Mostrar el registro sencillo del ítem

dc.contributor.authorGutiérrez Lozano, Juan Sebastianspa
dc.contributor.authorRajão, Maria Paulaspa
dc.contributor.authorOsorio, Carlaspa
dc.contributor.authorRubatino, Fernandospa
dc.contributor.authorMarliére, Marinaspa
dc.contributor.authorGonçalves de Melo, Elianespa
dc.date.accessioned2019-01-01 00:00:00
dc.date.accessioned2020-12-09T16:52:34Z
dc.date.available2019-01-01 00:00:00
dc.date.available2020-12-09T16:52:34Z
dc.date.issued2019-01-01
dc.identifier.urihttps://doi.org/10.17151/vetzo.2019.13.1.8
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/13635
dc.description.abstractIntrodução: As lesões medulares causam danos no tecido nervoso por mecanismos primário e secundário. A lesão primaria e de tipo irreversível, já no mecanismo secundário um influxo exacerbado de cálcio é produzido, sendo o passo mais crítico depois da lesão da medula espinhal, principalmente devido à ativação de canais para cálcio voltagem-dependentes. Esse evento é considerado crítico na fisiopatogênia da lesão medular, reduzir o influxo de cálcio deveria resultar numa melhora da lesão medular, já que tem sido demostrado que os bloqueadores de canais de cálcio têm um alto potencial para reduzir as lesões.Objetivos: avaliar o efeito neuroprotetor da Ômega-conotoxina MVIIC obtida do veneno de Conus magus é capaz de bloquear ditos canais e, assim, reduzir o influxo de cálcio. O presente estudo avaliou o efeito da aplicação intratecal da toxina nas doses 15 e 30 pmol e nos tempos 5 minutos e uma hora após o trauma medular experimental em ratos. Métodos: Foram utilizados 36 ratos machos adultos, variedade Wistar, aleatoriamente divididos em seis grupos. Os animais do grupo controle negativo foram submetidos à laminectómica dorsal. Nos demais grupos, além da laminectómica, os animais foram submetidos ao trauma medular agudo contusivo pelo aparelho MASCIS impactor. Realizou-se aplicação intratecal de placebo nos animais dos grupos controle positivo. Nos grupos G3 e G5 foram aplicadas doses de 15 e 30 pmol, respectivamente, da toxina, nos animais tratados 5 minutos após o trauma. Nos grupos G4 e G6 foram aplicadas as doses de 15 e 30, respectivamente, uma hora após o trauma. Coletaram-se segmentos de medula espinhal, para quantificação de espécies reativas de oxigênio e peroxidação lipídica e para a avaliação da expressão gênica de fatores relacionados à apoptose por meio de técnica de qRT-PCR. Resultados: Não foram encontradas diferenças diferenciadas para os tratamentos avaliados com relação à produção de radicais livres e às reações da peroxidação lipídica. Sem embargo, o uso de 15 pmol de ômega-conotoxina MVIIC é uma hora após o trauma, que é mais grave que as outras doses avaliadas.Conclusões: A ômega-conotoxina MVIIC pode ser útil para o tratamento do trauma da medula espinal em ratas. Sem embargo, consulte mais estudos para determinar a dose recomendada para este sustento.spa
dc.description.abstractIntroduction: Spinal cord lesions produce an exacerbated calcium input, being the most critical step after the spinal cord injury, mainly due to the activation of voltage-dependent calcium channels. Thus, calcium channel blockers could have a high potential to reduce spinal cord injuries. Aim: To evaluate the neuroprotective effect of omega-conotoxin MVIIC obtained from the poison of Conus magus in rats with spinal cord trauma. Methods: Thirty-six adult, male, Wistar rats were randomly divided into six groups. Animals in the negative control group underwent dorsal laminectomy. In the other groups, in addition to laminectomy, the animals underwent acute bruised trauma using the MASCIS impactor. Intrathecal placebo application was performed in the animals of the positive control groups. In groups G3 and G5 doses of 15 and 30 pmol of the Omega-conotoxin toxin MVIIC were applied, respectively, in the treated animals, 5 minutes after the trauma. In groups G4 and G6, doses of 15 and 30 pmol were applied, respectively, one hour after the trauma. Segments of the spinal cord were collected to quantify reactive oxygen species and lipid peroxidation, and to assess gene expression of factors related to apoptosis using a qRT-PCR technique. Results: No significant differences were found for the treatments evaluated regarding the free radical production and reactions of lipid peroxidation. However, the use of 15 pmol of omega-conotoxin MVIIC 1 hour after trauma tended to be better than the other evaluated doses. Conclusions: Omegaconotoxin MVIIC could be useful for the treatment of spinal cord trauma in rats. However, further studies are necessary to determine the adequate dose of this substance.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Caldasspa
dc.rightsDerechos de autor 2019 Juan Sebastian Gutiérrez Lozanospa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0spa
dc.sourcehttps://revistasojs.ucaldas.edu.co/index.php/vetzootec/article/view/95spa
dc.subjectomega-conotoxineng
dc.subjectneuroprotectioneng
dc.subjectapoptosiseng
dc.subjectqRT-PCR in real timeeng
dc.subjectspinal cord traumaeng
dc.subjectapoptosespa
dc.subjectômega-conotoxinaspa
dc.subjectneuroproteçãospa
dc.subjectqRT-PCR em tempo realspa
dc.subjecttraumatismo da medula espinhalspa
dc.titleÔmega-conotoxina MVIIC no trauma experimental da medula espinhal em ratos.spa
dc.typeSección Research / investigaciónspa
dc.typeArtículo de revistaspa
dc.typeJournal Articleeng
dc.identifier.doi10.17151/vetzo.2019.13.1.8
dc.identifier.eissn2011-5415
dc.relation.citationendpage122
dc.relation.citationissue1spa
dc.relation.citationstartpage99
dc.relation.citationvolume13spa
dc.relation.ispartofjournalRevista Veterinaria y Zootecnia (On Line)spa
dc.relation.referencesAckery, A.; Tator, C.; Krassioukov, A. A Global perspective on Spinal Cord injury Epidemiology. J. Neurotrauma, v. 21, n. 10, p. 1355-1370, 2004.spa
dc.relation.referencesAslan, A.; Cemek, M.; Buyukokuroglu, M.E. et al. Dantrolene can reduce secondary damage after spinal cord injury. Eur. Spine J., v. 18, p. 1442-1451, 2009.spa
dc.relation.referencesBartholdi, D.; Schwab, M.E. Expression of pro-inflamattory cyitokine and chemokine mRNA upon experimental spinal cord in mouse: an in situ hydridization sutdy.Eur. J. Neurosc., v. 7, p. 1422-1438, 1997.spa
dc.relation.referencesBasso, D.M.; Beattie, M.S.; Bresnaham , J.C.A. sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma, v. 1, p. 1-21, 1995.spa
dc.relation.referencesBasso, M.; Beattie, M.S.; Bresnahan, J.C. Graded histological and locomotor outcomes after spinal cord contusion the NYU weight-drop device versus transection. Exp. Neurol., v. 139, n. 2, p. 244-256, 1996.spa
dc.relation.referencesBingham, J.; Mitsunaga, E.; Bergeron, Z.L. Drugs from slugs – Past, presente and future perspectives of ω-conotoxin research. Chemico-Biological, v. 183, p. 1-18, 2010.spa
dc.relation.referencesBo, W.; Xian-Jun, R. Control of demyelination for recovery of spinal cord injury.Chin. J. Traumatol., v. 11, n. 5, p. 306-310, 2008.spa
dc.relation.referencesBrito, L.M.O.; Chein, M.B.C.; Marinho, S.C.; Duarte, T.B. Avaliação epidemiológicas dos pacientes vítimas de traumatismo raquimedular. Rev. Col. Bras. Cir, v. 38, p. 304-309, 2011.spa
dc.relation.referencesBrouns, R.; Deyn, P.P. The complexity of neurobiological processes in acute ischemic stroke. Clin. Neurol. Neurosur., v. 11, p. 483-495, 2009.spa
dc.relation.referencesCoelho, R.M.P. Efeito neuroprotetor da toxina phα1β recombinante no traumamedular agudo em ratos. 2016. 76 f. Dissertação (Mestrado). Universidade Federal de Minas Gerais, programa de pós-graduação em ciência animal, Belo Horizonte. 2016.spa
dc.relation.referencesDasari, V.R; Spomar, D.G.; Gondi, C.S.; Sloffer, C.A.; Saving, K.L.; Gujrati, M.; Rao, J.S.; Dinh, D.H. Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma, v. 24, p. 391-410, 2007.spa
dc.relation.referencesde Souza, A.H.; Castro Jr C.J.; Rigo, F.K.; De Oliveira, S.M.; Gomez, R.S.; Diniz, D.M. An evaluation of the antinociceptive effects of Phα1β, a neurotoxina from the spider Phoneutria nigriventer, and ω-conotoxin MVIIA, a cone snail Conus magustoxin, in a rat model of inflammatory and neuropathic pain. Cell. Mol. Neurobiol., v. 33, p.58-67, 2013.spa
dc.relation.referencesDegterev, A.; Boyce, M.; Yuan, J. A decade of caspases. Oncogene, v. 53, p.8543- 8567, 2003.spa
dc.relation.referencesDiniz, D.M.; De Souza, A.H.; Pereira, E.M.R.; Da Silva, J.F.; Rigo, F.K.; Romano'silva, M.A.; Binda, N.; Castro, C.J.; Cordeiro, M.N. ; Ferreira, J.; Gomez, M.V. Effects of the calcium channel blockers Phα1β and ωconotoxin MVIIA on capsaicin and acetic acid-induced visceral nociception in mice.Pharmacology, Biochemistry and Behavior, v. 126, p. 97-102, 2014.spa
dc.relation.referencesDiniz, D.M. Ação farmacológica da toxina Phα1β isolada do veneno da aranha Phoneutria nigriventer em modelos de dor visceral em camundongos. 2012.Dissertação (pós-graduação em Medicina e Biomedicina). Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte.spa
dc.relation.referencesDrummond, B.L. Subfração PnTx 3-6 do veneno da aranha armadeira (Phoneutria nigrivebter) no tratamento de ratos wistar submetidos ao trauma agudo compressivo à medula espinhal. 2010. 52p. Dissertação (Mestrado em Ciência Animal) – Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte.spa
dc.relation.referencesEstrada, G.; Villegas, E.; Corzo, G. Spider venoms: a rich source of acylpolyamines and peptides as a new lead to CNS drugs. Nat. Prod. Rep., v. 24, p.145- 161, 2007.spa
dc.relation.referencesFighera, R.A.; Silva, M.C.; Souza, T.M. et al. Aspectos patológicos de 155 casos fatais de cães atropelados por veículos automotivos. Ciência Rural, v. 38, p. 1375- 1380, 2008.spa
dc.relation.referencesGomez M.V.; Kalapothakis, E.; Guatimosim, C.; Prado, M.A. Phoneutria nigriventer venom: a cocktail of toxins that affect ion channels. Cell Mol Neurobiol, v. 22, p.579-588, 2002.spa
dc.relation.referencesGonçaves J.M.; Ferreira, J.; Prado, M.A.; Cordeiro, M.N.; Richardson, M.; Pinheiro, C.A.N.; Silva, M.A.R.; Castro Junior, C.J.; Souza, A.H.; Gomez, M.V. The effect of spider toxin PhTx3-4, ω-conotoxins MVIIA and MVIIC on glutamate uptake and on capsaicin-induced glutamate release and [Ca2+] in spinal cord synaptosomes. Cell Mol Neurobiol, v. 31, p. 277-283, 2011.spa
dc.relation.referencesGross, A.; Mcdonell, J.M.; Korsmeyer, J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev., v.13, p.1899-1911, 1999.spa
dc.relation.referencesHagg, T.; Oudega, M. Degenerative and spontaneous regenerative processes after spinal cord injury. J.Neurotrauma, v.23, p.263-280, 2006.spa
dc.relation.referencesHillyard, D.R.; Monje, V.D.; Mintz, I.M. et al. A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron, v. 9, p. 69-77, 1992.spa
dc.relation.referencesImaizumi, T.; Kocsis, J.D.; Waxman, S.G. The role of voltage-gated Ca++ channels in anoxic injury of spinal cord matter. Brain Res., v. 817, p. 84-92, 1999.spa
dc.relation.referencesJia, X.; Kowalski, R.G.; Sciubba, D.M. et al. Critical Care of Traumatic Spinal Cord Injury. J. Intensiv. Care Med., v. 28, p. 12-23, 2013.spa
dc.relation.referencesKaralija, A.; Novikova, L.N.; Kingham, P.J. et al. The effects of n-acetyl-cysteine and acetyl-l-carnitine on neural survival, neuroinflammation and regeneration following spinal cord injury. Neuroscience, v. 260, p. 143-151, 2014.spa
dc.relation.referencesKawaguchi, M.; Furuya, H.; Patel, P. Neuroprotective effects of anesthetic agents. J.Anesth., v. 19, p. 150156, 2005.spa
dc.relation.referencesKim, Y.; Park, Y.K.; Cho, H. et al. Long-term changes in expressions of spinal glutamate transporters after spinal cord injury. Brain Res., v. 1389, p. 194-199, 2011.spa
dc.relation.referencesLanz, O.; Bergman, R.; Shell, L. Initial assessment of patients with spinal cord trauma.Vet. Med., p. 851-854, 2000.spa
dc.relation.referencesLiu, D.; Liu, J.; Wen, J. Elevation of hydrogen peroxide after spinal cord injury detected by using the fenton reaction. Free Radical Bio. Med., v. 27, p. 478-482, 2011.spa
dc.relation.referencesLiu, Z.-Q.; Xing, S.-S.; Zhang, W. Neuroprotective effect of curcumin on spinal cord in rabbit model with ischemia/reperfusion. J. Spinal Cord Med., v. 36, p. 147-152, 2016.spa
dc.relation.referencesMartins, B.C. Efeitos da associação do riluzol ao dantrolene em ratos submetidos ao trauma medular agudo. 2012. 70p. Dissertação (Mestrado em Ciência Animal) – Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte.spa
dc.relation.referencesMcDonough, S.I.; Swartz, K.J.; Mintz, I.M.; Boland, L.M.; Bean, B.P. Inhibition of calcium channels in rat central and peripheral neurons by omega-conotoxin MVIIC. J Neurosci, v. 15, p. 2612-2623, 1996.spa
dc.relation.referencesMendes, D.S.; Arias, M.V.B. Traumatismo da medula espinhal em cães e gatos: estudo prospectivo de 57 casos. Pesq. Vet. Bras., v. 32, p. 1304-13012, 2012.spa
dc.relation.referencesMetz, G.A.; Merkler, D.; Dietz, V.; Schwab, M.E.; Fouad, K. Efficient testing of motor function in spinal cord injured rats. Brain Res, v. 883, p. 165-177, 2000.spa
dc.relation.referencesMinami, K.; Raymond, C.; Martin-Moutot, N. Role of Thr in the binding of omegaconotoxing MVIIC to N-type Ca channels. FEBS Let., v. 491, p. 127-130, 2001.spa
dc.relation.referencesOliveira, K.M. Efeitos de diferentes doses de ω–conotoxina MVIIC no tratamento de ratos submetidos ao trauma medular agudo compressivo. 2012. 61 p.Dissertação (Mestrado em Medicina e Cirurgia Veterinárias) – Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte.spa
dc.relation.referencesOliveira, K.M.; Lavor, M.S.L.; Silva, C.M.O. et al. Omega-conotoxin MVIIC attenuates neuronal apoptosis in vitro and improves significant recovery after spinal cord injury in vivo in rats. Int. J. Clin. Exp. Pathol., v. 7, p. 3524-3536, 2014.spa
dc.relation.referencesOyinbo, C.A. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp, v.71, p.281-299, 2011.spa
dc.relation.referencesPortt, L.; Norman, G.; Clapp, C. et al. Anti-apoptosis and cell survival: a review.Biochim. Biophys. Acta, v. 1813, p. 238-259, 2011.spa
dc.relation.referencesSantos, G.B.; Cristante, A.F.; Marcon, R.M.; Souza, F.I.; Barros Filho, T. E.P.; Damasceno, M.L. Modelo experimental de lesão medular e protocolo de avaliação motora em ratos wistar. Acta ortop. Bras,. v. 19, n.2, 2011.spa
dc.relation.referencesSouza, A.H.; Lima, M.C.; Drewes, C.C. et al. Antiallodynic effect and side effects of Pha1b, a neurotoxin from the spider Phoneutria nigriventer: Comparison withωconotoxin MVIIA and morphine. Toxicon, v. 58, p. 626-633, 2011.spa
dc.relation.referencesSpringer, J.E.; Azbill, R.D.; Kennedy, S.E. et al. Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochemistry, v.69, p. 1592-1600, 1997.spa
dc.relation.referencesSpringer, J.E.; Azbill, R.D.; Kennedy, S.E. et al. Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochemistry, v.69, p. 1592-1600, 1997.spa
dc.relation.referencesTorres, B.; Serakide, R.; Caldeira, F. et al. The ameliorating effect of dantrolene on the morphology of urinary bladder in spinal cord injured rats. Pathol. Res. Pract. v. 207, p. 775-779, 2011.spa
dc.relation.referencesTorres, B.B.J.; Caldeira, F.M.C.; Gomes, M.G. et al. Effects of dantrolene on apoptosis and immunohistochemical expression of NeuN in the spinal cord after traumatic injury in rats. Int. J. Exp. Path., v. 91, p. 530-536, 2010.spa
dc.relation.referencesThrall, M.A. Veterinary hematology and clinical chemistry. Philadelphia: Lippincott Williams & Wilkins, 2004. 518p.spa
dc.relation.referencesWu, Y.; Zheng, M.; Wang, S. et al. Spatiotemporal pattern of TRAF3 expression after rat spinal cord injury. J. Mol. Hist., DOI 10.1007/s10735-014-95752, 2014.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.spa
dc.title.translatedOmega-conotoxin MVIIC on experimental spinal cord trauma in rats.eng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationeditionNúm. 1 , Año 2019 : Enero - Juniospa
dc.relation.bitstreamhttps://revistasojs.ucaldas.edu.co/index.php/vetzootec/article/download/95/69
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

FicherosTamañoFormatoVer
vetzootec-95.pdf678.4Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos de autor 2019 Juan Sebastian Gutiérrez Lozano
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos de autor 2019 Juan Sebastian Gutiérrez Lozano