetivos/ 2.1 Objetivo General / 2.2 Objetivos Específicos/ 3 Marco teórico / 3.1 Generalidades del café y taxonomía/ 3.2 Proceso tradicional de beneficio del café en Colombia / 3.2.1 Recolección y recepción del café / 3.2.2 Despulpado / 3.2.3 Desmucilaginado / 3.2.4 Lavado/ 3.2.5 Secado / 3.3 Tipos de procesamiento poscosecha del café/ 3.3.1 Procesamiento seco (Natural) / 3.3.2 Procesamiento semiseco (Naturales despulpados o Honey) / 3.3.3 Procesamiento húmedo/ 3.3.4 Procesamiento de pelado húmedo (Wet-Hulled)/ 3.3.5 Procesamiento animal / 5 3.4 Evaluación sensorial del café/ 3.5 Química del aroma del café / 3.5.1 Técnicas cromatográficas y afines aplicadas al análisis del aroma del café / 3.5.2 Métodos de preparación de muestras para el análisis cromatográfico.. / 3.5.3 Constitución volátil del café tostado / 4 Parte Experimental / 4.1 Sitio de muestreo y características del cultivo / 4.2 Obtención de las muestras de café a partir de una fermentación controlada/ 4.2.1 Aseguramiento de la calidad del sustrato e higiene del sitio / 4.2.2 Tipos de procesos y tiempos de fermentación evaluados / 4.2.3 Condiciones ambientales (Temperatura y Humedad relativa)/4.3 Procesamiento pos fermentación / 4.3.1 Secado / 4.3.2 Almacenamiento y tiempo de estabilización: / 4.3.3 Trilla del café: / 4.3.4 Selección del café: / 4.3.5 Tostión/ 6 4.4 Análisis sensorial / 4.5 Análisis estadístico de los datos sensoriales/ 4.6 Condiciones cromatografías / 4.7 Preparación de la muestra y extracción de compuestos volátiles mediante microextracción en fase solida (SPME) / 4.8 Procesamiento de los datos cromatográficos e identificación tentativa de los compuestos volátiles / 4.9 Análisis estadístico de los perfiles volátiles / 5 Discusión de Resultados / 5.1 Resultados del análisis sensorial / 5.1.1 Verificación de la calibración entre catadores / 5.1.2 Comparación entre los procesos de fermentación / 5.1.3 Comparación entre los tratamientos (Proceso de fermentación Tiempo) / 5.2 Resultados del perfil volátil / 5.2.1 Verificación de las condiciones óptimas de extracción mediante HSSPME / 5.2.2 Perfil volátil/ 6 Conclusiones / 7 Recomendaciones / 8 Bibliografía/ 7 9 Anexos/ 9.1 Anexo A. Resultados del análisis sensorial / 9.2 Anexo B. Resultados del perfil volátil/ 9.2.1 Descripción de paramétrica de los compuestos no identificados / 9.2.2 Resultados de la validación cruzada para el análisis de PLS-DA/ 9.2.3 Comparación entre procesos de fermentación a partir de su composición química agrupada en familias: / 9.2.4 Comparación entre procesos de fermentación a partir de su composición química individual: / 9.2.5 Comparación entre tratamientos en el proceso Natural (NA) / 9.2.6 Comparación entre tratamientos en el proceso Honey (HO)/ 9.2.7 Comparación entre tratamientos en el proceso AC / 9.2.8 Comparación entre tratamientos en el proceso AFC/ 9.2.9 Comparación entre tratamientos en el proceso ANFC .spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleAnálisis de los efectos de los procesos de fermentación sobre el perfil volátil y sensorial del café cosechado en el municipio de el Águila – Valle del Caucaspa
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.researchgroupGrupo de Investigación en Cromatografía y Técnicas Afines (Categoría A1)spa
dc.description.degreelevelMaestríaspa
dc.description.notesSe publicará un artículospa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesAcosta Arbelaez, J. M. (2020). Composición química asociada al perfil de taza de un café especial variedad Castillo® proveniente de Barbosa Antioquia y beneficiado bajo diferentes procesos de fermentación. Medellin.spa
dc.relation.referencesAgresti, P., Franca A. S, Oliveira, L., & Augusti , R. (2008). Discrimination between defective and non-defective Brazilian coffee beans by their volatile profile. Food Chemistry, 787-796.spa
dc.relation.referencesAkiyama, M., Murakami, K., Ohtani, N., Iwatsuki, K., Sotoyama, K., Wada , A., . . . Tanaka, K. (2003). Analysis of volatile compounds released during the grinding of roasted coffee beans using solid-phase microextraction. Journal of agricultural and food chemistry, 1961-1969.spa
dc.relation.referencesAnthony, F., Diniz , L., Combes , M., & Lashermes , P. (2010). Adaptive radiation in Coffea subgenus Coffea L.(Rubiaceae) in Africa and Madagascar. Plant systematics and evolution, 51-64.spa
dc.relation.referencesArruda, N., Hovell, A., Rezende, C., Freitas, S., Couri, S., & Bizzo, H. (2012). Correlação entre precursores e voláteis em café arábica brasileiro processado pelas vias seca, semiúmida e úmida e discriminação através da análise por componentes principais. Química Nova, 35, 2044-2051.spa
dc.relation.referencesBicchi, C., lori, C., Rubiolo, P., & Sandra, P. (2002). Headspace sorptive extraction (HSSE), stir bar sorptive extraction (SBSE), and solid phase microextraction (SPME) applied to the analysis of roasted Arabica coffee and coffee brew. Journal of agricultural and food chemistry, 449-459.spa
dc.relation.referencesBlank, I., Sen, A., & Grosch, W. (1992). Potent odorants of the roasted powder and brew of arabica coffee. Z. Lebensm.-Unters. Forsch, 239-245.spa
dc.relation.referencesBravo, J., Monente, C., Juániz, I., De Peña, M., & Cid, C. (2013). Influence of extraction process on antioxidant capacity of spent coffee. Food Research International, 610- 616.spa
dc.relation.referencesBressanello, D., Liberto, E., Cordero, C., Rubiolo, P., Pellegrino, G., Ruosi, M., & Bicchi, C. (2017). Coffee aroma: Chemometric comparison of the chemical information provided by three different samplings combined with GC–MS to describe the sensory properties in cup. Food Chemistry, 218-226.spa
dc.relation.referencesBressani , A., Martinez , S., Sarmento , A., Borém , F., & Schwan , R. (2021). Influence of yeast inoculation on the quality of fermented coffee (Coffea arabica var. Mundo Novo) processed by natural and pulped natural processes. International Journal of Food Microbiology, 109107.spa
dc.relation.referencesCaporaso, N., Whitworth, M., Cui, C., & Fisk, I. (2018). Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPMEGC-MS. Food Research International, 628-640.spa
dc.relation.referencesCouto, R., Fernandes, J., Da Silva, M., & Simoes, P. (2009). Supercritical fluid extraction of lipids from spent coffee grounds. The Journal of Supercritical Fluids, 159-166.spa
dc.relation.referencesCruz-O'Byrne, R., Piraneque-Gambasica, N., & Aguirre-Forero, S. (2021). Cruz-O’Byrne, R., Piraneque-Gambasica, N., & Aguirre-Forero, S. (2021). Microbial diversity associated with spontaneous coffee bean fermentation process and specialty coffee production in northern Colombia. International Journal of Food Microbiology, 109282.spa
dc.relation.referencesCzerny, M., & Grosch, W. (2000). Potent odorants of raw Arabica coffee. Their changes during roasting. Journal of Agricultural and Food Chemistry, 868-872spa
dc.relation.referencesCzerny, M., Mayer, F., & Grosch, W. (1999). Sensory study on the character impact odorants of roasted Arabica coffee. Journal of Agricultural and Food Chemistry, 695-699.spa
dc.relation.referencesDa Mota, M., Batista, N., Rabelo, M., Ribeiro, D., Borém, F., & Schwan, R. (2020). Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeats. Food Research International, 109482.spa
dc.relation.referencesDa Silva, B., Pereira, P., Bertoli, L., Silveira, D., Batista, N., Pinheiro, P., & Bernardes, P. (2021). Fermentation of Coffea canephora inoculated with yeasts: Microbiological, chemical, and sensory characteristics. Food Microbiology, 103786.spa
dc.relation.referencesDe Maria, C., Moreira, R., & Trugo, L. (1999). Parte I: compostos heterocíclicos. En Componentes voláteis do café torrado. (pág. Vol. 22). São Paulo: Química Nova.spa
dc.relation.referencesDe Melo Pereira, G., de Carvalho Neto, D., Júnior, A., Vásquez, Z., Medeiros, A., Vandenberghe, L., & Soccol , C. (2019). Exploring the impacts of postharvest processing on the aroma formation of coffee beans–A review. Food chemistry, 272, 441-452.spa
dc.relation.referencesDionísio, A., Molina, G., de Carvalho, D., Dos Santos, R., Bicas , J., & Pastore G. M. (2012). Natural flavourings from biotechnology for foods and beverages. In Natural food additives, ingredients and flavourings, 231-259.spa
dc.relation.referencesDorfner, R., Ferge, T., Kettrup, A., Zimmermann, & Yeretzian, C. (2003). Real-time monitoring of 4-vinylguaiacol, guaiacol, and phenol during coffee roasting by resonant laser ionization time-of-flight mass spectrometry. J. Agric. Food Chem, 5768-5773.spa
dc.relation.referencesDuarte, G., Pereira , A., & Farah, A. (2010). Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods. Food Chemistry, 125943.spa
dc.relation.referencesEvangelista , S., Silva, C., da Cruz Miguel, M., de Souza Cordeiro , C., Pinheiro, A., Duarte, W., & Schwan , R. (2014). Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process. Food Research International, 183-195spa
dc.relation.referencesEvangelista, S., Miguel, M., de Souza Cordeiro, C., Silva, C., Pinheiro, A., & Schwan, R. (2014). Inoculation of starter cultures in a semi-dry coffee (Coffea arabica) fermentation process. Food Microbiology, 87-95.spa
dc.relation.referencesFAO. (2002). Food and Agriculture Organization of the United Nations. Obtenido de Specifications for Flavourings - Analtycal Methods (Vol. 4): http://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/jecfaflav/details/en/c/935/spa
dc.relation.referencesFarah , A., Ferreira, T., Shuler, R., & Guimaraes, R. (2019). Chapter 1: Introduction to Coffee Plant and Genetics. En Coffee: Production, quality and chemistry. Royal society of chemistry (págs. 1-25). Rio de Janeiro: The Royal Society of Chemistry.spa
dc.relation.referencesFederacion Nacional de Cafeteros . (2004). Cartilla cafetera Cap. 20. Beneficio del café. 1. Despulpado, remoción del mucílago y lavado. Federacion Nacional de Cafeteros.spa
dc.relation.referencesFederacion Nacional de Cafeteros. (20 de Abril de 2021). Informes de gestion 2018-2020. Obtenido de https://federaciondecafeteros.org/wp/tipos/informesspa
dc.relation.referencesFernandez Alduenda, M. (2015). Effect of Processing on the Flavour Character of Arabica Natural Coffee (Doctoral dissertation). University of Otago.spa
dc.relation.referencesFerreira, T., Shuler , J., Guimaraes, R., & Farah, A. (2019). Introduction to coffee plant and geneticsspa
dc.relation.referencesFlament, I. (2001). Coffee flavor chemistry. John Wiley & Sonsspa
dc.relation.referencesFood Processing Technology. (2021). Obtenido de FlavoLogic: https://www.foodprocessing-technology.com/contractors/training/flavologic/spa
dc.relation.referencesGonzalez-Rios, O., Suarez-Quiroz, M., Boulanger, R., Barel, M., Guyot, B., Guiraud, J., & Schorr-Galindo, S. (2007). Impact of “ecological” post-harvest processing on coffee aroma: II. Roasted coffee. Journal of Food Composition and Analysis, 297- 307.spa
dc.relation.referencesGuimaraes, R., Meira Borem, F., Shuler, J., Farah, A., & Peres Romero, J. C. (2019). Chapter 2: Coffee Growing and Post-harvest Processing. En Coffee: Production, Quality and Chemistry. Lavras: The Royal Society of Chemistry.spa
dc.relation.referencesHarynuk, J., & Górecki , T. (2005). Flow model for coupled-column gas chromatography systems. Journal of Chromatography A, 135-140.spa
dc.relation.referencesHurtado-Benavides, A., Dorado, D., & Del pilar Sánchez-Camargo, A. (2016). Study of the fatty acid profile and the aroma composition of oil obtained from roasted Colombian coffee beans by supercritical fluid extraction. The Journal of Supercritical Fluids, 44-52.spa
dc.relation.referencesIlly, A., & Viani, R. (2005). Espresso coffee: the science of quality . Academic presspa
dc.relation.referencesKivancli, J., & Elmaci, Y. (2016). Characterization of Turkish-style boiled coffee aroma by gas chromatography and mass spectrometry and descriptive analysis techniques. International journal of food properties, 19(8), 1671-1686.spa
dc.relation.referencesKumazawa, K., & Masuda, H. (2003). Investigation of the Change in the Flavor of a Coffee Drink. Journal of Agricultural and Food Chemistry, 2674-2678.spa
dc.relation.referencesLee, L., Cheong, M., Curran, P., Yu, B., & Liu, S. (2015). Coffee fermentation and flavorAn intricate and delicate relationship. Food Chemistry, 182-191.spa
dc.relation.referencesLee, L., Tay, G., Cheong , M., Curran , P., Yu, B., & Liu, S. (2017). Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica: II. LWT, 32-42.spa
dc.relation.referencesLee, L., Tay, G., Cheong, M., Curran, P., Yu, B., & Liu, S. (2017). Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica: II. Roasted coffee. LWT, 32-42.spa
dc.relation.referencesLombana, M. (2 de Diciembre de 2020). Ministerio de agricultura. Obtenido de https://www.minagricultura.gov.co/noticias/Paginas/Forms/DispForm.aspx?ID=33 96spa
dc.relation.referencesLopes, G., Passos, C., Rodrigues , C., Teixeira, J., & Coimbra, M. (2020). Impact of microwave-assisted extraction on roasted coffee carbohydrates, caffeine, chlorogenic acids and coloured compounds. Food Research International , 108864spa
dc.relation.referencesLopes, G., Passos, C., Rodrigues , C., Teixeira, J., & Coimbra, M. (2020). Impact of microwave-assisted extraction on roasted coffee carbohydrates, caffeine, chlorogenic acids and coloured compounds. Food Research International , 108864spa
dc.relation.referencesLópez-Galilea, I., Fournier, N., Cid, C., & Guichard , E. (2006). Changes in headspace volatile concentrations of coffee brews caused by the roasting process and the brewing procedure. Journal of Agricultural and Food Chemistry, 8560-8566.spa
dc.relation.referencesLudwig, I., Sanchez, L., De Peña, M., & Cid, C. (2014). Contribution of volatile compounds to the antioxidant capacity of coffee. Food Research International, 67-74.spa
dc.relation.referencesMaeztu, L., Sanz, C., Andueza, S., Paz de Pena, M., Bello, J., & Cid, C. (2001). Characterization of espresso coffee aroma by static headspace GC− MS and sensory flavor profile. Journal of Agricultural and Food Chemistry, 5437-5444.spa
dc.relation.referencesMarquez Ruiz, C. (2017). Modelo de Regresión PLS. 95.spa
dc.relation.referencesMarriott, P. J, Chin, S., Maikhunthod, B., Schmarr, H., & Bieri, S. (2012). Multidimensional gas chromatography. TrAC Trends in Analytical Chemistry, 1-21.spa
dc.relation.referencesMasoud, W., Biorg Cesar, L., Jespersen, L., & Jakobsen, M. (2004). Yeast involved in fermentation of Coffea arabica in East Africa determined by genotyping and by direct denaturating gradient gel electrophoresis. Yeast, 549-556.spa
dc.relation.referencesMiyazato, H., Nakamura, M., Hashimoto, S., & Hayashi, S. (2013). Identification of the odour-active cyclic diketone cis-2,6-dimethyl-1,4-cyclohexanedione in roasted Arabica coffee brew. Food Chemistry, 2346-2355.spa
dc.relation.referencesMoreira, R., & Trugo, L. (2020). Componentes voláteis do café torrado. Parte II. Compostos alifáticos, alicíclicos e aromáticos. Química Nova, 195-203.spa
dc.relation.referencesNaccarato , A., & Pawliszyn, J. (2016). Matrix compatible solid phase microextraction coating, a greener approach to sample preparation in vegetable matrices. Food Chemistry, 67-73.spa
dc.relation.referencesNijssen, L., Visscher, C., Maarse, H., & Willemsens, L. (1996). Volatile Compounds in Food, Qualitative and Quantitative Data 7th ed. Netherlands: Central Insitute for Nutrition and Food Research, TNO: Zeist.spa
dc.relation.referencesNovaes, F., Kulsing, C., Bizzo, H., de Aquino Neto, F., Rezende , C., & Marriot, P. (2018). Analysis of underivatised low volatility compounds by comprehensive twodimensional gas chromatography with a short primary column. Journal of Chromatography A, 75-81.spa
dc.relation.referencesPereira, L., Guarconi, R., Pinheiro , P., Osório, V., Pinheiro , C., Moreira, T., & Ten Caten , C. (2020). New propositions about coffee wet processing: Chemical and sensory perspectives. Food Chemistry, 125943spa
dc.relation.referencesPetisca, C., Perez-Palacios, T., Farah, A., Pinho, O., & Ferreira, I. M. (2013). Furans and other volatile compounds in ground roasted and espresso coffee using headspace solid-phase microextraction: Effect of roasting speed. Food and Bioproducts Processing, 233-241spa
dc.relation.referencesPineda Mejia, C. R., Reyes Fernandez, C., & Oseguera , F. A. (1991). Beneficiado y calidad del café. capitulo 13. Guia beneficiado , 30spa
dc.relation.referencesPragst , F. (2007). Application of solid-phase microextraction in analytical toxicology. Analytical and Bioanalytical Chemistry, 1393-1414.spa
dc.relation.referencesPuerta Q., G., & Echeverry M., J. (2015). Fermentación controlada del café: Tecnología para agregar valor a la calidad. Centro nacional de investigaciones de café (Cenicafé), 12.spa
dc.relation.referencesRibeiro, J., Augusto, F., Salva , T., Thomaziello, R., & Ferreira , M. (2009). Prediction of sensory properties of Brazilian Arabica roasted coffees by headspace solid phase microextraction-gas chromatography and partial least squares. Analytica Chimica Acta, 172-179.spa
dc.relation.referencesRibeiro, L., Miguel, M., Evangelista , S., Martins, P., van Mullem, J., Belizario, M., & Schwan , R. (2017). Behavior of yeast inoculated during semi-dry coffee fermentation and the effect on chemical and sensorial properties of the final beverage. Food Research International, 26-32.spa
dc.relation.referencesRidgway, K., Lalljie, S., & Smith, R. (2007). Sample preparation techniques for the determination of trace residues and contaminants in foods. Journal of Chromatography A. , 36-53.spa
dc.relation.referencesRoberts, D., Pollien, P., & Milo, C. (2000). Solid-phase microextraction method development for headspace analysis of volatile flavor compounds. Journal of Agricultural and Food Chemistry , 2430-2437.spa
dc.relation.referencesRodrigues, C., Portugal , F., & Nogueira , J. (2012). Static headspace analysis using polyurethane phases–Application to roasted coffee volatiles characterization. Talanta, 521-525.spa
dc.relation.referencesRojas Monroy, G. (2005). Characterization of ground coffee aroma from Puerto Rico using the solid phase microextraction technique (SPME) and gas chromatography coupled to mass spectrometry (GC/MS). Food Science, 156spa
dc.relation.referencesSCA. (2009). SCA Protocols | Cupping Specialty Coffee. En Specialty Coffee Association. California.spa
dc.relation.referencesSCA, & WCR. (2016). Specialty Coffee Association. Obtenido de https://sca.coffee/research/coffee-tasters-flavor-wheelspa
dc.relation.referencesSchramm, E., Kurten, A., Holzer, J., Mitschke, F., Muhlberger, M., Sklorz, M., . . . Zimmermann, R. (2009). Trace detection of organic compounds in complex sample matrixes by single photon ionization ion trap mass spectrometry: real-time detection of security-relevant compounds and online analysis of the coffeeroasting process. Anal. Chem, 4456-4467.spa
dc.relation.referencesSimoes, A., & Hidalgo, C. (Mayo de 2020). The Economic Complexity Observatory. Obtenido de OEC: https://oec.world/en/profile/country/colspa
dc.relation.referencesSong, H., & Liu, J. (2018). GC-O-MS technique and its applications in food flavor analysis. Food Research International, 187-198.spa
dc.relation.referencesSong, H., & Liu, J. (2018). GC-O-MS technique and its applications in food flavor analysis. Food Research International , 187-198.spa
dc.relation.referencesSouza-Silva, É., Gionfriddo, E., & Pawliszyn , J. (2015). A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis TrAC, 236-248.spa
dc.relation.referencesSun, T. (2004). Excessive trust in authorities and its influence on experimental design. Nature Reviews - Molecular Cell Biology, 577-581.spa
dc.relation.referencesSunarharum, W., Willians, D., & Smyth , H. (2014). Complexity of coffee flavor: A compositional and sensory perspective. Food Research International , 315-325spa
dc.relation.referencesVandenburg, H., Clifford, A., Bartle, K., Carroll, J., & Newton, I. (1999). Comparison of pressurised fluid extraction and microwave assisted extraction with atmospheric pressure methods for extraction of additives from polypropylene. Analyst, 397-400spa
dc.relation.referencesVilela, D., Pereira, G., Silva, C., Batista, L., & Schwan, R. (2010). Molecular ecology and polyphasic characterization of the microbiota associated with semi-dry processed coffee (Coffea arabica L.). Food Microbiology, 1128-1135.spa
dc.relation.referencesVitzthum, O., Werkhoff, P., & Ablanque, E. (1976). Fluchtige Inhaltsstoffe des Rokkaffees. In 7. Colloque International sur la Chimie des Cafés Verts, Torrefies et Leurs Derives1975Hambourg. Alemania: Association Scientifique Internationale du Café, París (Francia).spa
dc.relation.referencesWeather Spark. (04 de Agosto de 2021). Obtenido de https://es.weatherspark.com/y/22410/Clima-promedio-en-Cartago-Colombiadurante-todo-el-añospa
dc.relation.referencesXu, J., Kim, T., Kim , J., & Choi, Y. (2019). Simultaneous roasting and extraction of green coffee beans by pressurized liquid extraction. Food Chemistry, 261-268.spa
dc.relation.referencesYeretzian, C., Brevard, H., Jordan, A., Hansel, & Lindinger, W. (1999). On-line analysis of coffee roasting by proton-transfer-reaction/mass-spectrometry (PTR-MS). New Orleans: ed. N. M. ACS, in 218th ACS National Meeting.spa
dc.relation.referencesYeretzian, C., Opitz, S., Smrke, S., & Wellinger, M. (2019). Coffee Volatile and Aroma Compounds - From the Green Bean to the Cup. En F. A., Coffee - Production, Quality and Chemistry (págs. 726-759). Zurich: The Royal Society of Chemistryspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.lembCafé
dc.subject.lembBebidas
dc.subject.lembFermentación
dc.subject.proposalPoscosechaspa
dc.subject.proposalFermentaciónspa
dc.subject.proposalSensorialspa
dc.subject.proposalCaféspa
dc.subject.proposalSPMEeng
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
dc.description.degreenameMagister en Químicaspa
dc.publisher.programMaestría en Químicaspa
dc.description.researchgroupQuímica Analíticaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem