Mostrar el registro sencillo del ítem

dc.contributor.authorGuzmán-Piedrahita, Óscar Adriánspa
dc.contributor.authorZamorano-Montañez, Carolinaspa
dc.contributor.authorLópez-Nicora, Horacio Danielspa
dc.date.accessioned2020-07-01 00:00:00
dc.date.available2020-07-01 00:00:00
dc.date.issued2020-07-01
dc.identifier.issn0123-3068
dc.identifier.urihttps://doi.org/10.17151/bccm.2020.24.2.13
dc.description.abstractLos nematodos fitoparásitos se encuentran entre los patógenos de plantas más perjudiciales a través del mundo, afectando el crecimiento y rendimiento de los cultivos. La respuesta de las plantas al daño ocasionado por los nematodos está estrechamente relacionada con su ubicación donde se alimentan, como ectoparásitos o endoparásitos, y los tipos de daño celular que producen, tales como la destrucción de células ocasionada por especies de Pratylenchus y Radopholus; la sincitia, por especies de Heterodera y Globodera; y la formación de células gigantes, por especies de Meloidogyne. El objetivo de esta revisión es analizar el alcance de los resultados de investigaciones sobre el entendimiento de las implicaciones fisiológicas que tiene la interacción de la planta con nematodos fitoparásitos, principalmente los que destruyen la célula, forman sincitia y células gigantes. En general, los nematodos reducen la absorción de agua a través de las raíces de las plantas y crean un desbalance de macro y micronutrimentos que inducen cambios fisiológicos en estas y en los procesos fotosintéticos. Los nematodos fitoparásitos incluidos en esta revisión, independiente del tipo de daño que ocasionan, reducen las funciones fisiológicas de las raíces y de la parte aérea produciendo pérdidas considerables en rendimiento. Se requiere más investigación que relacione el estado nutricional de las plantas con las prácticas de nutrición edáfica y foliar, que conlleve a una mejor respuesta fisiológica del hospedante, lo cual permitiría un menor impacto del parasitismo de los nematodos en las plantas, contribuyendo al manejo integrado de estosspa
dc.description.abstractThe plant parasitic nematodes are among the most damaging pathogens worldwide, affecting plant growth and yield. The plant responses to damage caused by nematodes is closely related to their food habitat, either ectoparasites or endoparasites, and the type of cell damage such as cell destruction caused by species of Pratylenchus and Radopholus; syncytia, related with species of Heterodera and Globodera; and, giant cells, produced by species of Meloidogyne. The objective of this review was to analyze the scope of current research results on understanding the physiological implications of plant interaction with plant-parasitic nematodes, mainly those that destroy the cell, form syncytia and giant cells. In general, the plant parasitic nematodes, regardless of the type of damage they cause, reduce the physiological functions of the roots by affecting the absorption of water and nutrients, create macro and micro-nutriment imbalances that induce physiological changes in the roots and aerial organs of plants, and produce yield losses. More research is required related with the nutritional status of the plants, when interacting with plant parasitic nematodes, in order to get better physiological responses of the plants, which will allow to have less impact of the parasitism of the nematodes on the plants, contributing to a better the management of these.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherBoletín Científicospa
dc.rightsDerechos de autor 2020 Boletín Científico. Centro de Museosspa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/3695spa
dc.subjectwater absorptioneng
dc.subjectnutrients absorptioneng
dc.subjectphotosynthesiseng
dc.subjecthost-parasitic relationshipeng
dc.subjectplant-parasitic nematodeseng
dc.subjectabsorción de agua y nutrientesspa
dc.subjectfotosíntesisspa
dc.subjectrelación parásitohospedantespa
dc.subjectnematodos fitoparásitosspa
dc.titleInteracciones fisiológicas de plantas con nematodos fitoparásitos: una revisiónspa
dc.typeArtículo de revistaspa
dc.typeSección Zoología invertebradosspa
dc.typeJournal Articleeng
dc.identifier.doi10.17151/bccm.2020.24.2.13
dc.identifier.eissn2462-8190
dc.relation.citationendpage205
dc.relation.citationissue2spa
dc.relation.citationstartpage190
dc.relation.citationvolume24spa
dc.relation.ispartofjournalBoletín Científico. Centro de Museosspa
dc.relation.referencesAbad, P., Castagnone-Sereno, P., Rosso, M., De Almeida, J., y Favery, B. (2009). Chapter 7: Invasion, feeding and development. Pp. 163-181. In: Root knot nematodes. Perry, R., Moens, M., y Starr, J. (Eds.). CABI Publishing.spa
dc.relation.referencesAbbasi y Hisamuddin. (2014). Effect of different inoculum levels of Meloidogyne incognita on growth and biochemical parameters of Vigna radiata. Asian J. Nematol. 3(1): 15-20.spa
dc.relation.referencesAgrios, G.N. (2005). Plant pathology. 5thed. Nueva York: Elsevier Academic Press. 922p.spa
dc.relation.referencesAsmus, G.L., y Ferraz, L.C.C.B. (2002). Effect of population densities of Heterodera glycines race 3 on leaf area, photosynthesis and yield of soybean. Fitopatologia Brasileira, 27: 273-278.spa
dc.relation.referencesBeen, T.H., y Schomaker, C.H. (1986). Quantitative analysis of growth, mineral composition and ion balance of the potato cultivar Irene infested with Globodera pallida (Stone). Nematologica 32: 339-355.spa
dc.relation.referencesBolaños, M.M.; Ramírez, J.; Esquivel, F., y Martínez, E. (2011). Prácticas sostenibles para el manejo de nematodos fitoparásitos en cultivos de guayaba. Corporación Colombiana de Investigación Agropecuaria, Corpoica.spa
dc.relation.referencesCabrera, J., Barcala, M., Fenoll, C., y Escobar, C. (2016). The power of omics to identify plant susceptibility factors and to study resistance to root-knot nematodes. Curr. Issues Mol. Biol. 19: 53-72.spa
dc.relation.referencesCabrera, J., Bustos, R., Favery, B., Fenoll, C., y Escobar, C. (2014). NEMATIC: a simple and versatile tool for the in-silico analysis of plant-nematode interactions. Mol. Plant Pathol. 15: 627-636.spa
dc.relation.referencesChen, J., Lin, B., Huang, Q., Hu, L., Zhuo, K., y Liao, J. (2017). A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism. PLoS Pathog. 13: 1-24.spa
dc.relation.referencesDorhout, R., Gommers, F.J., y Kolloffel, C. (1991). Water transport through tomato roots infected with Meloidogyne incognita. Phytopathology 81: 379-385.spa
dc.relation.referencesFatemy, F., y Evans, K. (1986). Growth, water uptake and calcium content of potato cultivars in relation to tolerance of cyst nematodes. RevueNématol. 9(2): 171-179.spa
dc.relation.referencesFogain, R. (2000). Effect of Radopholus similis on plant growth and yield of plantain (Musa AAB). Nematology 2: 129-133.spa
dc.relation.referencesGelpud, C., Mora, E., Salazar, C., y Betancourth, C. (2011). Susceptibility of genotypes of Solanum spp. to the nematode causative of the root knot Meloidogyne spp. (Chitwood). ActaAgron. 60(1): 50-67.spa
dc.relation.referencesGheysen, G. y Mitchum, M.G. (2019). Phytoparasitic nematode control of plant hormone pathways. PlantPhysiol. 179: 1212-1226.spa
dc.relation.referencesGolinowski, W., Sobczak, M., Kurek, W., y Gry-Maszewska, G. (1997). The structure of syncytia. Pp. 80-97. In: Fen- noll, C., Grundler, F.M.W. & Ohl, S.A. (Eds). Cellular and Molecular Aspects of Plant-Nematode Interactions. Dordrecht, The Netherlands, Kluwer.spa
dc.relation.referencesGoverse, A. y Smant, G. (2014). The Activation and suppression of plant innate immunity by parasitic nematodes. Annu. Rev. Phytopathol. 52: 243-65.spa
dc.relation.referencesGuzmán-Piedrahita., O.A., Castaño-Zapata, J. y Villegas-Estrada, B. (2012). Efectividad de la sanidad de cormos de plátano Dominico Hartón (Musa AAB Simmonds), sobre nematodos fitoparásitos y rendimiento del cultivo. Rev. Acad. Colomb. Cienc. 36(138): 45-55.spa
dc.relation.referencesGuzmán-Piedrahita., O.A. y Castaño-Zapata, J. (2020). Nematodos fitoparásitos en cultivos tropicales. Manual de diagnóstico. 277p.spa
dc.relation.referencesHaegeman, A., Mantelin, S., Jones, J.T., y Gheysen, G. (2012). Functional roles of effectors of plant-parasitic nematodes. Gene 492:19-31.spa
dc.relation.referencesHerradura, L.E., Lobres, M.A., De Waele, D., Davide, R.G., y Van Den Bergh, I. (2012). Yield response of four popular banana varieties from southeast Asia to infection with a population of Radopholus similis from Davao, Philippines. Nematology 14(7): 889-897.spa
dc.relation.referencesHogenhout, S.A., Van Der Hoorn, R.A.L., Terauchi, R., y Kamoun, S. (2009). Emerging concepts in effector biology of plant-associated organisms. Mol. Plant Microbe Interac. 22:115-122.spa
dc.relation.referencesHojat Jalali, A.A., Ghasempour, H.R., y Madadzadeh, F. (2007). Impact of sugar beet cyst nematode, Heterodera schachtii, on some physiological aspects of two sugar beet cultivars, nemakill and 7233, in the rhizosphere condition. PlantPathologyJournal 6(1): 60-65.spa
dc.relation.referencesIbrahim, H.M.M., Ahmad, E.M., Martínez-Medina, A., Aly, M.A.M. (2019). Effective approaches to study the plant-root knot nematode interaction. Plant Physiology and Biochemistry 141: 332-342.spa
dc.relation.referencesJaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R., y Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characterization. International Journal of Agriculture and Biology 11: 100-105.spa
dc.relation.referencesJones, J.T., Haegeman, A., Danchin, E.G.J., Gaur, H.S., Helder, J., Jones, M.G.K., Kikuchi, T., Manzanilla-López, R., PalomaresRius, J.E., Wesemael, W.M.L., y Perry, R.N. (2013). Review: Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular PlantPathology 14(9): 946-961.spa
dc.relation.referencesKaranastasi, E., Kostara, T., Malamos, N., y Zervoudakis, G. (2018). Catalase activity, lipid peroxidation, and protein concentration in leaves of tomato infected with Meloidogyne javanica. Nematropica 48: 15-20.spa
dc.relation.referencesKyndt, T., Nahar, K., Haegeman, A., De Vleesschauwer, D., Hofte, M., y Gheysen, G. (2012). Comparing systemic defense-related gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biol. 14:73-82.spa
dc.relation.referencesKyndt, T., Vieira, P., Gheysen, G., De Almeida‐Engler, J. (2013). Nematode feeding sites: unique organs in plant roots. Planta 238:807-818.spa
dc.relation.referencesKo, M.P., Barker, K.R., y Huang, J.S. (1984). Nodulation of soybeans as affected by half-root infection with Heterodera glycines. Journal of Nematology 16: 97-105.spa
dc.relation.referencesKorayem, A. (2013). Damage threshold of root-knot nematode, Meloidogyne arenaria on peanut in relation to date of planting and irrigation system. Canadian Journal of Plant Protection, 1(4): 117-124.spa
dc.relation.referencesLiu, W. y Park, S.W. (2018). Underground mystery: Interactions between plant roots and parasitic nematodes. Current Plant Biology 15: 25-29.spa
dc.relation.referencesLopez-Nicora, H.D., y Niblack, T.L. (2018). Chapter 12: Interactions with other pathogens. Pp. 271-304. In: Cyst Nematodes. Perry, R.N., Moens, M. y Jones, J.T. (Eds.). CABI Publishing.spa
dc.relation.referencesLoveys, B.R., y Bird, A.F. (1973). The influence of nematodes on photosynthesis in tomato plants. Physiological Plant Pathology 3: 525-629.spa
dc.relation.referencesMateille, T. (1993). Effects of banana-parasitic nematodes on Musa acuminata (AAA group) cvs. Poyo and Gros Michel in vitro plants. Tropical Agriculture Trinidad 70(4): 325-331.spa
dc.relation.referencesMelakeberhan, H., Webster, J.M., y Brooke, R.C. (1985). Response of Phaseolus vulgaris to a single generation of Meloidogyne incognita. Nematologica 31: 190-202.spa
dc.relation.referencesMelakeberhan, H., Brooke, R.C., y Webster, J.M. (1986). Relationship between physiological response of French beans of different age to Meloidogyne incognita and subsequent yield loss. Plant Pathology 35: 203-213.spa
dc.relation.referencesMelakeberhan, H., y Ferris, H. (1989). Impact of Meloidogyne incognita on Physiological Efficiency of Vitis vinifera. Journal of Nematology 21(1): 74-80.spa
dc.relation.referencesMelakeberhan, H. (1999). Effects of nutrient source on the physiological mechanisms of Heterodera glycines and soybean genotypes interactions. Nematology 1: 113-120.spa
dc.relation.referencesMelakeberhan, H. (2004). Physiological interactions between nematodes and their host plants (Chapter 15). In: Chen, Z.X., Chen,spa
dc.relation.referencesS.Y., y Dickson, D.W. (2004). Nematology – Advances and Perspectives. Volume II: Nematode Management and Utilization. CABI Publishing.spa
dc.relation.referencesMoens, T., Araya, M., Swennen, R., y De Waele, D. (2006). Reproduction and pathogenicity of Helicotylenchus multicinctus, Meloidogyne incognita and Pratylenchus coffeae, and their interaction with Radopholus similis on Musa. Nematology 8(1): 45-58.spa
dc.relation.referencesMoens, M., Perry, R., y Jones, J. (2018). Cyst nematodes – life cycle and economic importance. Pp. 1-26. In: Cyst Nematodes. Perry, R., Moens, M., y Jones, J. (Eds.). CABI Publishing.spa
dc.relation.referencesNicol, J.M., Turner, S.J., Coyne, D.L., Den Nijs, L., Hockland, S., y Maafi, Z.T. (2011). Current nematode threats to world agriculture. Pp. 21–44. In: Genomics and Molecular Genetics of Plant–Nematode Interactions. Jones, J.T., Gheysen, G., y Fenoll, C. (Eds.). Heidelberg: Springer.spa
dc.relation.referencesOramas Nival, D., y Román, J. (2006). Histopatología de los nematodos Radopholus similis, Pratylenchus coffeae, Rotylenchulus reniformis y Meloidogyne incognita en plátano (Musa acumulata X M. balbisiana, AAB). J. Agric. Univ. P.R., 90(1-2): 83-97.spa
dc.relation.referencesPalomares-Rius, J.E., Escobar, C., Cabrera, J., Vovlas, A., Castillo, P. (2017). Anatomical alterations in plant tissues induced by plantparasitic nematodes. Front. Plant Sci. 8:1-16.spa
dc.relation.referencesPostuka, J.W., Dropkin, V.H., y Nelson, C.J. (1986). Photosynthesis, photorespiration, and respiration of soybean after infection with root nematodes. Photosynthetica 20: 405-410.spa
dc.relation.referencesQuentin, M., Abad, P., y Favery, B. (2013). Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Front. Plant Sci., 4: 1:7.spa
dc.relation.referencesRahi, G.S., Rich, J.R., y Hodge, C. (1988). Effect Meloidogyne incognita and M. javanica on leaf water potential and water use of tobacco. Journal of Nematology 20(4): 516-522.spa
dc.relation.referencesRamakrishnan, S., y Rajendran, G. (1999). Changes induced by Meloidogyne incognita and Rotylenchulus reniformis, individually and in combination on physiology, chlorophyll and nutrients content of papaya. Nematol. Medit. 27: 111-122.spa
dc.relation.referencesSasser, J.N., y Freckman, D.W. (1987). A world perspective on nematology: the role of the society. Pp. 7-20. In: Vistas on Nematology. Veech, J.A., y Dickson, D.W. (Eds.). Hyattsville, Maryland.spa
dc.relation.referencesSchans, J. (1991). Reduction of leaf photosynthesis and transpiration rates of potato plants by second-stage juveniles of Globodera pallida. Plant, Cell and Environment 14: 707-712.spa
dc.relation.referencesSiddique, S., Radakovic, Z.S., De La Torre, C.M., Chronis, D., Novák, O., Ramireddy, E., Holbein, J., Matera, C., Hütten, M., Gutbrod, P., Shahzad Anjam, M., Rozanska, E., Habash, S., Elashry, A., Sobczak, M., Kakimoto, T., Strnad, M., Schmülling, T., Mitchum, M.G., y Grundler, F.M.W. (2015). A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. Proc Natl Acad Sci USA 112: 12669-12674.spa
dc.relation.referencesSikora, R., Coyne, D., y Quénéhervé, P. (2018). Chapter 17: Nematode parasites of bananas and plantains. Pp. 617-657. In: Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. Sikora, R., Coyne, D., Hallmann, J. y Timper, P. (Eds.). CABI Publishing.spa
dc.relation.referencesSwain, B., y Prasad, J. (1989). Photosynthetic rate in rice as influenced by the root-knot nematode, Meloidogyne graminicola, infection. Revue Nématol. 12(4): 431-432.spa
dc.relation.referencesThakur, S.K. (2014). Effect of Meloidogyne incognita on chlorophyll, carotenoid content and physiological function of Mentha arvensis. Agric. Sci. Digest. 34(3): 219: 222.spa
dc.relation.referencesVan Den Akker, S.E., y Birch, P.R.J. (2016). Opening the effector protein toolbox for plant – parasitic cyst nematode interactions. Mol. Plant 9: 1451-1453.spa
dc.relation.referencesWallace, H.R. (1974). The influence of root-knot nematode, Meloidogyne javanica on photosynthesis and on nutrient demand by roots of tomato plants. Nematologica 20: 27-33.spa
dc.relation.referencesWang, J., Niblack, T.L., Tremaine, J.N., Wiebold, W.J., Tylka, G.L., Marett, C.C., Noel, G.R., Myers, O., y Schmidt, M. (2003). The soybean cyst nematode reduces soybean yield without causing obvious symptoms. Plant Disease 87: 623-628.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.title.translatedPhysiological interactions of plants with plant-parasitic nematodes: A revieweng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationeditionNúm. 2 , Año 2020 : Julio - Diciembrespa
dc.relation.bitstreamhttps://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/3695/3410
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

FicherosTamañoFormatoVer
Bol. cient. mus. hist. nat. univ. caldas-3695.pdf246.8Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos de autor 2020 Boletín Científico. Centro de Museos
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos de autor 2020 Boletín Científico. Centro de Museos