Mostrar el registro sencillo del ítem

dc.contributor.advisorPrieto Castañeda, Natalia
dc.contributor.advisorTaborda-Ocampo, Gonzalo
dc.contributor.authorOspina Rodríguez, Sergio Andrés
dc.date.accessioned2021-10-19T16:32:41Z
dc.date.available2022-06-26
dc.date.available2021-10-19T16:32:41Z
dc.date.issued2021-10-16
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/17166
dc.descriptionIlustraciones, fotosspa
dc.description.abstractspa:El avance en el seguimiento de sustancias ambientales de forma “On-Site” ha ido aumentando en los últimos años, sin embargo, no todos los parámetros pueden ser medidos en tiempo real y se requieren largos tiempos para el tratamiento y análisis de las muestras. La gran variedad de sustancias contaminantes del medio ambiente implican exhaustivas etapas de tratamiento acompañado de técnicas instrumentales de altos costos que no permiten la detección en el sitio de estudio ni posibilitan el seguimiento de la normativa ambiental vigente en el país, reduciendo la prevención oportuna de las consecuencias que éstos múltiples contaminantes pueden generar a corto plazo. Generalmente, se llevan a cabo análisis de compuestos halogenados, plaguicidas y metales pesados mediante diversas técnicas analíticas como la cromatografía liquida de alta eficiencia (HPLC) y la cromatografía de gases (GC) asociadas con técnicas de extracción y micro extracción en fase líquida (LPE, LMPE) y fase sólida (SPE, SPME), las técnicas cromatográficas de gases y líquida acoplada a espectrometría de masas (GC-MS) y (HPLC-MS) respectivamente; las técnicas tándem como (GC-MS/MS), que aunque presentan buenas respuestas y bajos límites en la detección de múltiples contaminantes no permiten analizar los efectos tóxicos que estos generan en los organismos vivos. Para contrarrestar estas dificultades se han venido desarrollando dispositivos analíticos que conservan la robustez de las técnicas tradicionales pero que posibilitan el análisis oportuno de diversas sustancias contaminantes en tiempo real y a muy bajos límites de detección. Es así como el desarrollo de biosensores ha presentado un gran avance en los últimos años. Los biosensores son dispositivos de carácter analítico conformados por un elemento de reconocimiento biológico (ERB) acoplado a un mecanismo de detección electrónico que interpreta los cambios fisicoquímicos presentados entre el analito y el ERB en tiempo real. El desarrollo de estos biosensores viene acompañado por modificaciones del elemento transductor con materiales que permitan mejorar la fijación de los ERB sin que se pierda su actividad bioquímica. Diversos son los transductores empleados en el desarrollo de estos dispositivos, sin embargo, los biosensores de base electroquímica, surgen como una gran oportunidad para realizar análisis altamente específicos, con mínima preparación de muestra y con altas posibilidades de miniaturización. La mayoría de trabajos en el desarrollo de biosensores electroquímicos se centran en la utilización de materiales orgánicos o inorgánicos como polímeros sintéticos u óxidos metálicos que aunque le brindan alta sensibilidad de respuesta a estos dispositivos, pueden presentar problemas de estabilidad y biocompatibilidad con los elementos biológicos de reconocimiento (ERB) que se estén empleando además de los altos costos de producción. Por otro lado, los materiales inorgánicos ricos en silicatos se han ido presentando como una alternativa en el desarrollo de estos sistemas dados los bajos costos de producción, la capacidad que tienen estos materiales para ser modificados con otras sustancias, la alta sensibilidad, la estabilidad y la bioafinidad que presentan éstos con los ERB. En la presente tesis de Maestría se intercaló la arcilla Montmorillonita con diferentes compuestos orgánicos (dimetilamina, quitosano, hexadeciltrimetilamonio y líquidos iónicos de metilimidazolio) para generar matrices de inmovilización de células bacterianas de Escherichia Coli y la enzima acetilcolinesterasa aplicadas a la detección de plaguicidas organofosforados (Clorpirifos) y organoclorados (3,5-Diclorofenol). Se realizaron estudios electroquímicos para medir la respuesta de los biosensores a partir de las técnicas voltamperometria cíclica (VC) y cronoamperometría (CA). Con éstas, se analizaron variables como la bioafinidad, temperatura de inmovilización, tiempo de incubación, carga bacteriana, la selectividad y sensibilidad de los dispositivos. Los resultados obtenidos a partir de las técnicas electroquímicas fueron respaldados con técnicas espectroscópicas, microscópicas y pruebas cualitativas de laboratorio encontrando una alta compatibilidad entre los ERB empleados y arcillas modificadas con líquidos iónicos. El enfoque aquí presentado representa una nueva perspectiva hacia la utilización de arcillas modificadas con líquidos iónicos en el desarrollo de biosensores de alta biocompatibilidad, sensibilidad y de bajo costo.spa
dc.description.abstracteng:Advances in the monitoring of environmental substances in an “On-Site” way have been increasing in recent years, however, not all parameters can be measured in real time and long times are required for the treatment and analysis of the samples. The great variety of polluting substances in the environment involve exhaustive treatment stages accompanied by high-cost instrumental techniques that do not allow detection at the study site or allow the monitoring of current environmental regulations in the country, minimizing the timely prevention of consequences that these multiple pollutants can generate in the short term. Generally, analyzes of halogenated compounds, pesticides and heavy metals are carried out using various analytical techniques such as high performance liquid chromatography (HPLC) and gas chromatography (GC) associated with liquid phase extraction and micro extraction (LPE) techniques. , LMPE) and solid phase (SPE, SPME), gas and liquid chromatographic techniques coupled to mass spectrometry (GC-MS) and (HPLC-MS) respectively; tandem techniques such as (GC-MS / MS), which, although they present good responses and low limits in the detection of multiple pollutants, do not allow analyzing the toxic effects that these generate in living organisms. To counteract these difficulties, analytical devices have been developed that preserve the robustness of traditional techniques but that allow the timely analysis of various polluting substances in real time and at very low detection limits. This is how the development of biosensors has presented a great advance in recent years. Biosensors are analytical devices made up of a biological recognition element (ERB) coupled to an electronic detection mechanism that interprets the physicochemical changes presented between the analyte and the ERB in real time. The development of these biosensors is accompanied by modifications of the transducer element with materials that make it possible to improve the fixation of ERBs without losing their biochemical activity. The transducers used in the development of these devices are diverse, however, electrochemical-based biosensors appear as a great opportunity to perform highly specific analyzes, with minimal sample preparation and with high miniaturization possibilities. Most of the work in the development of electrochemical biosensors focuses on the use of organic or inorganic materials such as synthetic polymers or metal oxides that, although they provide high response sensitivity to these devices, can present stability and biocompatibility problems with the biological elements of recognition (ERB) that are being employed in addition to the high production costs. On the other hand, inorganic materials rich in silicates have been presented as an alternative in the development of these systems given the low production costs, the ability of these materials to be modified with other substances, high sensitivity, stability and the bioaffinity that these present with ERBs. In this Master's thesis, Montmorillonite clay was interspersed with different organic compounds (dimethylamine, chitosan, hexadecyltrimethylammonium and ionic methylimidazolium liquids) to generate immobilization matrices for bacterial cells of Escherichia Coli and the enzyme acetylcholinesterase applied to the detection of pesticides Chlorpyrifos) and organochlorines (3,5-Dichlorophenol). Electrochemical studies were carried out to measure the response of the biosensors using cyclic voltammetry (VC) and chronoamperometry (CA) techniques. With these, variables such as bioaffinity, immobilization temperature, incubation time, bacterial load, selectivity and sensitivity of the devices are analyzed. The results obtained from the electrochemical techniques were supported with spectroscopic and microscopic techniques and qualitative laboratory tests, finding a high compatibility between the ERBs used and clays modified with ionic liquids. The approach presented here represents a new perspective towards the use of clays modified with ionic liquids in the development of biosensors of high biocompatibility, sensitivity and low cost.eng
dc.description.tableofcontents1.Resumen / 1.1 Abstract / 2.Agradecimientos / 3.Abreviatura / 6. Planteamiento del problema / 6.1 Justificación / 6.2 Pregunta de investigación / 7.Objetivos / 7.1 Objetivo general / 7.2 Objetivos específicos / Bibliografía / Marco teórico / 8.1 Toxicidad de compuestos utilizados en la agricultura / 8.1.1 Plaguicidas, breve clasificación / 8.1.2 Efecto de los plaguicidas en el medio ambiente / 8.1.3 Efecto de los plaguicidas en la salud / 8.1.4 Intoxicación por organofosforados / 8.1.5 Intoxicación por organoclorados / 8.2 Sensores y biosensores en la detección de compuestos / 8.2.1 Sensores físicos y químicos / 8.2.2 Biosensores / 8.2.3 Electroquímica en la detección de compuestos contaminantes / 8.3 Sistemas de detección electroquímica / 8.3.1 Celdas de análisis electroquímicos / 8.4 Sistemas Amperométricos / 8.4.1 Técnicas de detección comúnmente aplicadas / 8.5 Biosensores basados en enzimas / 8.5.1 Biosensores basados en la inhibición de la enzima acetilcolinesterasa (AchE) / 8.6 Biosensores basados en células microbianas / 8.6.1 Biosensores basados en Escherichia Coli (E.coli) / 8.7 Transductores electroquímicos / 8.7.1 Tipos de electrodos utilizados en la detección de sustancias / 8.7.2 Electrodos serigrafiados / 8.7.3 Modificación de los elementos transductores / 8.8 Materiales arcillosos en los procesos de modificación de electrodos / 8.8.1 Clasificación de las arcillas / 8.8.2 Caracterización del material arcilloso / 8.8.3 Aplicaciones de la Montmorillonita / 8.8.4 Aplicaciones de las matrices arcillosas en el desarrollo de biosensores / Bibliografía / Materiales y métodos / 9.1 Preparación del soporte arcilloso para la inmovilización de los ERB / 9.2 Desarrollo de biosensor enzimático / 9.2.1 Biosensor basado en la enzima acetilcolinesterasa (AchE) / 9.2.2 Prueba de actividad enzimática / 9.2.4 Procesos de inmovilización del biosensor enzimático / 9.2.5 Medidas electroquímicas / 9.2.6 Pruebas de bioafinidad / 9.2.7 Temperatura de inmovilización / 9.2.8 Selectividad / 9.2.9 Repetibilidad de los biosensores enzimáticos / 9.2.10 Sensibilidad del biosensor enzimático / 9.3 Desarrollo de biosensor bacteriano / 9.3.1 Biosensor basado en células bacterianas de Escherichia Coli / 9.3.2 Preparación del cultivo bacteriano / 9.3.3 Procesos de inmovilización del biosensor bacteriano / 9.3.4 Medidas electroquímicas / 9.3.5 Pruebas de bioafinidad / 9.3.6 Optimización del biosensor / 9.3.7 Análisis del pH de adsorción / 9.3.8 Análisis de carga bacteriana / 9.3.9 Análisis microscópico / 9.3.10 Sensibilidad del biosensor bacteriano / Bibliografía / Caracterización de las arcillas empleadas como soporte de inmovilización / 10.1 Resultados de la caracterización / 10.1.1 Espectros infrarrojos de las arcillas modificadas / 10.1.2 Análisis por difracción de rayos X (DRX) / 10.1.3 Punto de carga cero (PZC) / Resultados y discusión del biosensor enzimático / 10.2 Desarrollo del biosensor enzimático / 10.2.1 Actividad enzimática / 10.2.2 Respuestas electroquímicas / 10.2.3 Modificación de los electrodos / 10.2.4 Protocolo de inmovilización / 10.2.5 Pruebas de actividad enzimática / 10.2.6 Estabilidad enzimática en las arcillas / 10.2.7 Temperatura de inmovilización / 10.2.8 Selectividad / 10.2.9 Reproducibilidad entre los biosensores / 10.2.10 Tiempo de incubación / 10.2.11 Sensibilidad / 10.2.12 Porcentaje de inhibición / Bibliografía / Resultados y discusiones del biosensor bacteriano / 10.3 Desarrollo del biosensor bacteriano / 10.3.1 Prueba de protocolos / 10.3.2 Estabilidad microbiana en arcillas / 10.3.3 Pruebas de Carga bacteriana / 10.3.4 Pruebas de pH / 10.3.5 Pruebas de caracterización / 10.3.6 Pruebas de viabilidad celular / 10.3.7 Pruebas de sensibilidad / Bibliografía / 11. Conclusiones / 12. Recomendaciones / 13. Tendencias / Productos de investigaciónspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleBiosensores amperométricos basados en la inmovilización de Escherichia coli y acetilcolinesterasa en organoarcillas aplicados a la detección de 3,5-Diclorofenol y Clorpirifos.spa
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.researchgroupGrupo de Investigación en Cromatografía y Técnicas Afines (Categoría A1)spa
dc.description.degreelevelMaestríaspa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.cospa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesM.D.A Y.D S. MADS, “Resolución 631 de 2015,” D. Of. No. 49.486 18 abril 2015, vol. 2015, no. 49, p. 73, 2015spa
dc.relation.referencesZ. Hu, M. Zhang, and Y. Tian, “Screening and analysis of small molecular peptides in urine of gestational diabetes mellitus,” Clin. Chim. Acta, vol. 502, pp. 174–182, Mar. 2020.spa
dc.relation.referencesM.-S. Chae, Y. K. Yoo, J. Kim, T. G. Kim, and K. S. Hwang, “Graphene-based enzyme-modified field- effect transistor biosensor for monitoring drug effects in Alzheimer’s disease treatment,” Sensors Actuators B Chem., vol. 272, pp. 448–458, Nov. 2018.spa
dc.relation.referencesJ.J. Liu, Z.X. Ni, Z.H. Diao, Y.-X. Hu, and X.-R. Xu, “Contamination level, chemical fraction and ecological risk of heavy metals in sediments from Daya Bay, South China Sea,” Mar. Pollut. Bull., vol. 128, pp. 132–139, Mar. 2018.spa
dc.relation.referencesM. Gür; S, Yerlikaya; N, Sener; S, Özkinali; M.C Baloglu; H, Gökce & I. Sener “Antiproliferativeantimicrobial properties and structural analysis of newly synthesized Schiff bases derived from some 1,3,4-thiadiazole compounds,” J. Mol. Struct., vol. 1219, p. 128570, Nov. 2020.spa
dc.relation.referencesX. Cetó, N. H. Voelcker, and B. Prieto-Simón, “Bioelectronic tongues: New trends and applications in water and food analysis,” Biosens. Bioelectron., vol. 79, pp. 608–626, May 2016.spa
dc.relation.referencesP. Chen, D. Pan, and Z. Mao, “Development of a portable laser-induced fluorescence system used for in situ measurements of dissolved organic matter,” Opt. Laser Technol., vol. 64, pp. 213– 219, Dec. 2014.spa
dc.relation.referencesT. Boontongto and R. Burakham, “Evaluation of metal-organic framework NH2-MIL-101(Fe) as an efficient sorbent for dispersive micro-solid phase extraction of phenolic pollutants in environmental water samples,” Heliyon, vol. 5, no. 11, p. e02848, Nov. 2019.spa
dc.relation.referencesE. Gionfriddo, D. Gruszecka, X. Li, and J. Pawliszyn, “Direct-immersion SPME in soy milk for pesticide analysis at trace levels by means of a matrix-compatible coating,” Talanta, p. 120746, Jan. 2020.spa
dc.relation.referencesC. Mendieta, N. Ortega, N. Solano-Cueva, and J. Figueroa, “Metodología para la Determinación de Pesticidas Organoclorados mediante Cromatografía de Gases Acoplado Espectrometría de Masas y Detector de Captura de Electrones,” Rev. Politécnica, vol. 40, no. 1, pp. 21–28, 2017.spa
dc.relation.referencesP. R. Haddad and J. P. Quirino, “Simultaneous electrophoretic concentration and separation of herbicides in beer prior to stacking capillary electrophoresis UV and liquid chromatography – mass spectrometry,” vol 37 pp. 1122–1128, 2016.spa
dc.relation.referencesH. Li; Z, Jiang; X, Cao, H, Su; H, Shao; F, Jin & J, Wang “Simultaneous determination of three pesticide adjuvant residues in plant-derived agro- products using liquid chromatography-tandem mass spectrometry,” J. Chromatogr. A, vol 1528, pp 53-60, 2017.spa
dc.relation.referencesR. Bravo; W.J, Driskell; R.D Jr, Whitehead; L.L, Needham & D.B, Barr “Quantitation of Dialkyl Phosphate Metabolites of Organophosphate Pesticides in Human Urine Using GC-MS-MS with Isotopic Internal Standards,” vol. 26, no. August, pp. 245–252, 2002.spa
dc.relation.referencesD. Sahoo, A. Mandal, T. Mitra, K. Chakraborty, M. Bardhan, and A. K. Dasgupta, “Nanosensing of Pesticides by Zinc Oxide Quantum Dot : An Optical and Electrochemical Approach for the Detection of Pesticides in Water,” vol 66; no 3, pp414-423, 2018.spa
dc.relation.referencesZ. H. Al Mubarak, R. Ramesh, L. Liu, and S. Krishnan, “Surface plasmon resonance imaging of gold– small molecule interactions is influenced by refractive index and chemical structures,” J. Colloid Interface Sci., vol. 460, pp. 209–213, Dec. 2015.spa
dc.relation.referencesA. Valencia, R. S. Castaño, A. Sánchez, and M. Bonilla, “Gestión de la contaminación ambiental cuestión de corresponsabilidad,” Rev. Ing., vol. unknown, no. 30, pp. 90–99, 2009.spa
dc.relation.referencesCampos Sánchez, “Sensores electroquímicos tipo lengua electrónica voltamétrica aplicados al control medioambiental y a la industria alimentaria,” p. 260, 2013.spa
dc.relation.referencesA. L. Ahmad, N. F. C. Lah, and L. S. Chun, “Hybrid molecular imprinted polymer (MIP) electrode for pesticide detection of electrochemical sensor,” J. Phys. Sci., vol. 29, pp. 33–40, 2018.spa
dc.relation.referencesS. Gäberlein, M. Knoll, F. Spener, and C. Zaborosch, “Disposable potentiometric enzyme sensor for direct determination of organophosphorus insecticides,” Analyst, vol. 125, no. 12, pp. 2274–2279, 2000.spa
dc.relation.referencesA. Gómez Arroyo, Sandra.; Martínez-Valenzuela, Carmen.; Carbajal-López, Yolanda.; MartínezArroyo, R. Calderón-Segura, María Elena.; Villalobos-Pietrini, and S. M. Waliszewski, “Riesgo genotóxico por la exposición ocupacional a plaguicidas en américa latina” Rev. Int. Contam. Ambient., vol. 29, no. 1, pp. 159– 180, 2013spa
dc.relation.referencesJ. A. Buendía and G. J. Restrepo Chavarriaga, “Costo de la intoxicación por Paraquat en Colombia,” Value Heal. Reg. Issues, vol. 20, pp. 110–114, 2019.spa
dc.relation.referencesC. B. S. Roepcke, S. B. Muench, H. Schulze, T. Bachmann, R. D. Schmid, and B. Hauer, “Analysis of phosphorothionate pesticides using a chloroperoxidase pretreatment and acetylcholinesterase biosensor detection,” J. Agric. Food Chem., vol. 58, no. 15, pp. 8748–8756, 2010.spa
dc.relation.referencesJ. Zhao, H. Guo, J. Li, A. J. Bandodkar, and J. A. Rogers, “Body-Interfaced Chemical Sensors for Noninvasive Monitoring and Analysis of Biofluids,” Trends Chem., vol. 1, no. 6, pp. 559–571, Sep. 2019.spa
dc.relation.referencesM. L. Yola, “Electrochemical activity enhancement of monodisperse boron nitride quantum dots on graphene oxide: Its application for simultaneous detection of organophosphate pesticides in real samples,” J. Mol. Liq., vol. 277, pp. 50–57, Mar. 2019.spa
dc.relation.referencesM. T. Beleno Cabarcas, M. Stoytcheva, R. Zlatev, G. Montero, Z. Velkova, and V. Gochev, “Chitosan Nanocomposite Modified OPH-Based Amperometric Sensor for Organophosphorus Pesticides Determination,” Curr. Anal. Chem., vol. 14, no. 1, pp. 75–82, 2017. 21spa
dc.relation.referencesH. Wang, X. J. Wang, J. F. Zhao, and L. Chen, “Toxicity assessment of heavy metals and organic compounds using CellSense biosensor with E.coli,” Chinese Chem. Lett., vol. 19, no. 2, pp. 211–214, 2008.spa
dc.relation.referencesO. de las N. U. para la A. y la Alimentación, Código internacional de conducta para la distribución y utilización de plaguicidas. 2003.spa
dc.relation.referencesA. H. Dawson et al., “Acute human lethal toxicity of agricultural pesticides: A prospective cohort study,” PLoS Med., vol. 7, no. 10, 2010.spa
dc.relation.referencesAlza Camacho, W.R., Chaparro Acuña, S.P., & Garcia Colmenares, J.M “Estimación del riesgo de contaminación de fuentes hídricas de pesticidas ( Mancozeb y Carbofuran ) en Ventaquemada ,” Acta agronómica vol. 65, pp. 368–374, 2016.spa
dc.relation.referencesE. M. Abdullat, M. S. Hadidi, N. Alhadidi, T. S. AL-Nsour, and K. A. Hadidi, “Agricultural and horticultural pesticides fatal poisoning; The Jordanian experience 1999-2002,” J. Clin. Forensic Med., vol. 13, no. 6–8, pp. 304–307, 2006.spa
dc.relation.referencesL. M. Cruz Aquino and M. D. Placencia Medina, “Characteristics of occupational pesticide poisoning in agricultural workers treated at the Hospital Barra Cajatambo 2008-2017.,” Horiz. Médico, vol. 19, no. 2, pp. 39–48, 2019.spa
dc.relation.referencesC. Hurtado Clavijo and M. Gutíerrez de Salazar, “Enfoque del paciente con intoxicación aguda por plaguicidas organofosforados,” Rev. Fac. Med. Univ. Nac. Colomb., vol. 53, no. 4, pp. 244–258, 2005.spa
dc.relation.referencesC. Mendieta, N. Ortega, N. Solano-Cueva, and J. Figueroa, “Metodología para la Determinación de Pesticidas Organoclorados mediante Cromatografía de Gases Acoplado Espectrometría de Masas y Detector de Captura de Electrones,” Rev. Politécnica, vol. 40, no. 1, pp. 21–28, 2017.spa
dc.relation.referencesM. F. Cavieres F, “Exposición a pesticidas y toxicidad reproductiva y del desarrollo en humanos. Análisis de la evidencia epidemiológica y experimental,” Rev. Med. Chil., vol. 132, no. 7, pp. 873–879, 2004.spa
dc.relation.referencesP. Guzmán, R. Guevara, J. Olguín, and O. Mancilla, “Perspectiva campesina , intoxicaciones por plaguicidas y uso de agroquímicos,” Rev. Idesia, vol. 34, no. 3, pp. 69–80, 2016.spa
dc.relation.referencesM. E. Varona; Diaz, S.M.,Briceño, L.,Sánchez-Infante, C. I.,Torres, C. H., Palma, R.M & Idrovo, A.J “Determinantes sociales de la intoxicación por plaguicidas entre cultivadores de arroz en Colombia,” Rev. Salud Publica, vol. 18, no. 4, pp. 617–629, 2016.spa
dc.relation.referencesJ. A. e Ortega García; JF, Tortajada; A.C, Cones; E.A, Valiente; E.C, Gaudiza; J.G, Castell & M.C, Calvo “Environmental neurotoxins. Pesticides: Adverse effects on the fetal and postnatal nervous system [Neurotóxicos medioambientales (I). Pesticidas: Efectos adversos en el sistema nervioso fetal y posnatal],” Acta Pediatr. Esp., vol. 63, no. 4, pp. 140–149, 2005.spa
dc.relation.referencesZ. Hugh Fan, “Chemical Sensors and Microfluidics,” J. Biosens. Bioelectron., vol. 04, no. 01, pp. 1–2, 2013.spa
dc.relation.referencesSamridhi, K. Singh, and P. A. Alvi, “Finite element analysis of polysilicon based MEMS temperature- pressure sensor,” Mater. Today Proc., Vol. 27, pp 280-283, 2019.spa
dc.relation.referencesA. Kumaravel and M. Chandrasekaran, “Electrochemical Determination of Chlorpyrifos on a Nano- TiO2/Cellulose Acetate Composite Modified Glassy Carbon Electrode,” J. Agric. Food Chem., vol. 63, no. 27, pp. 6150–6156, 2015.spa
dc.relation.referencesS. Kaushik, A. Pandey, U. K. Tiwari, and R. K. Sinha, “A label-free fiber optic biosensor for Salmonella Typhimurium detection,” Opt. Fiber Technol., vol. 46, pp. 95–103, 2018.spa
dc.relation.referencesA. Kumaravel and M. Chandrasekaran, “Electrochemical Determination of Chlorpyrifos on a Nano- TiO2 / Cellulose Acetate Composite Modi fi ed Glassy Carbon Electrode,” Journal of agricultural and food chemistry, vol. 63, no 27, p. 6150-6156,2015.spa
dc.relation.referencesY. Cong, Q. Xu, H. Feng, and D. Shen, “Efficient electrochemically active biofilm denitrification and bacteria consortium analysis,” Bioresour. Technol., vol. 132, pp. 24–27, 2013.spa
dc.relation.referencesOnder. S., Dafferner, A.J., Schopfer, L.M., Xiao, G., Yerramalla, U., Tacal, O., & Lockridge “Monoclonal Antibody That Recognizes Diethoxyphosphotyrosine-Modified Proteins and Peptides Independent of Surrounding Amino Acids,” Chem. Res. Toxicol., vol. 30, no. 12, pp. 2218–2228, 2017.spa
dc.relation.references] C. B. S. Roepcke, S. B. Muench, H. Schulze, T. Bachmann, R. D. Schmid, and B. Hauer, “Analysis of phosphorothionate pesticides using a chloroperoxidase pretreatment and acetylcholinesterase biosensor detection,” J. Agric. Food Chem., vol. 58, no. 15, pp. 8748–8756, 2010.spa
dc.relation.referencesZhou, L., Liu, C., Sun, Z., Mao, H., Zhang, L., Yu, X., & Chen, X, “Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis,”Biosens. Bioelectron., vol. 137, pp. 140–147, 2019.spa
dc.relation.referencesH. Manoharan, P. Kalita, S. Gupta, and V. V. R. Sai, “Plasmonic biosensors for bacterial endotoxin detection on biomimetic C-18 supported fiber optic probes,” Biosens. Bioelectron., vol. 129, pp. 79– 86, 2019.spa
dc.relation.referencesD. Chen, J. Fu, Z. Liu, Y. Guo, X. Sun, and X. Wang, “A Simple Acetylcholinesterase Biosensor Based on Ionic Liquid / Multiwalled Carbon Nanotubes-Modified Screen- Printed Electrode for Rapid Detecting Chlorpyrifos,” Int. J, Electrochem. Sci vol. 12, pp. 9465–9477, 2017.spa
dc.relation.referencesHondred, JA, Breger, JC, Alves, NJ, Trammell, SA, Walper, SA, Medintz & Claussen “Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates,” ACS applied materials & interfaces, vol. 10, no 13, p. 11125- 11134, 2018.spa
dc.relation.referencesOcampo, A., Grajales, M.J., March, C., & Montoya, Á “Inmunosensor piezoeléctrico para la detección del metabolito 3,5,6- tricloro-2-piridinol del plaguicida clorpirifos,” Revista EIA. vol- 8, pp. 127–136, 2011spa
dc.relation.referencesP. Halkare, N. Punjabi, J. Wangchuk, A. Nair, K. Kondabagil, and S. Mukherji, “Bacteria functionalized gold nanoparticle matrix based fiber-optic sensor for monitoring heavy metal pollution in water,” Sensors Actuators B Chem., vol. 281, pp. 643–651, 2019.spa
dc.relation.referencesWang, X., Cheng, M., Yang, Q., Wei, H., Xia., Wang, L., & Huang, X. “A living plant cell-based biosensor for real-time monitoring invisible damage of plant cells under heavy metal stress,” Sci. Total Environ., vol. 697, p. 134097, 2019.spa
dc.relation.referencesL. Gonzalez Olias, P. J. Cameron, and M. Di Lorenzo, “Effect of Electrode Properties on the Performance of a Photosynthetic Microbial Fuel Cell for Atrazine Detection,” Front. Energy Res., vol. 7, no. October, pp. 1–11, 2019.spa
dc.relation.referencesA. Kaur and N. Verma, “Electrochemical Biosensor for Monitoring Insulin in Normal Individuals and Diabetic Mellitus Patients,” Eur. J. Exp. Biol., vol. 2, no. 2, pp. 389–395, 2012.spa
dc.relation.referencesS. Y. Chen, W. Wei, B. C. Yin, Y. Tong, J. Lu, and B. C. Ye, “Development of a Highly Sensitive Whole- Cell Biosensor for Arsenite Detection through Engineered Promoter Modifications,” ACS Synth. Biol., vol. 8, no. 10, pp. 2295–2302, 2019.spa
dc.relation.referencesLuo, Z., Wang, Y., Lu, X., Chen, J., Wei, F., Huang, Z., & Duan, Y. “Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme,” Anal. Chim. Acta, vol. 984, pp. 177–184, 2017.spa
dc.relation.referencesZhao, Z. Yang, H., Deng, S., Dong, Y., Yan, B., Zhang, K., & He, Q. “Intrinsic conformation response-leveraged aptamer probe based on aggregation- induced emission dyes for aflatoxin B1 detection,” Dye. Pigment., vol. 171, p. 107767, 2019.spa
dc.relation.referencesC., Wang.Qian, J., Wang, K., Hua, M., Liu, Q., Hao, N., & Huang, X, “Nitrogen-Doped Graphene Quantum Dots@SiO2 Nanoparticles as Electrochemiluminescence and Fluorescence Signal Indicators for Magnetically Controlled Aptasensor with Dual Detection Channels,” ACS Appl. Mater. Interfaces, vol. 7, no. 48, pp. 26865– 26873, 2015.spa
dc.relation.references] H. K. Kordasht, M. H. Moosavy, M. Hasanzadeh, J. Soleymani, and A. Mokhtarzadeh, “Determination of aflatoxin M1 using an aptamer-based biosensor immobilized on the surface of dendritic fibrous nano-silica functionalized by amine groups,” Anal. Methods, vol. 11, no. 30, pp. 3910– 3919, 2019.spa
dc.relation.referencesY. Qi, F.-R. Xiu, M. Zheng, and B. Li, “A simple and rapid chemiluminescence aptasensor for acetamiprid in contaminated samples: Sensitivity, selectivity and mechanism,” Biosens. Bioelectron., vol. 83, pp. 243–249, 2016.spa
dc.relation.referencesZ. Shang, Y. Xu, Y. Gu, Y. Wang, D. Wei, and L. Zhan, “A Rapid Detection of Pesticide Residue Based on Piezoelectric Biosensor,” Procedia Eng., vol. 15, pp. 4480–4485, 2011.spa
dc.relation.referencesH. Shahar, L. L. Tan, G. C. Ta, and L. Y. Heng, “Detection of halogenated hydrocarbon pollutants using enzymatic reflectance biosensor,” Sensors Actuators B Chem., vol. 281, pp. 80–89, 2019.spa
dc.relation.references] P. Raghu, T. Madhusudana Reddy, B. E. Kumara Swamy, B. N. Chandrashekar, K. Reddaiah, and M. Sreedhar, “Development of AChE biosensor for the determination of methyl parathion and monocrotophos in water and fruit samples: A cyclic voltammetric study,” J. Electroanal. Chem., vol. 665, pp. 76–82,. 2012spa
dc.relation.referencesN. Xu., Bai, J., Peng, Y., Qie, Z., Liu, Z, Tang, H., & Ning, B “Pretreatment-free detection of diazepam in beverages based on a thermometric biosensor,” Sensors Actuators B Chem., vol. 241, pp. 504–512, Mar. 2017.spa
dc.relation.referencesZ. Yu, G. Zhao, M. Liu, Y. Lei, and M. Li, “Fabrication of a novel atrazine biosensor and its subpart-per-trillion levels sensitive performance,” Environ. Sci. Technol., vol. 44, no. 20, pp. 7878– 7883, 2010spa
dc.relation.referencesP. M. Ndangili, A. M. Jijana, P. G. L. Baker, and E. I. Iwuoha, “3-Mercaptopropionic acid capped ZnSe quantum dot-cytochrome P450 3A4 enzyme biotransducer for 17β-estradiol,” J. Electroanal. Chem., vol. 653, no. 1–2, pp. 67–74, Apr. 2011.spa
dc.relation.referencesH. Dzudzevic Cancar et al., “A Novel Acetylcholinesterase Biosensor: Core-Shell Magnetic Nanoparticles Incorporating a Conjugated Polymer for the Detection of Organophosphorus Pesticides,” ACS Appl. Mater. Interfaces, vol. 8, no. 12, pp. 8058–8067, 2016.spa
dc.relation.referencesL. E. Z. Garc and C. Garc, “Los biosensores electroquímicos : herramientas de la analítica y del diagnóstico clínico,” Monográfias de la Real Academia Nacional de Farmacia pp. 197–222.spa
dc.relation.referencesH.-B. Xu, R.-F. Ye, S.-Y. Yang, R. Li, and X. Yang, “Electrochemical DNA nano-biosensor for the detection of genotoxins in water samples,” Chinese Chem. Lett., vol. 25, no. 1, pp. 29–34, Jan. 2014.spa
dc.relation.references] P. He, V. Oncescu, S. Lee, I. Choi, and D. Erickson, “Label-free electrochemical monitoring of vasopressin in aptamer-based microfluidic biosensors,” Anal. Chim. Acta, vol. 759, pp. 74–80, Jan. 2013.spa
dc.relation.referencesJ. Li, W. Fu, J. Bao, Z. Wang, and Z. Dai, “Fluorescence Regulation of Copper Nanoclusters via DNA Template Manipulation toward Design of a High Signal-to-Noise Ratio Biosensor,” ACS Appl. Mater. Interfaces, vol. 10, no. 8, pp. 6965–6971, 2018.spa
dc.relation.referencesH. Wang, Y. Liu, and G. Liu, “Electrochemical Biosensor Using DNA Embedded Phosphorothioate Modified RNA for Mercury Ion Determination,” ACS Sensors, vol. 3, no. 3, pp. 624– 631, 2018.spa
dc.relation.referencesB. Chocarro-Ruiz., Herranz, S., Gavela, A.F., Sanchís, J., Farré, M., Marco, M.P., & Lechuga, L.M “Interferometric nanoimmunosensor for label-free and real-time monitoring of Irgarol 1051 in seawater,” Biosens. Bioelectron., vol. 117, pp. 47–52, 2018.spa
dc.relation.referencesW. Wei, X. Zong, X. Wang, L. Yin, Y. Pu, and S. Liu, “A disposable amperometric immunosensor for chlorpyrifos-methyl based on immunogen/platinum doped silica sol–gel film modified screenprinted carbon electrode,” Food Chem., vol. 135, no. 3, pp. 888–892, 2012.spa
dc.relation.referencesH. Yang, R. Yuan, Y. Chai, and Y. Zhuo, “Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for detection of human chorionic gonadotrophin,” Colloids Surfaces B Biointerfaces, vol. 82, no. 2, pp. 463–469, 2011.spa
dc.relation.referencesD. A. Fernández-Benavides, L. Cervera-Chiner, Y. Jiménez, O. A. de Fuentes, A. Montoya, and J. Muñoz-Saldaña, “A novel bismuth-based lead-free piezoelectric transducer immunosensor for carbaryl quantification,” Sensors Actuators B Chem., vol. 285, pp. 423–430, 2019.spa
dc.relation.references] V. Serafín, L. Agüí, P. Yáñez-Sedeño, and J. M. Pingarrón, “Electrochemical immunosensor for the determination of insulin-like growth factor-1 using electrodes modified with carbon nanotubes– poly(pyrrole propionic acid) hybrids,” Biosens. Bioelectron., vol. 52, pp. 98–104, 2014.spa
dc.relation.referencesY. Guo., Liu, R., Liu, Y., Xiang, D., Liu, Y., Gui, W., & Zhu, G “A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples,” Sci. Total Environ., vol. 613–614, pp. 783–791, 2018spa
dc.relation.referencesA. Ramanaviciene, N. German, A. Kausaite-Minkstimiene, J. Voronovic, J. Kirlyte, and A. Ramanavicius, “Comparative study of surface plasmon resonance, electrochemical and electroassisted chemiluminescence methods based immunosensor for the determination of antibodies against human growth hormone,” Biosens. Bioelectron., vol. 36, no. 1, pp. 48–55, Jun. 2012.spa
dc.relation.referencesP. T. Chu, C. S. Lin, W. J. Chen, C. F. Chen, and H. W. Wen, “Detection of gliadin in foods using a quartz crystal microbalance biosensor that incorporates gold nanoparticles,” J. Agric. Food Chem., vol. 60, no. 26, pp. 6483–6492, 2012.spa
dc.relation.referencesA. L. Ahmad, N. F. C. Lah, and L. S. Chun, “Hybrid molecular imprinted polymer (MIP) electrode for pesticide detection of electrochemical sensor,” J. Phys. Sci., vol. 29, pp. 33–40, 2018.spa
dc.relation.referencesA. M. Shrivastav, S. P. Usha, and B. D. Gupta, “Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting,” Biosens. Bioelectron., vol. 79, pp. 150–157, May 2016.spa
dc.relation.referencesH. Sun and Y. Fung, “Piezoelectric quartz crystal sensor for rapid analysis of pirimicarb residues using molecularly imprinted polymers as recognition elements,” Anal. Chim. Acta, vol. 576, no. 1, pp. 67– 76, Aug. 2006.spa
dc.relation.referencesQ. Shi, Y. Teng, Y. Zhang, and W. Liu, “Rapid detection of organophosphorus pesticide residue on Prussian blue modi fi ed dual-channel screen-printed electrodes combing with portable potentiostat,” Chinese Chem. Lett. vol. 29, no 9, p. 1379-1382, 2017.spa
dc.relation.referencesW. R. Alza-camacho, “Determinación voltamétrica de paraquat y glifosato en aguas superficiales Voltammetric Quantification of Paraquat and Glyphosate in Surface Waters Determinação voltamétrica de paraquato e glifosato em águas superficiais,” Rev. Ciencia y Tecnología Agropecuaria vol. 17, no. 3, pp. 331–345, 2016.spa
dc.relation.references] N. Abramova, A. Bratov, and F. J. Gil, “Sensor impedimétrico para la detección de bacterias patogénicas mediante péptidos antimicrobianos,” Biomecánica, vol. 24, pp. 32–38, 2018.spa
dc.relation.referencesM. Pohanka et al., “Electrochemical biosensor based on acetylcholinesterase and indoxylacetate for assay of neurotoxic compounds represented by paraoxon,” Int. J. Electrochem. Sci., vol. 7, no. 1, pp. 50–57, 2012.spa
dc.relation.referencesF. W. P. Ribeiro, C. P. Sousa, S. Morais, P. de Lima-Neto, and A. N. Correia, “Sensing of formetanate pesticide in fruits with a boron-doped diamond electrode,” Microchem. J., vol. 142, pp. 24–29, Nov. 2018.spa
dc.relation.referencesD. J. E. Costa, J. C. S. Santos, F. A. C. Sanches-Brandão, W. F. Ribeiro, G. R. Salazar-Banda, and M. C. U. Araujo, “Boron-doped diamond electrode acting as a voltammetric sensor for the detection of methomyl pesticide,” J. Electroanal. Chem., vol. 789, pp. 100–107, Mar. 2017.spa
dc.relation.referencesS. Cosnier, C. Mousty, X. Cui, X. Yang, and S. Dong, “Specific determination of As(V) by an acid phosphatase-polyphenol oxidase biosensor,” Anal. Chem., vol. 78, no. 14, pp. 4985–4989, 2006.spa
dc.relation.referencesA. Samphao, P. Suebsanoh, Y. Wongsa, B. Pekec, J. Jitchareon, and K. Kalcher, “Alkaline phosphatase inhibition-based amperometric biosensor for the detection of carbofuran,” Int. J. Electrochem. Sci., vol. 8, no. 3, pp. 3254–3264, 2013.spa
dc.relation.referencesR. Maallah, “Electrochemical Sensor Based on the Clay- Carbone Paste Electrode Modified by Bacteria-Polymer for Elimination of Phenol,” Am. J. Biomed. Sci. Res., vol. 4, no. 5, pp. 379–383, 2019.spa
dc.relation.referencesQ. T. Hua, N. Ruecha, Y. Hiruta, and D. Citterio, “Disposable electrochemical biosensor based on surface-modified screen-printed electrodes for organophosphorus pesticide analysis,” Anal. Methods, vol. 11, no. 27, pp. 3439–3445, 2019.spa
dc.relation.referencesZ. Q. Gong, A. N. A. Sujari, and S. Ab Ghani, “Electrochemical fabrication, characterization and application of carboxylic multi-walled carbon nanotube modified composite pencil graphite electrodes,” Electrochim. Acta, vol. 65, pp. 257–265, 2012.spa
dc.relation.referencesH. Borah, S. Gogoi, S. Kalita, and P. Puzari, “A broad spectrum amperometric pesticide biosensor based on glutathione S-transferase immobilized on graphene oxide-gelatin matrix,” J. Electroanal. Chem., vol. 828, pp. 116–123, 2018.spa
dc.relation.referencesN. E. Virolainen, M. G. Pikkemaat, J. W. A. Elferink, and M. T. Karp, “Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria,” J. Agric. Food Chem., vol. 56, no. 23, pp. 11065–11070, 2008.spa
dc.relation.referencesJ. Dong, J. Hou, J. Jiang, and S. Ai, “Innovative approach for the electrochemical detection of non- electroactive organophosphorus pesticides using oxime as electroactive probe,” Anal. Chim. Acta, vol. 885, pp. 92–97, Jul. 2015spa
dc.relation.referencesB. Köksoy, D. Akyüz, A. Şenocak, M. Durmuş, and E. Demirbas, “Sensitive, simple and fast voltammetric determination of pesticides in juice samples by novel BODIPY-phthalocyanine-SWCNT hybrid platform,” Food Chem. Toxicol., vol. 147, p. 111886, Jan. 2021.spa
dc.relation.referencesH. Wang, Z. Ma, and H. Han, “A novel impedance enhancer for amperometric biosensor based ultrasensitive detection of matrix metalloproteinase-2,” Bioelectrochemistry, vol. 130, p. 107324, Dec. 2019.spa
dc.relation.referencesP. Mulchandani, C. M. Hangarter, Y. Lei, W. Chen, and A. Mulchandani, “Amperometric microbial biosensor for p -nitrophenol using Moraxella sp . -modified carbon paste electrode,” Biosensors and Bioelectronics vol. 21, pp. 523–527, 2005.spa
dc.relation.referencesP. Raghu, T. M. Reddy, B. E. K. Swamy, B. N. Chandrashekar, K. Reddaiah, and M. Sreedhar, “Development of AChE biosensor for the determination of methyl parathion and monocrotophos in water and fruit samples : A cyclic voltammetric study,” J. Electroanal. Chem., vol. 665, pp. 76–82, 2012.spa
dc.relation.referencesN. Chauhan and C. S. Pundir, “Analytica Chimica Acta An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles / multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides,” Anal. Chim. Acta, vol. 701, no. 1, pp. 66–74, 2011spa
dc.relation.referencesN. Vigués, F. Pujol-Vila, J. Macanás, M. Muñoz, X. Muñoz-Berbel, and J. Mas, “Fast fabrication of reusable polyethersulfone microbial biosensors through biocompatible phase separation,” Talanta, vol. 206, no. July 2019, p. 120192, 2020.spa
dc.relation.referencesŞ. Sarioǧlan, “A comparison study on conductive poly(3,4-ethylenedioxythiophene) nanocomposites synthesized with clay type montmorillonite and organophilic montmorillonite,” Part. Sci. Technol., vol. 30, no. 1, pp. 68–80, 2012.spa
dc.relation.referencesQ. Lang, L. Han, C. Hou, F. Wang, and A. Liu, “Talanta A sensitive acetylcholinesterase biosensor based on gold nanorods modi fi ed electrode for detection of organophosphate pesticide,” Talanta, vol. 156–157, pp. 34–41, 2016.spa
dc.relation.referencesF. Pujol-Vila., Dietvorst, J., Gall-Mas, L., Díaz-Gonzáles, M., Vigués, N., Mas, J., & Moñuz-Berbel, X “Bioelectrochromic hydrogel for fast antibiotic-susceptibility testing,” J. Colloid Interface Sci., vol. 511, pp. 251–258, 2018.spa
dc.relation.referencesD. Pan, Y. Gu, H. Lan, Y. Sun, and H. Gao, “Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A,” Anal. Chim. Acta, vol. 853, pp. 297–302, Jan. 2015.spa
dc.relation.referencesS. Yuan, W. Chen, and S. Hu, “Simultaneous determination of cadmium (II) and lead (II) with clay nanoparticles and anthraquinone complexly modified glassy carbon electrode,” Talanta, vol. 64, no. 4, pp. 922–928, Nov. 2004.spa
dc.relation.referencesT. Hunde, M. Berhe, A. Tadese, M. Tirfu, and A. Woldu, “Nano Fe3O 4 – Graphite Paste Modified Electrochemical Sensor for Phosphatic Pesticide -Chlorpyrifos,” Momona Ethiopian Journal of Science vol. 9, no. 1, pp. 76–89, 2017.spa
dc.relation.referencesH. F. Cui, W. W. Wu, M. M. Li, X. Song, Y. Lv, and T. T. Zhang, “A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides,” Biosens. Bioelectron., vol. 99, no. pp. 223–229, 2018.spa
dc.relation.referencesF. Arduini, A. Amine, D. Moscone, and G. Palleschi, “Biosensors based on cholinesterase inhibition for insecticides , nerve agents and aflatoxin B 1 detection ( review ),” Microchimica Acta, vol. 170, no 3-4, p. 193-214, 2010.spa
dc.relation.referencesL. R. Cedillo et al., “Aplicaciones de las Enzimas Inmovilizadas Application of Immobilized Enzymes,” Revista Científica de la Universidad Autónoma de Coahuila no. 11, pp. 1–9, 2014.spa
dc.relation.referencesM. Stoytcheva, R. Zlatev, G. Montero, Z. Velkova, and V. Gochev, “Bi-enzyme Electrochemical Sensor for Selective Determination of Organophosphorus Pesticides with Phenolic Leaving Groups,” Electroanalysis, vol. 29, no. 11, pp. 2526–2532, 2017.spa
dc.relation.referencesC. Edwards, S. Duanghathaipornsuk, M. Goltz, S. Kanel, and D. S. Kim, “Peptide Nanotube Encapsulated Enzyme Biosensor for Vapor Phase Detection of Malathion, an Organophosphorus Compound,” Sensors. vol. 19, no 18, p. 3856.spa
dc.relation.referencesX. Wang, X. Lu, L. Wu, and J. Chen, “Direct Electrochemical Tyrosinase Biosensor based on Mesoporous Carbon and Co3O4 Nanorods for the Rapid Detection of Phenolic Pollutants,” ChemElectroChem, vol. 1, no. 4, pp. 808–816, 2014.spa
dc.relation.referencesM. T. Beleno Cabarcas, M. Stoytcheva, R. Zlatev, G. Montero, Z. Velkova, and V. Gochev, “Chitosan Nanocomposite Modified OPH-Based Amperometric Sensor for Organophosphorus Pesticides Determination,” Curr. Anal. Chem., vol. 14, no. 1, pp. 75–82, 2017.spa
dc.relation.referencesA. Kaffash, H. R. Zare, and K. Rostami, “Highly sensitive biosensing of phenol based on the adsorption of the phenol enzymatic oxidation product on the surface of an electrochemically reduced graphene oxide-modified electrode,” Anal. Methods, vol. 10, no. 23, pp. 2731–2739, 2018.spa
dc.relation.referencesN. K. Mogha, V. Sahu, M. Sharma, R. K. Sharma, and D. T. Masram, “Biocompatible ZrO2- reduced graphene oxide immobilized AChE biosensor for chlorpyrifos detection,” Mater. Des., vol. 111, pp. 312–320, Dec. 2016.spa
dc.relation.referencesX. Wu, X. Zhong, Y. Chai, and R. Yuan, “Electrochemiluminescence acetylcholine biosensor based on biofunctional AMs-AChE-ChO biocomposite and electrodeposited graphene-Au-chitosan nanocomposite,” Electrochim. Acta, vol. 147, pp. 735–742, Nov. 2014.spa
dc.relation.referencesS. P. Sharma, L. N. S. Tomar, J. Acharya, A. Chaturvedi, M. V. S. Suryanarayan, and R. Jain, “Acetylcholinesterase inhibition-based biosensor for amperometric detection of Sarin using singlewalled carbon nanotube-modified ferrule graphite electrode,” Sensors Actuators B Chem., vol. 166– 167, pp. 616–623, May 2012.spa
dc.relation.referencesM. Mukherjee, C. Nandhini, and P. Bhatt, “Colorimetric and chemiluminescence based enzyme linked apta-sorbent assay (ELASA) for ochratoxin A detection,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 244, p. 118875, Jan. 2021spa
dc.relation.referencesZ. Lu., Dang, Y., Dai, C., Zhang, Y., Zou, P., Du, H., & Wang, Y. “Hollow MnFeO oxide derived from MOF@MOF with multiple enzyme-like activities for multifunction colorimetric assay of biomolecules and Hg2+,” J. Hazard. Mater., vol. 403, p. 123979, Feb. 2021.spa
dc.relation.referencesN. M. King, K. M. Elkins, and D. J. Nelson, “Reactivity of the invariant cysteine of silver hake parvalbumin (Isoform B) with dithionitrobenzoate (DTNB) and the effect of differing buffer species on reactivity,” J. Inorg. Biochem., vol. 76, no. 3–4, pp. 175–185, Sep. 1999.spa
dc.relation.referencesD. Dingova, J. Leroy, A. Check, V. Garaj, E. Krejci, and A. Hrabovska, “Optimal detection of cholinesterase activity in biological samples: Modifications to the standard Ellman’s assay,” Anal. Biochem., vol. 462, pp. 67–75, Oct. 2014spa
dc.relation.referencesS. Timur, “Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes,” Electrochemistry Communications vol. 9, pp. 1810–1815, 2007.spa
dc.relation.referencesD. Chen, H. Feng, and J. Li, “Graphene Oxide : Preparation , Functionalization , and Electrochemical Applications,” Chemical reviews 2012.vol 112, pp 6027-6053spa
dc.relation.referencesR. Peng, A. Offenhäusser, Y. Ermolenko, and Y. Mourzina, “Biomimetic sensor based on Mn(III) meso-tetra(N-methyl-4-pyridyl) porphyrin for non-enzymatic electrocatalytic determination of hydrogen peroxide and as an electrochemical transducer in oxidase biosensor for analysis of biological media,” Sensors Actuators, B Chem., vol. 321, p. 128437, Oct. 2020.spa
dc.relation.referencesP. J. Lamas-Ardisana, G. Martínez-Paredes, L. Añorga, and H. J. Grande, “Glucose biosensor based on disposable electrochemical paper-based transducers fully fabricated by screen-printing,” Biosens. Bioelectron., vol. 109, pp. 8–12, Jun. 2018.spa
dc.relation.referencesS. Campuzano, “Presente y futuro de los biosensores microbianos electroquímicos,” vol. 107, pp. 350–357, 2011.spa
dc.relation.referencesK. Catterall, D. Robertson, S. Hudson, P. R. Teasdale, D. T. Welsh, and R. John, “A sensitive, rapid ferricyanide-mediated toxicity bioassay developed using Escherichia coli,” Talanta, vol. 82, no. 2, pp. 751–757, Jul. 2010.spa
dc.relation.referencesF. Pujol-Vila, N. Vigués, M. Díaz-González, X. Muñoz-Berbel, and J. Mas, “Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics,” Biosens. Bioelectron., vol. 67, pp. 272–279, 2015.spa
dc.relation.referencesH. Ma, D. Yong, H. Kim, Z. Zhang, S. Ma, and X. Han, “A Ferricyanide-mediated Activated Sludge Bioassay for Determination of the Toxicity of Water,” Electroanalysis, vol. 28, no. 3, pp. 580– 587, 2016.spa
dc.relation.referencesG. Sunantha and N. Vasudevan, “A method for detecting perfluorooctanoic acid and perfluorooctane sulfonate in water samples using genetically engineered bacterial biosensor,” Sci. Total Environ., vol 759, p. 143544, Nov. 2020.spa
dc.relation.referencesE. Poikulainen, J. Tienaho, T. Sarjala, and V. Santala, “A panel of bioluminescent whole-cell bacterial biosensors for the screening for new antibacterial substances from natural extracts,” J. Microbiol. Methods, vol. 178, p. 106083, Nov. 2020.spa
dc.relation.referencesM. Rabbani and Y. Dalman, “Fabrication of biosensors by bacterial printing on different carriers using a laser printer,” Bioprinting, vol. 20, p. e00099, Dec. 2020spa
dc.relation.referencesH. Wasito, A. Fatoni, D. Hermawan, and S. S. Susilowati, “Immobilized bacterial biosensor for rapid and effective monitoring of acute toxicity in water,” Ecotoxicol. Environ. Saf., vol. 170, pp. 205– 209, Apr. 2019.spa
dc.relation.referencesN. Uria, E. Fiset, M. A. Pellitero, F. X. Muñoz, K. Rabaey, and F. J. de. Campo, “Immobilisation of electrochemically active bacteria on screen-printed electrodes for rapid in situ toxicity biosensing,” Environ. Sci. Ecotechnology, vol. 3, p. 100053, Jul. 2020.spa
dc.relation.referencesZ. H. Al Mubarak, R. Ramesh, L. Liu, and S. Krishnan, “Surface plasmon resonance imaging of gold– small molecule interactions is influenced by refractive index and chemical structures,” J. Colloid Interface Sci., vol. 460, pp. 209–213, Dec. 2015.spa
dc.relation.referencesJ. Wang, M. Yokokawa, T. Satake, and H. Suzuki, “A micro IrOx potentiometric sensor for direct determination of organophosphate pesticides,” Sensors Actuators B Chem., vol. 220, pp. 859– 863, Dec. 2015.spa
dc.relation.referencesS. Kurbanoglu, S. A. Ozkan, and A. Merkoçi, “Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications,” Biosens. Bioelectron., vol. 89, no. September 2016, pp. 886–898, 2017.spa
dc.relation.referencesF. Mahzabeen et al., “Real-time point-of-care total protein measurement with a miniaturized optoelectronic biosensor and fast fluorescence-based assay,” Biosens. Bioelectron., vol 180. p. 112823, Nov. 2020spa
dc.relation.referencesS. Khumngern, R. Jirakunakorn, P. Thavarungkul, P. Kanatharana, and A. Numnuam, “A highly sensitive flow injection amperometric glucose biosensor using a gold nanoparticles/polytyramine/Prussian blue modified screen-printed carbon electrode,” Bioelectrochemistry, vol. 138, p. 107718, Apr. 2021spa
dc.relation.referencesS. Gäberlein, M. Knoll, F. Spener, and C. Zaborosch, “Disposable potentiometric enzyme sensor for direct determination of organophosphorus insecticides,” Analyst, vol. 125, no. 12, pp. 2274– 2279, 2000.spa
dc.relation.referencesM. Sheliakina, V. Arkhypova, O. Soldatkin, O. Saiapina, B. Akata, and S. Dzyadevych, “Ureasebased ISFET biosensor for arginine determination,” Talanta, vol. 121, pp. 18–23, 2014.spa
dc.relation.referencesM. S. P. López and B. López-Ruiz, “Inhibition biosensor based on calcium phosphate materials for detection of benzoic acid in aqueous and organic media,” Electroanalysis, vol. 23, no. 1, pp. 264– 271, 2011.spa
dc.relation.referencesA. de Barros, C. J. L. Constantino, N. C. da Cruz, J. R. R. Bortoleto, and M. Ferreira, “High performance of electrochemical sensors based on LbL films of gold nanoparticles, polyaniline and sodium montmorillonite clay mineral for simultaneous detection of metal ions,” Electrochim. Acta, vol. 235, pp. 700–708, May 2017.spa
dc.relation.referencesG. A. Zhylyak, S. V Dzyadevich, Y. I. Korpan, A. P. Soldatkin, and A. V El’skaya, “Application of urease conductometric biosensor for heavy-metal ion determination,” Sensors Actuators B Chem., vol. 24, no. 1, pp. 145–148, 1995.spa
dc.relation.referencesO. O. Soldatkin, V. M. Peshkova, S. V Dzyadevych, A. P. Soldatkin, N. Jaffrezic-Renault, and A. V El’skaya, “Novel sucrose three-enzyme conductometric biosensor,” Mater. Sci. Eng. C, vol. 28, no. 5, pp. 959–964, 2008.spa
dc.relation.referencesPujol-Vila, F., Giménez-Gómez, P., Santamaria, N., Antúnez, B., Vigués, N., Díaz-González, M., & Muñoz-Berbel, X “Portable and miniaturized optofluidic analysis system with ambient light correction for fast in situ determination of environmental pollution,” Sensors Actuators, B Chem., vol. 222, pp. 55–62, 2016.spa
dc.relation.referencesR. K. Mishra, R. B. Dominguez, S. Bhand, R. Muñoz, and J. L. Marty, “A novel automated flowbased biosensor for the determination of organophosphate pesticides in milk,” Biosens. Bioelectron., vol. 32, no. 1, pp. 56–61, 2012.spa
dc.relation.referencesH. Zheng, Z. Yan, M. Wang, J. Chen, and X. Zhang, “Biosensor based on polyanilinepolyacrylonitrile- graphene hybrid assemblies for the determination of phenolic compounds in water samples,” J. Hazard. Mater., vol. 378, p. 120714, Oct. 2019.spa
dc.relation.referencesM. Dequaire, C. Degrand, B. P. De Clermont-ferrand, and A. Landais, “Based on a Perfluorosulfonate- Coated Screen-Printed Electrode for the Determination of 2, 4- Dichlorophenoxyacetic Acid involving a magnetic particle-based solid phase and a,” Symp. A Q. J. Mod. Foreign Lit., vol. 71, no. 13, pp. 2571–2577, 1999.spa
dc.relation.referencesY. Lin, F. Lu, and J. Wang, “Disposable Carbon Nanotube Modified Screen-Printed Biosensor for Amperometric Detection of Organophosphorus Pesticides and Nerve Agents,” Electroanalysis, vol. 16, no. 12, pp. 145–149, 2004.spa
dc.relation.referencesF. Longobardi, M. Solfrizzo, D. Compagnone, M. Del Carlo, and A. Visconti, “Use of electrochemical biosensor and gas chromatography for determination of dichlorvos in wheat,” J. Agric. Food Chem., vol. 53, no. 24, pp. 9389–9394, 2005.spa
dc.relation.referencesB. Bucur, D. Fournier, A. Danet, and J. L. Marty, “Biosensors based on highly sensitive acetylcholinesterases for enhanced carbamate insecticides detection,” Anal. Chim. Acta, vol. 562, no. 1, pp. 115–121, 2006.spa
dc.relation.referencesG. Valdés-Ramírez, D. Fournier, M. T. Ramírez-Silva, and J. L. Marty, “Sensitive amperometric biosensor for dichlorovos quantification: Application to detection of residues on apple skin,” Talanta, vol. 74, no. 4, pp. 741–746, 2008.spa
dc.relation.referencesA. Hildebrandt, R. Bragós, S. Lacorte, and J. L. Marty, “Performance of a portable biosensor for the analysis of organophosphorus and carbamate insecticides in water and food,” Sensors Actuators, B Chem., vol. 133, no. 1, pp. 195–201, 2008.spa
dc.relation.referencesH. Li, J. Li, Z. Yang, Q. Xu, and X. Hu, “A novel photoelectrochemical sensor for the organophosphorus pesticide dichlofenthion based on nanometer-sized titania coupled with a screenprinted electrode,” Anal. Chem., vol. 83, no. 13, pp. 5290–5295, 2011.spa
dc.relation.referencesF. Marinho, S. Y. Neto, and R. De C, “Ultrasensitive Determination of Malathion Using Acetylcholinesterase Immobilized on Chitosan-Functionalized Magnetic Iron Nanoparticles.”spa
dc.relation.referencesC. Núñez, J. J. Triviño, and V. Arancibia, “A electrochemical biosensor for As(III) detection based on the catalytic activity of Alcaligenes faecalis immobilized on a gold nanoparticle–modified screen– printed carbon electrode,” Talanta, vol. 223, p. 121702, Feb. 2021.spa
dc.relation.referencesC. Erkmen, S. Kurbanoglu, and B. Uslu, “Fabrication of poly(3,4-ethylenedioxythiophene)- iridium oxide nanocomposite based Tyrosinase biosensor for the dual detection of catechol and azinphos methyl,” Sensors Actuators, B Chem., vol. 316, p. 128121, Aug. 2020.spa
dc.relation.referencesT. M. B. F. Oliveira et al., “Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification,” Talanta, vol. 106, pp. 137–143, Mar. 2013.spa
dc.relation.referencesW. da Silva, M. E. Ghica, and C. M. A. Brett, “Choline oxidase inhibition biosensor based on poly(brilliant cresyl blue) – deep eutectic solvent / carbon nanotube modified electrode for dichlorvos organophosphorus pesticide,” Sensors Actuators, B Chem., vol. 298, p. 126862, Nov. 2019.spa
dc.relation.referencesHuixiang, W., Danqun, H., Yanan, Z., Na, M., Jingzhou, H., Miao, L., & Changjun, H. “A nonenzymatic electro-chemical sensor for organophosphorus nerve agents mimics and pesticides detection,” Sensors Actuators, B Chem., vol. 252, pp. 1118–1124, Nov. 2017.spa
dc.relation.referencesN. Kaur, H. Thakur, and N. Prabhakar, “Conducting polymer and multi-walled carbon nanotubes nanocomposites based amperometric biosensor for detection of organophosphate,” J. Electroanal. Chem., vol. 775, pp. 121–128, Aug. 2016.spa
dc.relation.referencesA. M. Santos et al., “Voltammetric determination of ethinylestradiol using screen-printed electrode modified with functionalized graphene, graphene quantum dots and magnetic nanoparticles coated with molecularly imprinted polymers,” Talanta, vol. 224, p. 121804, Mar. 2021.spa
dc.relation.referencesD. Chen et al., “Electrochemical acetylcholinesterase biosensor based on multi-walled carbon nanotubes/dicyclohexyl phthalate modified screen-printed electrode for detection of chlorpyrifos,” J. Electroanal. Chem., vol. 801, pp. 185–191, Sep. 2017. 59spa
dc.relation.referencesF. Arduini, S. Guidone, A. Amine, G. Palleschi, and D. Moscone, “Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection,” Sensors Actuators, B Chem., vol. 179, pp. 201–208, 2013.spa
dc.relation.referencesM. A. Alonso-Lomillo, O. Domínguez-Renedo, L. Ferreira-Gonçalves, and M. J. Arcos-Martínez, “Sensitive enzyme-biosensor based on screen-printed electrodes for Ochratoxin A,” Biosens. Bioelectron., vol. 25, no. 6, pp. 1333–1337, Feb. 2010.spa
dc.relation.referencesR. Jirakunakorn, S. Khumngern, J. Choosang, P. Thavarungkul, P. Kanatharana, and A. Numnuam, “Uric acid enzyme biosensor based on a screen-printed electrode coated with Prussian blue and modified with chitosan-graphene composite cryogel,” Microchem. J., vol. 154, p. 104624, May 2020.spa
dc.relation.referencesM. Piano, S. Serban, R. Pittson, G. A. Drago, and J. P. Hart, “Amperometric lactate biosensor for flow injection analysis based on a screen-printed carbon electrode containing Meldola’s BlueReinecke salt, coated with lactate dehydrogenase and NAD+,” Talanta, vol. 82, no. 1, pp. 34–37, Jun. 2010.spa
dc.relation.referencesM. Piano, S. Serban, N. Biddle, R. Pittson, G. A. Drago, and J. P. Hart, “A flow injection system, comprising a biosensor based on a screen-printed carbon electrode containing Meldola’s BlueReinecke salt coated with glucose dehydrogenase, for the measurement of glucose,” Anal. Biochem., vol. 396, no. 2, pp. 269–274, Jan. 2010.spa
dc.relation.referencesD. Alonso and G. Quijano, “Desarrollo de electrodos modificados con matrices de sílice para posibles aplicaciones en sensores y biosensores electroquímicos,” 2015.spa
dc.relation.referencesG. Yu, W. Wu, Q. Zhao, X. Wei, and Q. Lu, “Biosensors and Bioelectronics Ef fi cient immobilization of acetylcholinesterase onto amino functio- nalized carbon nanotubes for the fabrication of high sensitive orga- nophosphorus pesticides biosensors,” Biosens. Bioelectron., vol. 68, pp. 288–294, 2015.spa
dc.relation.referencesT. Hu, X. Mei, Y. Wang, X. Weng, R. Liang, and M. Wei, “Two-dimensional nanomaterials: fascinating materials in biomedical field,” Sci. Bull., vol. 64, no. 22, pp. 1707–1727, 2019.spa
dc.relation.referencesK. El Bourakadi., Merghoub, N., Fardioui, M., Mekhzoum, M. E. M., Kadmiri, I. M., Essassi, E. M., & Bouhfid, R “Chitosan/polyvinyl alcohol/thiabendazoluim-montmorillonite bio- nanocomposite films: Mechanical, morphological and antimicrobial properties,” Compos. Part B Eng., vol. 172, pp. 103–110, Sep. 2019.spa
dc.relation.referencesJ. C. de Almeida, A. de Barros, I. Odone Mazali, and M. Ferreira, “Influence of gold nanostructures incorporated into sodium montmorillonite clay based on LbL films for detection of metal traces ions,” Appl. Surf. Sci., vol. 507, p. 144972, Mar. 2020.spa
dc.relation.referencesN. C. de Lucena, C. M. Miyazaki, F. M. Shimizu, C. J. L. Constantino, and M. Ferreira, “Layerby-layer composite film of nickel phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine,” Appl. Surf. Sci., vol. 436, pp. 957–966, Apr. 2018.spa
dc.relation.referencesQ. Fan, D. Shan, H. Xue, Y. He, and S. Cosnier, “Amperometric phenol biosensor based on laponite clay – chitosan nanocomposite matrix,” Biosensor and Bioelectronics vol. 22, pp. 816–821, 2007.spa
dc.relation.referencesH. L. Tcheumi, I. K. Tonle, E. Ngameni, and A. Walcarius, “Electrochemical analysis of methylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode,” Talanta, vol. 81, no. 3, pp. 972–979, May 2010.spa
dc.relation.referencesS. Firdoz, F. Ma, X. Yue, Z. Dai, A. Kumar, and B. Jiang, “A novel amperometric biosensor based on single walled carbon nanotubes with acetylcholine esterase for the detection of carbaryl pesticide in water,” Talanta, vol. 83, no. 1, pp. 269–273, Nov. 2010.spa
dc.relation.referencesD. Du, X. Ye, J. Cai, J. Liu, and A. Zhang, “Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates,” Biosens. Bioelectron., vol. 25, no. 11, pp. 2503–2508, Jul. 2010.spa
dc.relation.referencesD. Du, M. Wang, J. Cai, and A. Zhang, “Sensitive acetylcholinesterase biosensor based on assembly of β-cyclodextrins onto multiwall carbon nanotubes for detection of organophosphates pesticide,” Sensors Actuators B Chem., vol. 146, no. 1, pp. 337–341, Apr. 2010.spa
dc.relation.referencesL.-G. Zamfir, L. Rotariu, and C. Bala, “A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel,” Biosens. Bioelectron., vol. 26, no. 8, pp. 3692– 3695, Apr. 2011.spa
dc.relation.referencesR. R. Dutta and P. Puzari, “Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode,” Biosens. Bioelectron., vol. 52, pp. 166–172, Feb. 2014.spa
dc.relation.referencesY. Zhang, M. A. Arugula, M. Wales, J. Wild, and A. L. Simonian, “A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non- organophosphrus pesticides,” Biosens. Bioelectron., vol. 67, pp. 287–295, May 2015.spa
dc.relation.referencesN. Xia., Zhang, Y., Chang, K., Gai, X., Jing, Y., Li, S., & Qu, G “Ferrocene-phenylalanine hydrogels for immobilization of acetylcholinesterase and detection of chlorpyrifos,” J. Electroanal. Chem., vol. 746, pp. 68–74, Jun. 2015.spa
dc.relation.referencesQ. Lang, L. Han, C. Hou, F. Wang, and A. Liu, “A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide,” Talanta, vol. 156– 157, pp. 34–41, Aug. 2016.spa
dc.relation.referencesN. Kaur, H. Thakur, R. Kumar, and N. Prabhakar, “An electrochemical sensor modified with poly(3,4- ethylenedioxythiophene)-wrapped multi-walled carbon nanotubes for enzyme inhibitionbased determination of organophosphates,” Microchim. Acta, vol. 183, no. 7, pp. 2307–2315, 2016.spa
dc.relation.referencesT. Sarkar, N. Narayanan, and P. Rathee, “Polymer – Clay Nanocomposite-Based Acetylcholine esterase Biosensor for Organophosphorous Pesticide Detection,” Int. J. Environ. Res., 2017.spa
dc.relation.referencesL. Zhou, X. Zhang, L. Ma, J. Gao, and Y. Jiang, “Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection,” Biochem. Eng. J., vol. 128, pp. 243–249, Dec. 2017.spa
dc.relation.referencesT. B. Ha, H. T. Le, H. A. H. Cao, and N. T. Binh, “Electro-Immobilization of Acetylcholinesterase Using Polydopamine for Carbaryl Microsensor,” Journal of Electronic Materials, vol. 47, no 2, p. 1686- 1693. 2018spa
dc.relation.referencesE. Mahmoudi, H. Fakhri, A. Hajian, A. Afkhami, and H. Bagheri, “High-performance electrochemical enzyme sensor for organophosphate pesticide detection using modified metalorganic framework sensing platforms,” Bioelectrochemistry, vol. 130, p. 107348, Dec. 2019.spa
dc.relation.referencesA. Maghear,Tertiş, M., Fritea, L., Marian, I. O., Indrea, E., Walcarius, A., & Săndulescu, R. “Tetrabutylammonium-modified clay film electrodes: Characterization and application to the detection of metal ions,” Talanta, vol. 125, pp. 36–44, Jul. 2014.spa
dc.relation.referencesY. T. Yaman, O. Akbal, and S. Abaci, “Development of clay-protein based composite nanoparticles modified single-used sensor platform for electrochemical cytosensing application,” Biosens. Bioelectron., vol. 132, pp. 230–237, May 2019.spa
dc.relation.referencesP. Andrea and H. Aguirre, “Arcilla pilarizada con Al-Fe como catalizador para la oxidación de un colorante empleado en la industria de alimentos Pillared clay with Al-Fe as catalyst for the oxidation of a dye used in food industry,” Departamento de ingeniería química, (Tesis de posgrado), 2019.spa
dc.relation.referencesC. Mousty, “Sensors and biosensors based on clay-modified electrodes — new trends,” vol. 27, pp. 159–177, 2004.spa
dc.relation.referencesQ. Wang, L. Peng, G. Li, P. Zhang, D. Li, and F. Huang, “Activity of Laccase Immobilized on TiO2 - Montmorillonite Complexes,” International Journal of Molecular Sciences, vol 14 no 6,pp. 12520– 12532, 2013.spa
dc.relation.referencesLaguna, O.H., Molina, C.M, Moreno, S., & Molina, R “Naturaleza mineralógica de esmectitas provenientes de la formación Honda (Noreste del Tolima)”. Boletin de ciencias de la tierra. no 23 pp. 55–68, 2008.spa
dc.relation.referencesB. Unal, E. E. Yalcinkaya, D. O. Demirkol, and S. Timur, “An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite,” Appl. Surf. Sci., vol. 444, pp. 542–551, Jun. 2018spa
dc.relation.referencesR. M. Apetrei and P. Camurlu, “The effect of montmorillonite functionalization on the performance of glucose biosensors based on composite montmorillonite/PAN nanofibers,” Electrochim. Acta, vol. 353, p. 136484, Sep. 2020.spa
dc.relation.referencesA. Diouf, S. Motia, N. El Alami El Hassani, N. El Bari, and B. Bouchikhi, “Development and characterization of an electrochemical biosensor for creatinine detection in human urine based on functional molecularly imprinted polymer,” J. Electroanal. Chem., vol. 788, pp. 44–53, Mar. 2017.spa
dc.relation.referencesS. Soylemez, F. E. Kanik, S. Tarkuc, Y. A. Udum, and L. Toppare, “A sepiolite modified conducting polymer based biosensor,” Colloids Surfaces B Biointerfaces, vol. 111, pp. 549–555, Nov. 2013.spa
dc.relation.referencesH. Karaer Yağmur and İ. Kaya, “Synthesis and characterization of new polymers derived from 2- methyl-m-phenylenediamine as an effective adsorbent for cationic dye removal,” Arab. J. Chem., vol. 13, no. 11, pp. 8183–8199, Nov. 2020.spa
dc.relation.referencesA. Ahmed et al., “XRD and ATR/FTIR investigations of various montmorillonite clays modified by monocationic and dicationic imidazolium ionic liquids,” J. Mol. Struct., vol. 1173, pp. 653–664, Dec. 2018.spa
dc.relation.referencesR. R. Baby Suneetha, S. Kulandaivel, and C. Vedhi, “Synthesis, characterisation and electrochemical application of hybrid nanocomposites of polyaniline with novel clay mineral,” Mater. Today Proc., Sep. 2020.spa
dc.relation.referencesL. A. Chungata, “Estudio Del Área Superficial Específica En La Caracterización De Los Catalizadores a Utilizarse En La Gasificación Catalítica Para La Producción De Hidrógeno,” (Tesis de posgrado) pp. 1–117, 2017.spa
dc.relation.referencesH. Najafi, S. Farajfaed, S. Zolgharnian, S. H. Mosavi Mirak, N. Asasian-Kolur, and S. Sharifian, “A comprehensive study on modified-pillared clays as an adsorbent in wastewater treatment processes,” Process Safety and Environmental Protection, vol. 147. Institution of Chemical Engineers, pp. 8–36, 01-Mar-2021.spa
dc.relation.referencesPhongphut, A., Chayasombat, B., Cass, A. E., Sirisuk, A., Phisalaphong, M., Prichanont, S., & Thanachayanont, C. “Clay/au nanoparticle composites as acetylcholinesterase carriers and modifiedelectrode materials: A comparative study,” Appl. Clay Sci., vol. 194, p. 105704, Sep. 2020.spa
dc.relation.referencesF. Alberto, A. Villa, and A. H. Anaguano, “D eterminación del punto de carga cero y punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoción de colorantes Determination of the point of zero charge and,” Doctor, vol. 4, no. 2, pp. 27–36, 2013.spa
dc.relation.referencesJović-Jovičić, N., Mojović, M., Stanković, D., Nedić-Vasiljević, B., Milutinović-Nikolić, A., Banković, P., & Mojović, Z. “Characterization and electrochemical properties of organomodified and corresponding derived carbonized clay,” Electrochim. Acta, vol. 296, pp. 387–396, Feb. 2019.spa
dc.relation.referencesH. Moussout, H. Ahlafi, M. Aazza, R. Chfaira, and C. Mounir, “Interfacial electrochemical properties of natural Moroccan Ghassoul (stevensite) clay in aqueous suspension,” Heliyon, vol. 6, no. 3, p. e03634, Mar. 2020.spa
dc.relation.referencesFiscal-Ladino, J. A., Obando-Ceballos, M., Rosero-Moreano, M., Montaño, D. F., Cardona, W., Giraldo, L. F., & Richter, P “Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction,” Anal. Chim. Acta, vol. 953, pp. 23–31, Feb. 2017.spa
dc.relation.referencesC. H. Zhou, L. Cun Jun, W. P. Gates, T. T. Zhu, and Y. Wei Hua, “Co-intercalation of organic cations/amide molecules into montmorillonite with tunable hydrophobicity and swellability,” Appl. Clay Sci., vol. 179, p. 105157, Oct. 2019.spa
dc.relation.referencesMagalhães, V. M., Mendes, G. P., Costa-Filho, J. D. B., Cohen, R., Partiti, C. S., Vianna, M. M., & Chiavone-Filho, O. “Clay-based catalyst synthesized for chemical oxidation of phenanthrene contaminated soil using hydrogen peroxide and persulfate,” J. Environ. Chem. Eng., p. 103568, Nov. 2019.spa
dc.relation.referencesM. A. De León, M. Sergio, J. Bussi, G. B. O. de la Plata, and O. M. Alfano, “Heterogeneous photo- fenton process using iron-modified regional clays as catalysts: Photonic and quantum efficiencies,” Environ. Sci. Pollut. Res., vol. 26, no. 13, pp. 12720–12730, 2019.spa
dc.relation.referencesH. L. Tcheumi, V. N. Tassontio, I. K. Tonle, and E. Ngameni, “Surface functionalization of smectite- type clay by facile polymerization of β-cyclodextrin using citric acid cross linker: Application as sensing material for the electrochemical determination of paraquat,” Appl. Clay Sci., vol. 173, pp. 97–106, Jun. 2019.spa
dc.relation.referencesBatista, F. A., Nascimento, S. Q., Sousa, A. B., Junior, E. F., de Almeida Pereira, P. I., Fontenele, V. M., & Mendes, A. N “Synthesis, characterization and electrochemical properties of composites synthesized from silver-tannic acid hybrid nanoparticles and different clays,” Appl. Clay Sci., vol. 181, p. 105219, Nov. 2019.spa
dc.relation.referencesI. F. Mac, G. I. Giraldo-gómez, and N. R. Sanabria-gonzález, “Characterization of Colombian Clay and Its Potential Use as Adsorbent,” The Scientific World Journal vol. 2018, pp. 15–17, 2018.spa
dc.relation.referencesM. Chauhan, V. K. Saini, and S. Suthar, “Enhancement in selective adsorption and removal efficiency of natural clay by intercalation of Zr-pillars into its layered nanostructure,” J. Clean. Prod., vol. 258, p. 120686, Jun. 2020.spa
dc.relation.referencesP. Andrea and H. Aguirre, “Arcilla pilarizada con Al-Fe como catalizador para la oxidación de un colorante empleado en la industria de alimentos” Departamento de ingeniería química (Tesis de posgrado) 2019.spa
dc.relation.referencesC. Gallo, P. Rizzo, and G. Guerra, “Intercalation compounds of a smectite clay with an ammonium salt biocide and their possible use for conservation of cultural heritage,” Heliyon, vol. 5, no. 12, p. e02991, Dec. 2019.spa
dc.relation.referencesP. Borralleras, I. Segura, M. A. G. Aranda, and A. Aguado, “Absorption conformations in the intercalation process of polycarboxylate ether based superplasticizers into montmorillonite clay,” Constr. Build. Mater., vol. 236, p. 116657, Mar. 2020.spa
dc.relation.referencesFiscal-Ladino, J. A., Obando-Ceballos, M., Rosero-Moreano, M., Montaño, D. F., Cardona, W., Giraldo, L. F., & Richter, P “Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction,” Anal. Chim. Acta, vol. 953, pp. 23–31, Feb. 2017.spa
dc.relation.referencesM. Seleci, D. Ag, E. Yalcinkaya, and O. Demirkol, “Amine-intercalated montmorillonite matrices for enzyme immobilization and biosensing applications,” RSC Advances, vol. 2 pp. 2112–2118, 2012spa
dc.relation.referencesT. Sarkar, N. Narayanan, and P. Rathee, “Polymer – Clay Nanocomposite-Based Acetylcholine esterase Biosensor for Organophosphorous Pesticide Detection,” Int. J. Environ. Res.vol. 11, no 5pp. 591-601, 2017.spa
dc.relation.referencesM. A. Mohamed, E. S. M. E. Mahdy, A. E. H. M. Ghazy, N. M. Ibrahim, H. A. El-Mezayen, and M. M. E. Ghanem, “The activity of detoxifying enzymes in the infective juveniles of Heterorhabditis bacteriophora strains: Purification and characterization of two acetylcholinesterases,” Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol., vol. 180, pp. 11–22, Feb. 2016.spa
dc.relation.referencesJ. Forget, S. Livet, and F. Leboulenger, “Partial purification and characterization of acetylcholinesterase (AChE) from the estuarine copepod Eurytemora affinis (Poppe),” Comp. Biochem. Physiol. - C Toxicol. Pharmacol., vol. 132, no. 1, pp. 85–92, May 2002.spa
dc.relation.referencesD. Dingova, J. Leroy, A. Check, V. Garaj, E. Krejci, and A. Hrabovska, “Optimal detection of cholinesterase activity in biological samples: Modifications to the standard Ellman’s assay,” Anal. Biochem., vol. 462, pp. 67–75, Oct. 2014.spa
dc.relation.referencesM. Yang., y, Zhao., L. Wang, Pulsen, M., C.D, Simpson, F, Liu, & Y. Lin, “Simultaneous detection of dual biomarkers from humans exposed to organophosphorus pesticides by combination of immunochromatographic test strip and ellman assay,” Biosens. Bioelectron., vol. 104, pp. 39–44, May 2018.spa
dc.relation.referencesJ. Dong, X. Fan, F. Qiao, S. Ai, and H. Xin, “A novel protocol for ultra-trace detection of pesticides: Combined electrochemical reduction of Ellman’s reagent with acetylcholinesterase inhibition,” Anal. Chim. Acta, vol. 761, pp. 78–83, Jan. 2013.spa
dc.relation.referencesJ. Betancur, D. F. Morales, G. A. Peñuela, and J. B. Cano, “Detección de Clorpirifos en Leche usando un Biosensor Enzimático Amperométrico basado en Acetilcolinesterasa,” vol. 29, no. 6, pp. 113–122, 2018.spa
dc.relation.referencesQ. T. Hua, N. Ruecha, Y. Hiruta, and D. Citterio, “Disposable electrochemical biosensor based on surface-modified screen-printed electrodes for organophosphorus pesticide analysis,” Anal. Methods, vol. 11, no. 27, pp. 3439–3445, 2019spa
dc.relation.referencesF. Arduini, S. Guidone, A. Amine, G. Palleschi, and D. Moscone, “Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection,” Sensors Actuators, B Chem., vol. 179, pp. 201–208, Mar. 2013.spa
dc.relation.referencesD. Chan, M. M. Barsan, Y. Korpan, and C. M. A. Brett, “L-lactate selective impedimetric bienzymatic biosensor based on lactate dehydrogenase and pyruvate oxidase,” Electrochim. Acta, vol. 231, pp. 209–215, Mar. 2017.spa
dc.relation.referencesP. Conghaile, R. Kumar, M. L. Ferrer, and D. Leech, “Glucose oxidation by enzyme electrodes using genipin to crosslink chitosan, glucose oxidase and amine-containing osmium redox complexes,” Electrochem. commun., vol. 113, p. 106703, Apr. 2020.spa
dc.relation.referencesB. W. Lu and W. C. Chen, “A disposable glucose biosensor based on drop-coating of screenprinted carbon electrodes with magnetic nanoparticles,” J. Magn. Magn. Mater., vol. 304, no. 1, pp. e400– e402, Sep. 2006.spa
dc.relation.referencesQ. Lang, L. Han, C. Hou, F. Wang, and A. Liu, “A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide,” Talanta, vol. 156– 157, pp. 34–41, Aug. 2016.spa
dc.relation.referencesA. Mulyasuryani and S. Prasetyawan, “Organophosphate Hydrolase in Conductometric Biosensor for the Detection of Organophosphate Pesticides,” Analytcal chemistry insights. Vol 10, pp. 23–27, 2015.spa
dc.relation.referencesN. Vigués, F. Pujol-Vila, A. Marquez-Maqueda, X. Muñoz-Berbel, and J. Mas, “Electroaddressable conductive alginate hydrogel for bacterial trapping and general toxicity determination,” Anal. Chim. Acta, vol. 1036, pp. 115–120, 2018.spa
dc.relation.referencesF. Pujol-Vila, N. Vigués, M. Díaz-González, X. Muñoz-Berbel, and J. Mas, “Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics,” Biosens. Bioelectron., vol. 67, pp. 272–279, 2015.spa
dc.relation.referencesN. Vigués, F. Pujol-Vila, J. Macanás, M. Muñoz, X. Muñoz-Berbel, and J. Mas, “Fast fabrication of reusable polyethersulfone microbial biosensors through biocompatible phase separation,” Talanta, vol. 206, p. 120192, 2020.spa
dc.relation.referencesM. Boncler, M. Rózalski, U. Krajewska, A. Podswdek, and C. Watala, “Comparison of PrestoBlue and MTT assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells,” J. Pharmacol. Toxicol. Methods, vol. 69, no. 1, pp. 9–16, Jan. 2014.spa
dc.relation.referencesA. Phumee et al., “Determination of anti-leishmanial drugs efficacy against Leishmania martiniquensis using a colorimetric assay,” Parasite Epidemiol. Control, vol. 9, p. e00143, May 2020.spa
dc.relation.referencesN. Vigués, F. Pujol-Vila, J. Macanás, M. Muñoz, X. Muñoz-Berbel, and J. Mas, “Fast fabrication of reusable polyethersulfone microbial biosensors through biocompatible phase separation,” Talanta, vol. 206, no., p. 120192, 2020.spa
dc.relation.referencesW. Zhao, S. L. Walker, Q. Huang, and P. Cai, “Adhesion of bacterial pathogens to soil colloidal particles: Influences of cell type, natural organic matter, and solution chemistry,” Water Res., vol. 53, pp. 35–46, 2014.spa
dc.relation.referencesZ. Hong, X. Rong, P. Cai, W. Liang, and Q. Huang, “Effects of temperature, pH and salt concentrations on the adsorption of bacillus subtilis on soil clay minerals investigated by microcalorimetry,” Geomicrobiol. J., vol. 28, no. 8, pp. 686–691, 2011.spa
dc.relation.referencesH. Wasito, A. Fatoni, D. Hermawan, and S. S. Susilowati, “Immobilized bacterial biosensor for rapid and effective monitoring of acute toxicity in water,” Ecotoxicol. Environ. Saf., vol. 170, pp. 205– 209, Apr. 2019.spa
dc.relation.referencesM. Rabbani and Y. Dalman, “Fabrication of biosensors by bacterial printing on different carriers using a laser printer,” Bioprinting, vol. 20, p. e00099, Dec. 2020spa
dc.relation.referencesB. Unal, E. E. Yalcinkaya, D. O. Demirkol, and S. Timur, “An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite,” Appl. Surf. Sci., vol. 444, pp. 542–551, Jun. 2018.spa
dc.relation.referencesY. Li. J. Zhu., H. Zhang., W. Liu., J. Ge., J, Wu. & P. Wang “High sensitivity gram-negative bacteria biosensor based on a small-molecule modified surface plasmon resonance chip studied using a laser scanning confocal imaging-surface plasmon resonance system,” Sensors Actuators, B Chem., vol. 259, pp. 492–497, Apr. 2018spa
dc.relation.referencesM. Ma, P. Bordignon, G. P. Dotto, and S. Pelet, “Visualizing cellular heterogeneity by quantifying the dynamics of MAPK activity in live mammalian cells with synthetic fluorescent biosensors,” Heliyon, vol. 6, no. 12, p. e05574, Dec. 2020.spa
dc.relation.referencesW. Hu, K. Murata, and D. Zhang, “Applicability of LIVE/DEAD BacLight stain with glutaraldehyde fixation for the measurement of bacterial abundance and viability in rainwater,” J. Environ. Sci. (China), vol. 51, pp. 202–213, Jan. 2017.spa
dc.relation.referencesA. M. Nasrabadi, S. An, S. B. Kwon, and J. Hwang, “Investigation of live and dead status of airborne bacteria using UVAPS with LIVE/DEAD® BacLight Kit,” J. Aerosol Sci., vol. 115, pp. 181–189, Jan. 2018.spa
dc.relation.referencesS. Machida, R. Guégan, and Y. Sugahara, “A kaolinite-tetrabutylphosphonium bromide intercalation compound as an effective intermediate for intercalation of bulky organophosphonium salts,” Appl. Clay Sci., vol. 206, p. 106038, Jun. 2021.spa
dc.relation.referencesMartins, M. G., Martins, D. O., de Carvalho, B. L., Mercante, L. A., Soriano, S., Andruh, M., ... & Vaz, M. G. (2015). “Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds”. Journal of Solid State Chemistry, 228, 99-104.Mspa
dc.relation.referencesS. Lawchoochaisakul, P. Monvisade, and P. Siriphannon, “Cationic starch intercalated montmorillonite nanocomposites as natural based adsorbent for dye removal,” Carbohydr. Polym., vol. 253, p. 117230, Feb. 2021.spa
dc.relation.referencesR. R. Baby Suneetha, S. Kulandaivel, and C. Vedhi, “Synthesis, characterisation and electrochemical application of hybrid nanocomposites of polyaniline with novel clay mineral,” Mater. Today Proc., Sep. 2020.spa
dc.relation.referencesI. F. Mac, G. I. Giraldo-gómez, and N. R. Sanabria-gonzález, “Characterization of Colombian Clay and Its Potential Use as Adsorbent,” The Scientific World Journal vol. 2018, pp. 15–17, 2018.spa
dc.relation.referencesF. B. Emre., M. Kesik., F.E Kanik, H, Z. Akpinar. E, Aslan-Gurel., R.M. Rossi & L. Toppare., “A benzimidazole-based conducting polymer and a PMMA-clay nanocomposite containing biosensor platform for glucose sensing,” Synth. Met., vol. 207, pp. 102–109, Jun. 2015.spa
dc.relation.referencesK. El Bourakadi., N, Merghoub., M., Fardioui., M. E.M Mekhzoum., I.M. Kadmiri., E.M., Essasi & R. Bouhfid“Chitosan/polyvinyl alcohol/thiabendazoluim-montmorillonite bio- nanocomposite films: Mechanical, morphological and antimicrobial properties,” Compos. Part B Eng., vol. 172, pp. 103–110, Sep. 2019.spa
dc.relation.referencesN. H. Kim, S. V. Malhotra, and M. Xanthos, “Modification of cationic nanoclays with ionic liquids,” Microporous Mesoporous Mater., vol. 96, no. 1–3, pp. 29–35, Nov. 2006.spa
dc.relation.referencesFiscal-Ladino, J. A., Obando-Ceballos, M., Rosero-Moreano, M., Montaño, D. F., Cardona, W., Giraldo, L. F., & Richter, P “Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction,” Anal. Chim. Acta, vol. 953, pp. 23–31, Feb. 2017C.G, Centellegher “Evaluación de la capacidad de retención de aflatoxinas utilizando bentonitas comerciales de la Norpatagonia.” Tesis de licenciatura, Universidad Nacional del Comahue. 2019spa
dc.relation.referencesA. E. Navarro and B. P. Llanos, “Síntesis Y Caracterización De Arcillas Organofílicas Y Su Aplicación Como Adsorbentes Del Fenol,” Rev. la Soc. Química del Perú, vol. 74, no. 1, pp. 3–19, 2008.spa
dc.relation.referencesM. Seleci, D. Ag, E. Yalcinkaya, and O. Demirkol, “Amine-intercalated montmorillonite matrices for enzyme immobilization and biosensing applications,” RSC Advances. vol 2 no 5 pp. 2112–2118, 2012spa
dc.relation.referencesT. Sarkar, N. Narayanan, and P. Rathee, “Polymer – Clay Nanocomposite-Based Acetylcholine esterase Biosensor for Organophosphorous Pesticide Detection,” Int. J. Environ. Res., 2017.spa
dc.relation.referencesN. H. Voelcker, H. Haerudin, A. Pramono, D.S Kusuma, S.N. Jenie, C. Gibson“Preparation and Characterisation of Chitosan / Montmorillonite (MMT) Nanocomposite Systems,” International Journal of Technology. Vol 1 pp 65-73. March, 2010.spa
dc.relation.referencesY. T. Yaman, O. Akbal, and S. Abaci, “Development of clay-protein based composite nanoparticles modified single-used sensor platform for electrochemical cytosensing application,” Biosens. Bioelectron., vol. 132, pp. 230–237, May 2019.spa
dc.relation.referencesLaguna, O.H., Molina, C.M, Moreno, S., & Molina, R “Naturaleza mineralógica de esmectitas provenientes de la formación Honda (Noreste del Tolima)”. Boletin de ciencias de la tierra. no 23 pp. 55– 68, 2008.spa
dc.relation.referencesB. Biswas, L.N, Warr, E.F, Hilder., N. Goswamu., M. Rahman., J. G, Churchman & R. Naidu “Biocompatible functionalisation of nanoclays for improved environmental remediation,” Chem. Soc. Rev., vol. 48, no. 14, pp. 3740–3770, 2019spa
dc.relation.referencesH. Mao, Y. Huang, J. Luo, and M. Zhang, “Molecular simulation of polyether amines intercalation into Na-montmorillonite interlayer as clay-swelling inhibitors,” Appl. Clay Sci., vol. 202, p. 105991, Mar. 2021.spa
dc.relation.referencesJ. C. S. da Silva, D.B Franca, F. Rodrigues., D.M, Oliviera., P, TRigueiro, E.C, Silva Filho & M.G Fonseca “What happens when chitosan meets bentonite under microwave-assisted conditions? Claybased hybrid nanocomposites for dye adsorption,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 609, p. 125584, Jan. 2021spa
dc.relation.referencesB. D. Kevadiya., R.P Thumbar; M.M, Rajput, S, Rajkumar; H. Brambhatt, G.V, Joshi & H.C Bajaj “Montmorillonite/poly-(-caprolactone) composites as versatile layered material: Reservoirs for anticancer drug and controlled release property,” Eur. J. Pharm. Sci., vol. 47, no. 1, pp. 265–272, 2012.spa
dc.relation.referencesM. Darder, M. Colilla, and E. Ruiz-Hitzky, “Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite,” Chem. Mater., vol. 15, no. 20, pp. 3774–3780, 2003.spa
dc.relation.referencesJ. Safari, M. Ahmadzadeh, and Z. Zarnegar, “Sonochemical synthesis of 3-methyl-4- arylmethylene isoxazole-5(4H)-ones by amine-modified montmorillonite nanoclay,” Catal. Commun., vol. 86, pp. 91–95, 2016.spa
dc.relation.referencesH. Moussout, H. Ahlafi, M. Aazza, R. Chfaira, and C. Mounir, “Interfacial electrochemical properties of natural Moroccan Ghassoul (stevensite) clay in aqueous suspension,” Heliyon, vol. 6, no. 3, p. e03634, Mar. 2020.spa
dc.relation.referencesN. Jović-Jovičić et al., “Characterization and electrochemical properties of organomodified and corresponding derived carbonized clay,” Electrochim. Acta, vol. 296, pp. 387–396, Feb. 2019.spa
dc.relation.referencesD. Dingova, J. Leroy, A. Check, V. Garaj, E. Krejci, and A. Hrabovska, “Optimal detection of cholinesterase activity in biological samples: Modifications to the standard Ellman’s assay,” Anal. Biochem., vol. 462, pp. 67–75, Oct. 2014.spa
dc.relation.referencesF. Andr and C. Castillo, “Estudio de la inhibición de la acetilcolinesterasa y la relación estructura - actividad de terpenoides aislados de organismos marinos del caribe colombiano,” Tesis de posgrado (Master). Departamento de química,2014.spa
dc.relation.referencesA. J. Franjesevic, S. B. Sillart, J. M. Beck, S. Vyas, C. S. Callam, and C. M. Hadad, “Resurrection and Reactivation of Acetylcholinesterase and Butyrylcholinesterase,”Chemistry ( Weinheim an der Berstrasse, Germany) vol 5, no 21, pp.5337, 2019.spa
dc.relation.referencesJ. Betancur, D. F. Morales, G. A. Peñuela, and J. B. Cano, “Detección de Clorpirifos en Leche usando un Biosensor Enzimático Amperométrico basado en Acetilcolinesterasa,” Información tecnología, vol. 29, no. 6, pp. 113–122, 2018.spa
dc.relation.referencesHondred, JA, Breger, JC, Alves, NJ, Trammell, SA, Walper, SA, Medintz & Claussen “Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates,” ACS applied materials & interfaces, vol. 10, no 13, p. 11125-11134, 2018.spa
dc.relation.referencesQ. Lang, L. Han, C. Hou, F. Wang, and A. Liu, “A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide,” Talanta, vol. 156– 157, pp. 34–41, Aug. 2016spa
dc.relation.referencesB. M. Toro-osorio, “Niveles de colinesterasa sérica en caficultores del Departamento de Caldas, Colombia,”Revista de salud pública vol. 19, no. 3, pp. 318–324, 2017.spa
dc.relation.referencesY. Lin, F. Lu, and J. Wang, “Disposable Carbon Nanotube Modified Screen-Printed Biosensor for Amperometric Detection of Organophosphorus Pesticides and Nerve Agents,” Electroanalysis, vol. 16, no. 12, pp. 145–149, 2004.spa
dc.relation.referencesQ. T. Hua, N. Ruecha, Y. Hiruta, and D. Citterio, “Disposable electrochemical biosensor based on surface-modified screen-printed electrodes for organophosphorus pesticide analysis,” Anal. Methods, vol. 11, no. 27, pp. 3439–3445, 2019.spa
dc.relation.referencesT. H. V. Kumar and A. K. Sundramoorthy, “Electrochemical biosensor for methyl parathion based on single-walled carbon nanotube/glutaraldehyde crosslinked acetylcholinesterase-wrapped bovine serum albumin nanocomposites,” Anal. Chim. Acta, vol. 1074, pp. 131–141, 2019.spa
dc.relation.referencesD. Alonso and G. Quijano, “Desarrollo de electrodos modificados con matrices de sílice para posibles aplicaciones en sensores y biosensores electroquímicos,” Universidad de Alicante, Tesis Doctoral, 2015.spa
dc.relation.referencesY. Zhang, M. A. Arugula, M. Wales, J. Wild, and A. L. Simonian, “A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and nonorganophosphrus pesticides,” Biosens. Bioelectron., vol. 67, pp. 287–295, May 2015.spa
dc.relation.referencesB. Unal, E. E. Yalcinkaya, D. O. Demirkol, and S. Timur, “An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite,” Appl. Surf. Sci., vol. 444, pp. 542–551, Jun. 2018.spa
dc.relation.referencesJ. A. Goode, J. V. H. Rushworth, and P. A. Millner, “Biosensor Regeneration: A Review of Common Techniques and Outcomes,” Langmuir. Vol 31. no 23, pp 6267-6276, 2015.spa
dc.relation.referencesŞ. Sarioǧlan, “A comparison study on conductive poly(3,4-ethylenedioxythiophene) nanocomposites synthesized with clay type montmorillonite and organophilic montmorillonite,” Part. Sci. Technol., vol. 30, no. 1, pp. 68–80, 2012.spa
dc.relation.referencesS. Letaïef, P. Aranda, R. Fernández-Saavedra, J. C. Margeson, C. Detellier, and E. Ruiz-Hitzky, “Poly(3,4-ethylenedioxythiophene)-clay nanocomposites,” J. Mater. Chem., vol. 18, no. 19, pp. 2227– 2233, 2008.spa
dc.relation.referencesH. L. Tcheumi, I. K. Tonle, E. Ngameni, and A. Walcarius, “Electrochemical analysis of methylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode,” Talanta, vol. 81, no. 3, pp. 972–979, May 2010.spa
dc.relation.referencesD. Songurtekin, E. E. Yalcinkaya, D. Ag, M. Seleci, D. O. Demirkol, and S. Timur, “Histidine modified montmorillonite: Laccase immobilization and application to flow injection analysis of phenols,” Appl. Clay Sci., vol. 86, pp. 64–69, Dec. 2013.spa
dc.relation.referencesN. An, C. H. Zhou, X. Y. Zhuang, D. S. Tong, and W. H. Yu, “Immobilization of enzymes on clay minerals for biocatalysts and biosensors,” Appl. Clay Sci., vol. 114, pp. 283–296, Sep. 2015.spa
dc.relation.referencesF. Arduini, S. Guidone, A. Amine, G. Palleschi, and D. Moscone, “Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection,” Sensors Actuators, B Chem., vol. 179, pp. 201–208, 2013.spa
dc.relation.referencesO. Domínguez-Renedo, M. A. Alonso-Lomillo, P. Recio-Cebrián, and M. J. Arcos-Martínez, “Screen- printed acetylcholinesterase-based biosensors for inhibitive determination of permethrin,” Sci. Total Environ., vol. 426, pp. 346–350, Jun. 2012.spa
dc.relation.referencesH. Yang, R. Yuan, Y. Chai, and Y. Zhuo, “Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for detection of human chorionic gonadotrophin,” Colloids Surfaces B Biointerfaces, vol. 82, no. 2, pp. 463–469, Feb. 2011.spa
dc.relation.referencesL. Zhou, X. Zhang, L. Ma, J. Gao, and Y. Jiang, “Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection,” Biochem. Eng. J., vol. 128, pp. 243–249, Dec. 2017.spa
dc.relation.referencesX. Jiaojiao, Z. Bin, W. Pengyun, L. Qing, S. Xin, and J. Rui, “Acetylcholinesterase biosensors based on ionic liquid functionalized carbon nanotubes and horseradish peroxidase for monocrotophos determination,” Bioprocess Biosyst. Eng., no. 0123456789, 2019.spa
dc.relation.referencesZ. Dai, Y. Xiao, X. Yu, Z. Mai, X. Zhao, and X. Zou, “Biosensors and Bioelectronics Direct electrochemistry of myoglobin based on ionic liquid – clay composite films,” Biosensor and Bioelectronics vol. 24, no 6, pp. 1629–1634, 2009.spa
dc.relation.referencesY. Y. Yilmaz, E. E. Yalcinkaya, D. O. Demirkol, and S. Timur, “4-aminothiophenol-intercalated montmorillonite: Organic-inorganic hybrid material as an immobilization support for biosensors,” Sensors Actuators B Chem., vol. 307, p. 127665, 2020.spa
dc.relation.referencesD. Chen, J. Fu, Z. Liu, Y. Guo, X. Sun, and X. Wang, “A Simple Acetylcholinesterase Biosensor Based on Ionic Liquid / Multiwalled Carbon Nanotubes-Modified Screen- Printed Electrode for Rapid Detecting Chlorpyrifos,” Internation Journal Electrochem. Sci vol. 12, pp. 9465–9477, 2017.spa
dc.relation.referencesL.-G. Zamfir, L. Rotariu, and C. Bala, “A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel,” Biosens. Bioelectron., vol. 26, no. 8, pp. 3692– 3695, Apr. 2011.spa
dc.relation.referencesLIU, Jing-fu; JIANG, Gui-bin; JÖNSSON, Jan Åke. Application of ionic liquids in analytical chemistry. TrAC Trends in Analytical Chemistry, 2005, vol. 24, no 1, p. 20-27.spa
dc.relation.referencesM. Rosero-moreano, J. A. Fiscal-ladino, W. Cardona, L. F. Giraldo, P. Richter, and D. F. Monta, “Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction,” Analytical Chimica Acta vol. 953, pp. 23–31, 2017.spa
dc.relation.referencesG. Yu, W. Wu, Q. Zhao, X. Wei, and Q. Lu, “Biosensors and Bioelectronics Efficient immobilization of acetylcholinesterase onto amino functio- nalized carbon nanotubes for the fabrication of high sensitive orga- nophosphorus pesticides biosensors,” Biosens. Bioelectron., vol. 68, pp. 288–294, 2015spa
dc.relation.referencesH. Muguruma, Biosensors : Enzyme Immobilization Chemistry. Encyclopedia of interfacil chemistr: Surface sciencie and electrochemistr, pp 64-71, Elsevier, 2018.spa
dc.relation.referencesR. R. Dutta and P. Puzari, “Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode,” Biosens. Bioelectron., vol. 52, pp. 166–172, Feb. 2014.spa
dc.relation.referencesN. Xia et al., “Ferrocene-phenylalanine hydrogels for immobilization of acetylcholinesterase and detection of chlorpyrifos,” J. Electroanal. Chem., vol. 746, pp. 68–74, Jun. 2015.spa
dc.relation.referencesM. Pohanka, “Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds,”Chemical Paper, vol 69, no 1 pp 4-16. February, 2015.spa
dc.relation.referencesJ. Turan et al., “An effective surface design based on a conjugated polymer and silver nanowires for the detection of paraoxon in tap water and milk,” Sensors Actuators B Chem., vol. 228, pp. 278–286, Jun. 2016.spa
dc.relation.referencesC. S. Pundir, “Biosensors and Bioelectronics Bio-sensing of organophosphorus pesticides : A review,” Biosensor and Bioelectronic , vol. 140, pp 111348 May, 2019.spa
dc.relation.referencesF. Garcıa Sánchez, A. Navas Dıá z, M. C. Ramos Peinado, and C. Belledone, “Free and sol–gel immobilized alkaline phosphatase-based biosensor for the determination of pesticides and inorganic compounds,” Anal. Chim. Acta, vol. 484, no. 1, pp. 45–51, 2003.spa
dc.relation.referencesH. Borah, S. Gogoi, S. Kalita, and P. Puzari, “A broad spectrum amperometric pesticide biosensor based on glutathione S-transferase immobilized on graphene oxide-gelatin matrix,” J. Electroanal. Chem., vol. 828, pp. 116–123, 2018.spa
dc.relation.referencesH. F. Cui, W. W. Wu, M. M. Li, X. Song, Y. Lv, and T. T. Zhang, “A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides,” Biosens. Bioelectron., vol. 99, no. May 2017, pp. 223–229, 2018.spa
dc.relation.referencesS. P. Sharma, L. N. S. Tomar, J. Acharya, A. Chaturvedi, M. V. S. Suryanarayan, and R. Jain, “Acetylcholinesterase inhibition-based biosensor for amperometric detection of Sarin using singlewalled carbon nanotube-modified ferrule graphite electrode,” Sensors Actuators B Chem., vol. 166– 167, pp. 616–623, May 2012.spa
dc.relation.referencesC. Mendieta, N. Ortega, N. Solano-Cueva, and J. Figueroa, “Metodología para la Determinación de Pesticidas Organoclorados mediante Cromatografía de Gases Acoplado Espectrometría de Masas y Detector de Captura de Electrones,” Rev. Politécnica, vol. 40, no. 1, pp. 21–28, 2017spa
dc.relation.referencesN. Chauhan, J. Narang, and U. Jain, “Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly(indole-5-carboxylic acid),” J. Exp. Nanosci., vol. 11, no. 2, pp. 111–122, 2016.spa
dc.relation.referencesD. Du, M. Wang, J. Cai, and A. Zhang, “Sensitive acetylcholinesterase biosensor based on assembly of β-cyclodextrins onto multiwall carbon nanotubes for detection of organophosphates pesticide,” Sensors Actuators B Chem., vol. 146, no. 1, pp. 337–341, Apr. 2010.spa
dc.relation.referencesT. Itsoponpan, C. Thanachayanont, and P. Hasin, “Sponge-like CuInS2 microspheres on reduced graphene oxide as an electrocatalyst to construct an immobilized acetylcholinesterase electrochemical biosensor for chlorpyrifos detection in vegetables,” Sensors Actuators, B Chem., vol. 337, p. 129775, Jun. 2021.spa
dc.relation.referencesM. Guler, V. Turkoglu, and Z. Basi, “Determination of malation, methidathion, and chlorpyrifos ethyl pesticides using acetylcholinesterase biosensor based on Nafion/Ag@rGO-NH2 nanocomposites,” Electrochim. Acta, vol. 240, pp. 129–135, Jun. 2017.spa
dc.relation.referencesN. An, C. H. Zhou, X. Y. Zhuang, D. S. Tong, and W. H. Yu, “Immobilization of enzymes on clay minerals for biocatalysts and biosensors,” Appl. Clay Sci., vol. 114, pp. 283–296, Sep. 2015.spa
dc.relation.referencesN. Vigués, F. Pujol-Vila, A. Marquez-Maqueda, X. Muñoz-Berbel, and J. Mas, “Electro-addressable conductive alginate hydrogel for bacterial trapping and general toxicity determination,” Anal. Chim. Acta, vol. 1036, pp. 115–120, 2018.spa
dc.relation.referencesH. Bujdáková, V. Bujdáková., H, Majeková-Koscova., B, Gaálová, V, Bizovká, P, Bohác & J. Bujdák, “Antimicrobial activity of organoclays based on quaternary alkylammonium and alkylphosphonium surfactants and montmorillonite,” Appl. Clay Sci., vol. 158, pp. 21–28, Jun. 2018.spa
dc.relation.referencesA. Cornellas, L. Perez, F. Comelles, I. Ribosa, A. Manresa, and M. T. Garcia, “Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution,” J. Colloid Interface Sci., vol. 355, no. 1, pp. 164–171, Mar. 2011.spa
dc.relation.referencesK. Catterall, D. Robertson, S. Hudson, P. R. Teasdale, D. T. Welsh, and R. John, “A sensitive, rapid ferricyanide-mediated toxicity bioassay developed using Escherichia coli,” Talanta, vol. 82, no. 2, pp. 751– 757, Jul. 2010.spa
dc.relation.referencesM.-S. Chae, Y. K. Yoo, J. Kim, T. G. Kim, and K. S. Hwang, “Graphene-based enzyme-modified fieldeffect transistor biosensor for monitoring drug effects in Alzheimer’s disease treatment,” Sensors Actuators B Chem., vol. 272, pp. 448–458, Nov. 2018.spa
dc.relation.referencesZ. Hong, X. Rong, P. Cai, W. Liang, and Q. Huang, “Effects of temperature, pH and salt concentrations on the adsorption of bacillus subtilis on soil clay minerals investigated by microcalorimetry,” Geomicrobiol. J., vol. 28, no. 8, pp. 686–691, 2011.spa
dc.relation.referencesM. Su, F, Han; M, Wang; J, Ma; X, Wang, Z, Wang & Z, Li, “Clay-assisted protection of Enterobacter sp. from Pb (II) stress,” Ecotoxicol. Environ. Saf., vol. 208, p. 111704, Jan. 2021.spa
dc.relation.referencesH. Du, W. Chen, P. Cai, X. Rong, X. Feng, and Q. Huang, “Competitive adsorption of Pb and Cd on bacteria–montmorillonite composite,” Environ. Pollut., vol. 218, pp. 168–175, Nov. 2016.spa
dc.relation.referencesW. Zhao, S. L. Walker, Q. Huang, and P. Cai, “Adhesion of bacterial pathogens to soil colloidal particles: Influences of cell type, natural organic matter, and solution chemistry,” Water Res., vol. 53, pp. 35–46, 2014.spa
dc.relation.referencesD. Belén and C. Ec, “Biosensores y sistemas ópticos y de visión avanzados: su aplicación en la evaluación de la calidad de productos IV gama” Agrociencia Uruguay, vol 22, no 1, pp 13-25 pp. 13–25, 2018.spa
dc.relation.referencesL. R. Cedillo, M.M.C, Hernández; A.S, Zapata; N, Balagurusamy & M.P.L, Escareño “Aplicaciones de las Enzimas Inmovilizadas Application of Immobilized Enzymes” Revista científia de la Universidad Autónoma de Coahuila.Vol 11, pp. 1–9, 2014.spa
dc.relation.referencesJ. Qian, J. Li, D. Fang, Y. Yu, and J. Zhi, “A disposable biofilm-modified amperometric biosensor for the sensitive determination of pesticide biotoxicity in water,” RSC Adv., vol. 4, no. 98, pp. 55473– 55482, 2014.spa
dc.relation.referencesN. Vigués, F. Pujol-Vila, J. Macanás, M. Muñoz, X. Muñoz-Berbel, and J. Mas, “Fast fabrication of reusable polyethersulfone microbial biosensors through biocompatible phase separation,” Talanta, vol. 206, no. July 2019, p. 120192, 2020.spa
dc.relation.referencesALIMOVA, Alexandra, et al. Bacteria-clay interaction: Structural changes in smectite induced during biofilm formation. Clays and Clay Minerals, 2009, vol. 57, no 2, p. 205-212.spa
dc.relation.referencesMUELLER, Barbara. Experimental interactions between clay minerals and bacteria: a review. Pedosphere, 2015, vol. 25, no 6, p. 799-810.spa
dc.relation.referencesSANTE, E. Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. European Commission SANTE/11813/2017, 2015, p. 1-46.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.proposalBiosensoresspa
dc.subject.proposalMontmorillonitaspa
dc.subject.proposalArcillaspa
dc.subject.proposalE.colispa
dc.subject.proposalAcetilcolinesterasaspa
dc.subject.unescoElectroquímica
dc.subject.unescoCompuesto químico
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
dc.description.degreenameMagister en Químicaspa
dc.publisher.programMaestría en Químicaspa
dc.description.researchgroupQuímica Analíticaspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem