Mostrar el registro sencillo del ítem

dc.contributor.advisorRodas Rodríguez, José Mauricio
dc.contributor.authorBeltrán González, Santiago
dc.date.accessioned2022-09-20T19:30:30Z
dc.date.available2022-09-20T19:30:30Z
dc.date.issued2022-09-23
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/18082
dc.descriptionIlustraciones, gráficas, fotos, tablasspa
dc.description.abstractspa:Las sales cuaternarias de amonio (SCA) han mostrado gran potencial farmacológico para el tratamiento de diferentes enfermedades, razón por la cual, en el grupo de investigación de Química Teórica y Bioinformática (QTB) de la Universidad de Caldas, se han sintetizado diferentes SCA, y evaluado su potencial contra enfermedades como la leishmaniasis y el Chagas, además de, recientemente, evaluar su potencial anticancerígeno. Sin embargo, a pesar de la información experimental obtenida en los últimos años, aún no es claro el mecanismo de acción de las mismas, ni se tiene información sobre su interacción con diferentes blancos terapéuticos. El presente trabajo estudia las interacciones de un grupo de diez sales cuaternarias de amonio (SCA) de fórmula general [N(CH2X)(CH3)2R]I (X = I o Cl, R = (CH2)nCHC(Ar–pY)2 y pY = H o pF), tanto en sus estructuras cristalinas como haciendo parte de un complejo proteína-ligando entre dichas sales y la enzima Quinasa Colina (ChoK), la cual es un blanco anticancerígeno usual, dado que es sabido que la sobreexpresión de una de sus isoformas, se encuentra vinculada con desequilibrios en el ciclo de la fosfatidilcolina permitiendo la proliferación de diferentes neoplasias, razón por la cual, existe un interés en el potencial inhibitorio de diferentes SCA sobre la ChoK gracias a la similitud estructural de estas con la colina. Para ello, el estudio de los sistemas cristalinos se realizó mediante un análisis estructural de las diferentes sales apoyado en la teoría cuántica de átomos en moléculas (QTAIM) y el análisis de superficie de Hirshfeld, posteriormente, se realizaron estudios de acoplamiento molecular (Docking) y dinámica molecular entre las diferentes sales y la enzima ChoK, para luego, realizar un análisis estructural de los diferentes complejos proteína-ligando mediante la teoría QTAIM y de esta forma, identificar las interacciones presentes en los diferentes sistemas, y evaluar si existe o no una relación entre las mismas, encontrando que las principales interacciones presentes en ambos sistemas son aquellas de tipo hidrógeno como H – H e H – π, siendo relevante la presencia de otras interacciones de este tipo como H – I u otras como I – I o Cl – I en los sistemas cristalinos así como interacciones de tipo H – O o F – H en el complejo SCA-ChoK, a quienes se suman, aunque en menor medida, interacciones como π-π y I – π presentes en ambos sistemas, entre otras. Los diferentes cálculos mecano-cuánticos se realizaron a un nivel de teoría HF usando el set de base def2-TZVP para el átomo de yodo y 6-311++G(d,p) para el resto de los átomos.spa
dc.description.abstracteng:Due to the biological significance of choline kinase enzyme (ChoK) as a antitumor target, a comparative study of its supramolecular interactions in protein-ligand complexes with ten quaternary ammonium salts (QAS) of general structure [(CH3)2(XCH2)N(CH2)nCH=C(Ar-pY)2]+ I- (where X = I or H; pY = H or F and n = 2 - 4) was carried out in silico for the first time. Initially a study of the crystalline system of QASs was performed by structural analysis supported by the Quantum Theory of Atoms in Molecules (QTAIM) and Hirshfeld surface analysis. Then, molecular docking and molecular dynamics between every QAS with ChoK enzyme were modeled and followed by a QTAIM structural analysis of the respective protein-ligand complexes in order to determine the likely interactions operating in these systems. The results suggest that the main interactions present in both systems are hydrogen-type ones such as H‧‧‧H and H‧‧‧π, being relevant the presence of other interactions of this type such as H‧‧‧I in the crystalline systems or H‧‧‧O in the ChoK-QAS complexes. Additionally, less frequent but very important interactions such as π‧‧‧π and others were identified in both crystalline and ligand-complex systems. Mechanical Quantum calculations were performed at HF level of theory using the def2-TZVP basis set for the iodine and 6-311++G(d,p) for the rest of the atoms.eng
dc.description.tableofcontentsLista de figuras / Lista de tablas / 1. Marco teórico / 1.1. Química supramolecular / 1.1.1. Interacciones intermoleculares / 1.2. Sales cuaternarias de amonio / 1.3. Antecedentes / 1.4. Teorías de enlace / 1.4.1. Reseña histórica / 1.4.2. Criterios para determinar un enlace químico / 1.5. Métodos ab initio / 1.5.1. Aproximación de Born-Oppenheimer / 1.5.2. Aproximación de la función de onda multielectrónica / 1.5.3. Antisimetría de la función de onda / 8 1.5.4. Teorema variacional / 1.6. Funciones base / 1.7. Análisis de la densidad electrónica / 1.7.1. Teoría cuántica de átomos en moléculas (QTAIM) / 1.8. Análisis de superficie de Hirshfeld / 1.9. Colina quinasa (ChoK) / 1.10. Modelado de estructura 3D en proteínas / 1.10.1. CASP / 1.10.2. CABS-fold / 1.10.3. AlphaFold / 1.11. Acoplamiento molecular (Docking) / 1.12. Dinámica molecular / 2. Planteamiento del problema y justificación / 3. Objetivos / 3.1. Objetivo general / 3.2. Objetivos específicos / 4. Materiales y métodos / 4.1. Determinación de interacciones en la estructura cristalina / 4.1.1. Análisis de superficie de Hirshfeld / 4.1.2. Teoría cuántica de átomos en moléculas (AIM) / 4.2. Enzima colina quinasa (ChoK) / 4.2.1. Modelado molecular / 4.2.2. Docking / 4.2.3. Dinámica molecular (DM) / 4.3. Determinación de las interacciones complejo enzima-sustrato / 4.3.1. Reducción del sistema / 4.4. Determinación de las interacciones del complejo / 5. Resultados y discusión 29 5.1. Análisis de interacciones en la familia C4 / 5.1.1. Análisis de superficie de Hirshfeld (HS) / 5.1.2. Teoría cuántica de átomos en moléculas (QTAIM) / 5.2. Análisis de interacciones en la familia C5 / 5.2.1. Análisis de superficie de Hirshfeld (HS) / 5.2.2. Teoría cuántica de átomos en moléculas (QTAIM) / 5.3. Análisis de interacciones en la familia C6 / 5.3.1. Análisis de superficie de Hirshfeld (HS) / 5.3.2. Teoría cuántica de átomos en moléculas (QTAIM) / 5.4. Quinasa de colina (ChoK): Determinación estructural / 5.4.1. Modelado por homología / 5.4.2. Comparación de estructuras / 5.5. Acoplamiento molecular: Docking ChoK-SCA / 5.5.1. Validación: Cross-Docking / 5.5.2. Acoplamiento molecular: Docking & SCA / 5.6. Dinámica molecular / 5.6.1. Clustering / 5.6.2. LigPlot: Familia C4 / 5.6.3. LigPlot: Familia C5 / 5.6.4. LigPlot: Familia C6 / 5.7. Análisis de interacciones complejo ChoK y familia C4 / 5.7.1. Generalidades familia C4 / 5.7.2. Interacciones en C4I / 5.7.3. Interacciones en C4pF / 5.7.4. Interacciones en C4IpF / 5.8. Análisis de interacciones complejo ChoK y familia C5 / 5.8.1. Generalidades familia C5 / 5.8.2. Interacciones en C5 / 91 5.8.3. Interacciones en C5pF / 5.8.4. Interacciones en C5I / 5.8.5. Interacciones en C5ClpF / 5.9. Análisis de interacciones complejo ChoK y familia C6 / 5.9.1. Generalidades familia C6 / 5.9.2. Interacciones en C6ClpF / 5.9.3. Interacciones en C6I / 5.9.4. Interacciones en C6IpF / 6. Conclusiones y recomendaciones 107 6.1. Conclusiones / 6.2. Recomendaciones / A. Distancias y ángulos de enlaces en el sitio activo del complejo ChoK y la familia C4 / B. Distancias y ángulos de enlaces en el sitio activo del complejo ChoK y la familia C5 / C. Distancias y ángulos de enlaces en el sitio activo del complejo ChoK y la familia C6 / Referenciasspa
dc.format.mimetypeimage/jpegspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleEstudio comparativo de interacciones supramoleculares en sales cuaternarias de amonio y el complejo proteína-ligando con la enzima colina quinasaspa
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.researchgroupGrupo de Química Teórica y Bioinformática - QTB (Categoría B)spa
dc.description.degreelevelMaestríaspa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesLeonardo R. de Almeida, Paulo S. Carvalho, Hamilton B. Napolitano, Solemar S. Oliveira, Ademir J. Camargo, Andreza S. Figueredo, Gilberto L.B. de Aquino, and Valter H. Carvalho Silva. Contribution of directional dihydrogen interactions in the supramolecular assembly of single crystals: Quantum chemical and structural investigation of C17H17N3O2 azine. Crystal Growth and Design, 17(10):5145–5153, 2017.spa
dc.relation.referencesSantiago Schiaffino Ortega. Nuevos inhibidores de colina quinasa no simétricos y simétricos más polares con actividad antitumural y antimalárica. Universidad de Granada, 2012.spa
dc.relation.referencesAlfred Werner. Coordination chemistry. Zeitschr. Anorg. Chem, 3:267, 1893.spa
dc.relation.referencesChristoph A Schalley. Analytical methods in supramolecular chemistry, volume 1. John Wiley & Sons, 2012.spa
dc.relation.referencesViviana Reyes Marquez. Síntesis de nuevos oxaazaciclofanos y sus estudios de reconocimiento molecular dirigidos hacia cationes orgánicos. 2012.spa
dc.relation.referencesJonathan W. Steed and Jerry L. Atwood. Supramolecular chemistry. John Wiley & Sons, 2022.spa
dc.relation.referencesGalina Shevtsova. Química supramolecular. parte 1. Revista de Química, 9(1):17–28, feb. 1995. URL https: //revistas.pucp.edu.pe/index.php/quimica/article/view/8352.spa
dc.relation.referencesGalina Shevtsova. Química supramolecular (ii parte). Revista de Química, 9(2):119–135, abr. 1995. URL https://revistas.pucp.edu.pe/index.php/quimica/article/view/5553.spa
dc.relation.referencesPaul Muller. Glossary of terms used in physical organic chemistry (iupac recommendations 1994). Pure and Applied Chemistry, 66(5):1077–1184, 1994.spa
dc.relation.referencesAndrew R. Leach. Molecular modelling: principles and applications. Pearson education, 2001.spa
dc.relation.referencesElangannan Arunan, Gautam R Desiraju, Roger A Klein, Joanna Sadlej, Steve Scheiner, Ibon Alkorta, David C Clary, Robert H Crabtree, Joseph J Dannenberg, Pavel Hobza, et al. Definition of the hydrogen bond (iupac recommendations 2011). Pure and applied chemistry, 83(8):1637–1641, 2011.spa
dc.relation.referencesGuy Lamoureux, Katherine Chaves-Carballo, and Carlos Arias-Álvarez. Grids iii: Hydrogen bridges in introductory chemistry. Educación química, 32(3):130–143, 2021.spa
dc.relation.referencesJonathan W Steed, David R Turner, and Karl Wallace. Core concepts in supramolecular chemistry and nanochemistry. John Wiley & Sons, 2007.spa
dc.relation.referencesWilliam R Carroll, Perry Pellechia, and Ken D Shimizu. A rigid molecular balance for measuring face-to-face arene- arene interactions. Organic Letters, 10(16):3547–3550, 2008.spa
dc.relation.referencesBenjamin P. Hay and Vyacheslav S. Bryantsev. Anion–arene adducts: C–h hydrogen bonding, anion–π interaction, and carbon bonding motifs. Chemical communications, (21):2417–2428, 2008.spa
dc.relation.referencesRick Rajter, Roger H. French, Rudi Podgornik, WY Ching, and V. Adrian Parsegian. Spectral mixing formulations for van der waals–london dispersion interactions between multicomponent carbon nanotubes. Journal of applied physics, 104(5):053513, 2008.spa
dc.relation.referencesG.P. Moss, P.A.S. Smith, and D. Tavernier. Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC Recommendations 1995). Pure and applied chemistry, 67(8-9): 1307–1375, 1995.spa
dc.relation.referencesBianca-Iustina Andreica, Xinjian Cheng, and Luminita Marin. Quaternary ammonium salts of chitosan. a critical overview on the synthesis and properties generated by quaternization. European Polymer Journal, 139:110016, 2020.spa
dc.relation.referencesYu Yi, Jiacheng Fei, Yun-Xia Xu, Guoqing Ying, and Zhi-Min Ou. Preparation and characterization of a schiff-based chitosan-fructose quaternary ammonium salt for medical applications. Journal of Biomaterials Science, Polymer Edition, 31(6):804–815, 2020.spa
dc.relation.referencesDorota Olejnik, Malgorzata Galamon, Ewa Liwarska-Bizukojc, Elisabeth Delbeke, Kevin M. Van Geem, and Christian V. Stevens. Effect of newly synthesized salts and three common micropollutants on the biochemical activity of nitrifiers. Sustainability, 13(13), 2021.spa
dc.relation.referencesArkadiusz Telesiński, Barbara Pawłowska, Robert Biczak, and Jacek Pater. Activity of dehydrogenases in clay soil exposed to quaternary ammonium salts with the iodine anion. Polish Journal of Soil Science, 50(2): 189–196, 2017.spa
dc.relation.referencesKatarzyna. Rajkowska, Anna. Koziróg, Anna. Otlewska, Malgorzata. Piotrowska, Paulina Nowicka-Krawczyk, Bogumil Brycki, Alina Kunicka-Styczyńska, and Beata Gutarowska. Quaternary ammonium biocides as antimicrobial agents protecting historical wood and brick. Acta Biochimica Polonica, 63(1):153–159, 2016.spa
dc.relation.referencesYuki Kugimoto, Atsumi Wakabayashi, Toshiaki Dobashi, Osamu Ohnishi, Toshiro K. Doi, and Syuhei Kurokawa. Preparation and characterization of composite coatings containing a quaternary ammonium salt as an anti-static agent. Progress in Organic Coatings, 92:80–84, 2016.spa
dc.relation.referencesJoanna Stefańska, Anna Pietruczuk-Padzik, Marta Struga, Maciej Borkowski, and Stefan Tyski. Biological evaluation of quaternary bis ammonium salt and cetylpyridinum bromide against s. epidermidis biofilm. Polish journal of microbiology / Polskie Towarzystwo Mikrobiologów = The Polish Society of Microbiologists, 62:359– 64, 01 2013.spa
dc.relation.referencesAurel Tăbăcaru, Andreea Veronica Dediu Botezatu, Georgiana Horincar, Bianca Furdui, and Rodica Mihaela Dinică. Green accelerated synthesis, antimicrobial activity and seed germination test of quaternary ammonium salts of 1,2-bis(4-pyridyl)ethane. Molecules, 24(13), 2019.spa
dc.relation.referencesDexiong Li, Yubei Qiu, Sihui Zhang, Mi Zhang, Zexi Chen, and Jiang Chen. A multifunctional antibacterial and osteogenic nanomedicine: Qas-modified core-shell mesoporous silica containing ag nanoparticles. BioMed Research International, 2020, 2020.spa
dc.relation.referencesTengfei Liu, Yuqing Liu, Menglong Liu, Ying Wang, Weifeng He, Gaoqiang Shi, Xiaohong Hu, Rixing Zhan, Gaoxing Luo, Malcolm Xing, et al. Synthesis of graphene oxide-quaternary ammonium nanocomposite with synergistic antibacterial activity to promote infected wound healing. Burns & trauma, 6, 2018.spa
dc.relation.referencesPooyan Makvandi, Rezvan Jamaledin, Mostafa Jabbari, Nasser Nikfarjam, and Assunta Borzacchiello. Antibacterial quaternary ammonium compounds in dental materials: A systematic review. Dental Materials, 34 (6):851–867, 2018.spa
dc.relation.referencesMitsuru Shiraishi, Yoshio Aramaki, Masaki Seto, Hiroshi Imoto, Youichi Nishikawa, Naoyuki Kanzaki, Mika Okamoto, Hidekazu Sawada, Osamu Nishimura, Masanori Baba, et al. Discovery of novel, potent, and selective small-molecule CCR5 antagonists as anti-HIV-1 agents: synthesis and biological evaluation of anilide derivatives with a quaternary ammonium moiety. Journal of medicinal chemistry, 43(10):2049–2063, 2000.spa
dc.relation.referencesAna María Mesa Vanegas. Potenciales candidatos antimaláricos y antiplasmodiales de origen natural y sintético. Revista Colombiana de Ciencias Químico Farmacéuticas, 47(3):375–399, 2018.spa
dc.relation.referencesMaritza Fernandez, Javier Murillo, Luz Amalia Ríos Vásquez, Rogelio Ocampo Cardona, David L. Cedeño, Marjorie A. Jones, Iván D. Velez, and Sara M. Robledo. In vivo studies of the effectiveness of novel Nhalomethylated and non-halomethylated quaternary ammonium salts in the topical treatment of cutaneous leishmaniasis. Parasitology research, 117(1):273–286, 2018.spa
dc.relation.referencesMarisol López Muñoz, Jessica Johanna, Luz Amalia Ríos Vásquez, Rogelio Ocampo cardona, Marjorie A. Jones, Craig S. Haynes, Craig Wallace, and Sara M. Robledo. Novel fluorinated quaternary ammonium salts and their in vitro activity as trypanocidal agents. Medicinal Chemistry Research, 28(3):300–319, 2019.spa
dc.relation.referencesWenfeng Wang, Zedong Bai, Fengsen Zhang, Conghui Wang, Yaofeng Yuan, and Jingwei Shao. Synthesis and biological activity evaluation of emodin quaternary ammonium salt derivatives as potential anticancer agents. European journal of medicinal chemistry, 56:320–331, 2012.spa
dc.relation.referencesDonna Soong, Jee Sun Yang, Changmok Oh, Shuolin Cui, Bo-Kyung Kim, Misun Won, Jang-ik Lee, Hwan Mook Kim, , and Gyoonhee Han. New synthetic aliphatic sulfonamido-quaternary ammonium salts as anticancer chemotherapeutic agents. European journal of medicinal chemistry, 69:670–677, 2013.spa
dc.relation.referencesMarcelo Z. Hernandes, Suellen Melo T. Cavalcanti, Diogo Rodrigo M. Moreira, Junior de Azevedo, Walter Filgueira, and Ana Cristina Lima Leite. Halogen atoms in the modern medicinal chemistry: hints for the drug design. Current drug targets, 11(3):303–314, 2010.spa
dc.relation.referencesJulia Bruno Colmenarez, Reinaldo Atencio, Marinel Quintero, Luis Seijas, Rafael Almeida, and Luis Rincón. Crystal Structure Analysis and Topological Study of Non-covalent Interactions in 2,2-Biimidazole:Salicylic Acid 2:1 Co-crystal. Journal of Chemical Crystallography, 47(1-2):47–58, 2017.spa
dc.relation.referencesDezhi Yang, Ruonan Wang, Guimin Jin, Baoxi Zhang, Li Zhang, Yang Lu, and Guanhua Du. Structural and Computational Insights into Cocrystal Interactions: A Case on Cocrystals of Antipyrine and Aminophenazone. CRYSTAL GROWTH & DESIGN, 19(11):6175–6183, NOV 2019.spa
dc.relation.referencesDean H. Johnston and Ikponmwosa Agho. Crystal structures and hydrogen-bonding analysis of a series of solvated ammonium salts of molybdenum (ii) chloride clusters. Acta Crystallographica Section E: Crystallographic Communications, 75(11):1705–1711, 2019.spa
dc.relation.referencesDebajit Dutta, S. Mohd Nashre-ul Islam, Utpal Saha, Sanjib Chetry, Ankur K. Guha, and Manjit K. Bhattacharyya. Structural Topology of Weak Non-covalent Interactions in a Layered Supramolecular Coordination Solid of Zinc Involving 3-Aminopyridine and Benzoate: Experimental and Theoretical Studies. Journal of Chemical Crystallography, 48(4):156–163, 2018.spa
dc.relation.referencesSandeep Kumar Dey, Barun Kumar Datta, and Gopal Das. Binding discrepancy of fluoride in quaternary ammonium and alkali salts by a tris(amide) receptor in solid and solution states. CRYSTENGCOMM, 14 (16):5305–5314, 2012.spa
dc.relation.referencesFrancisco Meijide, María Pilar Vázquez-Tato, Julio A. Seijas, Santiago de Frutos, Juan V. Trillo Novo, Victor H. Soto, and José Vázquez Tato. Crystal structure of a cationic bile salt derivative ([3β,5β,7α,12α]-3-(2- naphthyloylamino)-7,12-dihydroxycholan-24-triethylammonium iodide). Crystals, 9(3), 2019.spa
dc.relation.referencesYannick Roselló, Mónica Benito, Elies Molins, Miquel Barceló Oliver, and Antonio Frontera. Adenine as a Halogen Bond Acceptor: A Combined Experimental and DFT Study. Crystals, 9(4):224, 2019.spa
dc.relation.referencesPrakash L. Verma and Shridhar P. Gejji. Modeling protic dicationic ionic liquids based on quaternary ammonium, imidazolium or pyrrolidinium cations and bis(trifluoromethanesulfonyl)imide anion: Structure and spectral characteristics. JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 85:304–315, OCT 2018.spa
dc.relation.referencesTariq Shah, Flonne Wildes, Marie france Penet, Paul T. Winnard Jr, Kristine Glunde, Dmitri Artemov, Ellen Ackerstaff, Barjor Gimi, Samata Kakkad, Venu Raman, and Zaver M. Bhujwalla. Choline kinase overexpression increases invasiveness and drug resistance of human breast cancer cells. NMR in biomedicine, 23(6):633–642, 2010.spa
dc.relation.referencesMaría Sahún Roncero, Belén Rubio Ruiz, Giorgio Saladino, Ana Conejo García, Antonio Espinosa, Adrián Velázquez Campoy, Francesco Luigi Gervasio, Antonio Entrena, and Ramon Hurtado Guerrero. The mechanism of allosteric coupling in choline kinase α1 revealed by the action of a rationally designed inhibitor. Angewandte Chemie - International Edition, 52(17):4582–4586, 2013.spa
dc.relation.referencesEdward Frankland. Xix. on a new series of organic bodies containing metals. Philosophical Transactions of the Royal Society of London, 142:417–444, 1852.spa
dc.relation.referencesHermann Kolbe. Ueber die rationelle zusammensetzung der fetten und aromatischen säuren, aldehyde, acetone usw, und ihre beziehungen zur kohlensäure. Justus Liebigs Annalen der Chemie, 101(3):257–265, 1857.spa
dc.relation.referencesAugust Kekulé. Ueber die sg gepaarten verbindungen und die theorie der mehratomigen radicale. Justus Liebigs Annalen der Chemie, 104(2):129–150, 1857.spa
dc.relation.referencesÁngel Sánchez González. Caracterización del enlace quimico en compuestos de boro, iluros y reacciones de aza-y arsa-Wittig: QTAIM y análisis ELF de la densidad electrónica. Granada: Universidad de Granada, 2007.spa
dc.relation.referencesJacobus Henricus van’t Hoff. A suggestion looking to the extension into space of the structural formulas at present used in chemistry, and a note upon the relation between the optical activity and the chemical constitution of organic compounds. Arch Neerland Sci Exact Natur, 9:445–454, 1874.spa
dc.relation.referencesGilbert N. Lewis. The atom and the molecule. Journal of the American Chemical Society, 38(4):762–785, 1916.spa
dc.relation.referencesNiels Bohr. Bohr 1913b. Phil. Mag, 26:476, 1913.spa
dc.relation.referencesJoseph John Thomson. Xl. cathode rays. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 44(269):293–316, 1897.spa
dc.relation.referencesWalter Heitler and Fritz London. Wechselwirkung neutraler atome und homöopolare bindung nach der quantenmechanik. Zeitschrift für Physik, 44(6-7):455–472, 1927.spa
dc.relation.referencesFritz London. Probleme der modernen physik. Sommerfeld Festschrift, page 104, 1928.spa
dc.relation.referencesErwin Schrödinger. Schrödinger 1926c. Annalen der Physik, 79:734, 1926spa
dc.relation.referencesRobert S. Mulliken. The assignment of quantum numbers for electrons in molecules. i. Physical Review, 32 (2):186, 1928.spa
dc.relation.referencesFriedrich Hund. Zur deutung einiger erscheinungen in den molekelspektren. Zeitschrift für Physik, 36(9): 657–674, 1926.spa
dc.relation.referencesJohn C. Slater. Directed valence in polyatomic molecules. Physical Review, 37(5):481, 1931.spa
dc.relation.referencesKeiji Morokuma. Molecular orbital studies of hydrogen bonds. iii. c= o··· h–o hydrogen bond in h2co··· h2o and h2co··· 2h2o. The Journal of Chemical Physics, 55(3):1236–1244, 1971.spa
dc.relation.referencesAlan E. Reed, Larry A. Curtiss, and Frank Weinhold. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88(6):899–926, 1988.spa
dc.relation.referencesIra N. Levine, Daryle H. Busch, and Harrison Shull. Quantum chemistry, volume 6. Pearson Prentice Hall Upper Saddle River, NJ, 2009.spa
dc.relation.referencesJ. Stephen Binkley, John A. Pople, and Warren J. Hehre. Self-consistent molecular orbital methods. 21. small split-valence basis sets for first-row elements. Journal of the American Chemical Society, 102(3):939–947, 1980.spa
dc.relation.referencesMark S. Gordon, J. Stephen Binkley, John A. Pople, William J. Pietro, and Warren J. Hehre. Self-consistent molecular-orbital methods. 22. small split-valence basis sets for second-row elements. Journal of the American Chemical Society, 104(10):2797–2803, 1982.spa
dc.relation.referencesRichard F.W. Bader. A quantum theory, clarendon, 1990.spa
dc.relation.referencesRichard F.W. Bader. A quantum theory of molecular structure and its applications. Chemical Reviews, 91 (5):893–928, 1991.spa
dc.relation.referencesMichiel Hazewinkel. Encyclopaedia of Mathematics: Reaction-Diffusion Equation-Stirling Interpolation Formula, volume 8. Springer Science & Business Media, 2012.spa
dc.relation.referencesJoshua J. McKinnon, Mark A. Spackman, and Anthony S. Mitchell. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallographica Section B: Structural Science, 60(6): 627–668, 2004.spa
dc.relation.referencesJoshua J. McKinnon, Dylan Jayatilaka, and Mark A. Spackman. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chemical Communications, 37:3814–3816, 2007.spa
dc.relation.referencesNéstor Álvarez Ayerza. Mecanismo de acción de los inhibidores de colina quinasa en cáncer de mama. Madrid: Universidad Autónoma de Madrid, 2014.spa
dc.relation.referencesDaniel Peisach, Patricia Gee, Claudia Kent, and Zhaohui Xu. The crystal structure of choline kinase reveals a eukaryotic protein kinase fold. Structure, 11(6):703–713, 2003.spa
dc.relation.referencesEnrico Malito, Nikolina Sekulic, Wei Cun See Too, Manfred Konrad, and Arnon Lavie. Elucidation of human choline kinase crystal structures in complex with the products adp or phosphocholine. Journal of molecular biology, 364(2):136–151, 2006.spa
dc.relation.referencesKlara Kulenkampff, Adriana-M Wolf Perez, Pietro Sormanni, Johnny Habchi, and Michele Vendruscolo. Quantifying misfolded protein oligomers as drug targets and biomarkers in alzheimer and parkinson diseases. Nature Reviews Chemistry, 5(4):277–294, 2021.spa
dc.relation.referencesJasmin Galper, Manisha Balwani, Stanley Fahn, Cheryl Waters, Lynne Krohn, Ziv Gan-Or, Nicolas Dzamko, and Roy N. Alcalay. Cytokines and gaucher biomarkers in glucocerebrosidase carriers with and without parkinson disease. Movement Disorders, 36(6):1451–1455, 2021.spa
dc.relation.referencesAliza P. Wingo, Yue Liu, Ekaterina S. Gerasimov, Jake Gockley, Benjamin A. Logsdon, Duc M. Duong, Eric B. Dammer, Chloe Robins, Thomas G. Beach, Eric M. Reiman, et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in alzheimer’s disease pathogenesis. Nature genetics, 53(2):143–146, 2021.spa
dc.relation.referencesLongfei Jia, Min Zhu, Chaojun Kong, Yana Pang, Heng Zhang, Qiongqiong Qiu, Cuibai Wei, Yi Tang, Qi Wang, Ying Li, et al. Blood neuro-exosomal synaptic proteins predict alzheimer’s disease at the asymptomatic stage. Alzheimer’s & Dementia, 17(1):49–60, 2021.spa
dc.relation.referencesCyrus Levinthal. Are there pathways for protein folding? Journal de chimie physique, 65:44–45, 1968spa
dc.relation.referencesRobert Zwanzig, Attila Szabo, and Biman Bagchi. Levinthal’s paradox. Proceedings of the National Academy of Sciences, 89(1):20–22, 1992.spa
dc.relation.referencesMarianne Rooman, Yves Dehouck, Jean Marc Kwasigroch, Christophe Biot, and Dimitri Gilis. What is paradoxical about levinthal paradox? Journal of Biomolecular Structure and Dynamics, 20(3):327–329, 2002.spa
dc.relation.referencesAndrás Fiser and Andrej Šali. Modeller: generation and refinement of homology-based protein structure models. In Methods in enzymology, volume 374, pages 461–491. Elsevier, 2003.spa
dc.relation.referencesDavid Baker and Andrej Sali. Protein structure prediction and structural genomics. Science, 294(5540):93–96, 2001.spa
dc.relation.referencesKim T. Simons, Charles Kooperberg, Enoch Huang, and David Baker. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions. Journal of molecular biology, 268(1):209–225, 1997.spa
dc.relation.referencesJohn Moult, Jan T. Pedersen, Richard Judson, and Krzysztof Fidelis. A large-scale experiment to assess protein structure prediction methods. Proteins: Structure, Function, and Bioinformatics, 23(3):ii–iv, 1995.spa
dc.relation.referencesYang Zhang and Jeffrey Skolnick. The protein structure prediction problem could be solved using the current pdb library. Proceedings of the National Academy of Sciences, 102(4):1029–1034, 2005.spa
dc.relation.referencesMichael L. Tress, Iakes Ezkurdia, and Jane S. Richardson. Target domain definition and classification in casp8. Proteins: Structure, Function, and Bioinformatics, 77(S9):10–17, 2009.spa
dc.relation.referencesJohn Moult, Krzysztof Fidelis, Andriy Kryshtafovych, Burkhard Rost, Tim Hubbard, and Anna Tramontano. Critical assessment of methods of protein structure prediction—round vii. Proteins: Structure, Function, and Bioinformatics, 69(S8):3–9, 2007.spa
dc.relation.referencesJohn Moult, Krzysztof Fidelis, Andriy Kryshtafovych, Burkhard Rost, and Anna Tramontano. Critical assessment of methods of protein structure prediction—round viii. Proteins: Structure, Function, and Bioinformatics, 77(S9):1–4, 2009.spa
dc.relation.referencesAndriy Kryshtafovych, Krzysztof Fidelis, and John Moult. Progress from casp6 to casp7. Proteins: Structure, Function, and Bioinformatics, 69(S8):194–207, 2007.spa
dc.relation.referencesAndriy Kryshtafovych, Krzysztof Fidelis, and John Moult. Casp8 results in context of previous experiments. Proteins: Structure, Function, and Bioinformatics, 77(S9):217–228, 2009.spa
dc.relation.referencesMaciej Blaszczyk, Michal Jamroz, Sebastian Kmiecik, and Andrzej Kolinski. CABS-fold: server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Research, 41(W1):W406–W411, 06 2013.spa
dc.relation.referencesAndrzej Koliński and Janusz M. Bujnicki. Generalized protein structure prediction based on combination of fold-recognition with de novo folding and evaluation of models. Proteins: Structure, Function, and Bioinformatics, 61(S7):84–90, 2005.spa
dc.relation.referencesJeffrey Skolnick, Yang Zhang, Adrian K Arakaki, Andrzej Kolinski, Michal Boniecki, András Szilágyi, and Daisuke Kihara. Touchstone: a unified approach to protein structure prediction. Proteins: Structure, Function, and Bioinformatics, 53(S6):469–479, 2003.spa
dc.relation.referencesDerek A. Debe, Joseph F. Danzer, William A. Goddard, and Aleksandar Poleksic. Structfast: Protein sequence remote homology detection and alignment using novel dynamic programming and profile–profile scoring. PROTEINS: Structure, Function, and Bioinformatics, 64(4):960–967, 2006.spa
dc.relation.referencesAndrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin Žídek, Alexander WR Nelson, Alex Bridgland, et al. Improved protein structure prediction using potentials from deep learning. Nature, 577(7792):706–710, 2020.spa
dc.relation.referencesAndrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin Žídek, Alexander WR Nelson, Alex Bridgland, et al. Protein structure prediction using multiple deep neural networks in the 13th critical assessment of protein structure prediction (casp13). Proteins: Structure, Function, and Bioinformatics, 87(12):1141–1148, 2019.spa
dc.relation.referencesJohn Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.spa
dc.relation.referencesAndriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John Moult. Critical assessment of methods of protein structure prediction (casp)—round xiv. Proteins: Structure, Function, and Bioinformatics, 89(12):1607–1617, 2021.spa
dc.relation.referencesKathryn Tunyasuvunakool, Jonas Adler, Zachary Wu, Tim Green, Michal Zielinski, Augustin Žídek, Alex Bridgland, Andrew Cowie, Clemens Meyer, Agata Laydon, et al. Highly accurate protein structure prediction for the human proteome. Nature, 596(7873):590–596, 2021.spa
dc.relation.referencesGareth Jones, Peter Willett, Robert C Glen, Andrew R Leach, and Robin Taylor. Development and validation of a genetic algorithm for flexible docking. Journal of molecular biology, 267(3):727–748, 1997.spa
dc.relation.referencesGarrett M. Morris, Ruth Huey, William Lindstrom, Michel F. Sanner, Richard K. Belew, David S. Goodsell, and Arthur J. Olson. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30(16):2785–2791, 2009.spa
dc.relation.referencesRichard D. Taylor, Philip J. Jewsbury, and Jonathan W. Essex. A review of protein-small molecule docking methods. Journal of computer-aided molecular design, 16(3):151–166, 2002.spa
dc.relation.referencesR. Komanduri and L.M. Raff. A review on the molecular dynamics simulation of machining at the atomic scale. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 215(12):1639–1672, 2001.spa
dc.relation.referencesJorge Lozano Aponte and Thomas Scior. ¿Qué sabe Ud. Acerca de... Dinámica Molecular? Revista mexicana de ciencias farmacéuticas, 45(1):86–88, 2014.spa
dc.relation.referencesCarolina Múnera Orozco, Rogelio Ocampo Cardona, Lus Amalia Ríos Vásquez, David L. Cedeño, and Rubén A. Toscano. Crystal structures of three new N-halomethylated quaternary ammonium salts. Acta Crystallographica Section E: Crystallographic Communications, 71(10):1230–1235, 2015.spa
dc.relation.referencesSandra M. Duque benítez, Luz Amalia Ríos Vásquez, Rogelio Ocampo cardona, David L. Cedeño, Marjorie A. Jones, Iván D. Vélez, and Sara M. Robledo. Their in Vitro Antileishmanial Activity and U-937. Molecules, 21(V):1–16, 2016.spa
dc.relation.referencesF.L. Hirshfeld. Bonded-Atom Fragments for Describing Molecular Charge Densities. Theoretica chimica acta, 138:129–138, 1977.spa
dc.relation.referencesPeter R. Spackman, Michael J. Turner, Joshua J. McKinnon, Stephen K. Wolff, Daniel J. Grimwood, Dylan Jayatilaka, and Mark A. Spackman. CrystalExplorer: a program for hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. Journal of Applied Crystallography, 54(3), Jun 2021.spa
dc.relation.referencesFrank Neese. Orca 4.2. 1. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2:73, 2012.spa
dc.relation.referencesTian Lu and Feiwu Chen. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5):580–592, 2012.spa
dc.relation.referencesWilliam Humphrey, Andrew Dalke, and Klaus Schulten. VMD – Visual Molecular Dynamics. Journal of Molecular Graphics, 14:33–38, 1996.spa
dc.relation.referencesAndrej Šali and Tom L. Blundell. Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3):779–815, 1993. ISSN 0022-2836.spa
dc.relation.referencesMihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. Alphafold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic acids research, 2021.spa
dc.relation.referencesGarrett M. Morris, David S. Goodsell, Robert S. Halliday, Ruth Huey, William E. Hart, Richard K. Belew, and Arthur J. Olson. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. Journal of computational chemistry, 19(14):1639–1662, 1998.spa
dc.relation.referencesJerome Eberhardt, Diogo Santos-Martins, Andreas F. Tillack, and Stefano Forli. Autodock vina 1.2. 0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8):3891–3898, 2021.spa
dc.relation.referencesOleg Trott and Arthur J. Olson. Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2):455– 461, 2010.spa
dc.relation.referencesMark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C. Smith, Berk Hess, and Erik Lindahl. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2:19–25, 2015.spa
dc.relation.referencesJunmei Wang, Wei Wang, Peter A. Kollman, and David A. Case. Automatic atom type and bond type perception in molecular mechanical calculations. Journal of molecular graphics and modelling, 25(2):247–260, 2006.spa
dc.relation.referencesJunmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and David A. Case. Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9):1157–1174, 2004.spa
dc.relation.referencesAlan W. Sousa Da Silva and Wim F. Vranken. Acpype-antechamber python parser interface. BMC research notes, 5(1):1–8, 2012.spa
dc.relation.referencesLLC Schrödinger and Warren DeLano. Pymol, 2020. URL http://www.pymol.org/pymol.spa
dc.relation.referencesXavier Daura, Karl Gademann, Bernhard Jaun, Dieter Seebach, Wilfred F Van Gunsteren, and Alan E Mark. Peptide folding: when simulation meets experiment. Angewandte Chemie International Edition, 38(1-2):236– 240, 1999.spa
dc.relation.referencesRoy Gonzaález-Alemaán, David Hernaández-Castillo, Julio Caballero, and Luis A. Montero-Cabrera. Quality threshold clustering of molecular dynamics: a word of caution. Journal of chemical information and modeling, 60(2):467–472, 2019.spa
dc.relation.referencesAndrew C. Wallace, Roman A. Laskowski, and Janet M. Thornton. Ligplot: a program to generate schematic diagrams of protein-ligand interactions. Protein engineering, design and selection, 8(2):127–134, 1995.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalInteracciones supramolecularesspa
dc.subject.proposalQTAIMspa
dc.subject.proposalSuperficie de Hirshfeldspa
dc.subject.proposalDinamina molecularspa
dc.subject.proposalDockingeng
dc.subject.proposalSupramolecular interactionseng
dc.subject.proposalHirshfeld surfacespa
dc.subject.proposalMolecular dynamicseng
dc.subject.unescoAnálisis químico
dc.subject.unescoQuímica
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.description.degreenameMagister en Químicaspa
dc.publisher.programMaestría en Químicaspa
dc.description.researchgroupQuímica teóricaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem