Mostrar el registro sencillo del ítem

dc.contributor.advisorRamírez Chaves, Héctor Emilio
dc.contributor.authorLópez Rivera, Camila
dc.contributor.authorFlorez Padilla, Juliana
dc.date.accessioned2021-10-22T20:30:27Z
dc.date.available2022-10-22
dc.date.available2021-10-22T20:30:27Z
dc.date.issued2022-10-22
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/17188
dc.description.abstractspa: El estudio de las interacciones huésped-parásito es clave para comprender la relación con el funcionamiento de la biodiversidad, ya que los parásitos juegan un papel importante en la regulación de las poblaciones de especies huésped. Las familias Nycteribiidae y Streblidae (Diptera: Hippoboscoidea) son moscas ectoparásitas exclusivas de los murciélagos, que presentan adaptaciones inherentes a su hábito parasitario. Las relaciones generadas entre este tipo de interacción muestran los procesos coevolutivos debido a las asociaciones históricas que presentan las especies involucradas. Por esta razón, el uso de redes ecológicas en las interacciones parásito-huésped nos permite dilucidar cómo la estructura de sus interacciones responde a factores bióticos y abióticos. En este estudio evaluamos los cambios en las redes ectoparásitas de interacción murciélago-mosca en 2 paisajes diferentes que incluían un primer paisaje compuesto por sabanas y bosques fluviales y en contraste un segundo paisaje que presentaba perturbaciones antropogénicas (cultivos de cacao, áreas ganaderas y asentamientos humanos). Usamos redes de niebla para atrapar murciélagos y sus moscas. 86 de los 524 murciélagos capturados presentaron moscas ectoparásitas, con un total de 326 moscas pertenecientes a 9 géneros de Streblidae y solo un género de Nycteribiidae. Phyllostomidae (Chiroptera) fue la familia más parasitada, la composición de los murciélagos fue similar mientras que la composición de las especies de moscas mostró variabilidad entre las diferentes áreas de estudio. Concluimos que las interacciones tienen una alta tasa de especialización pero pueden ser modificadas por las condiciones ambientalesspa
dc.description.abstracteng:Abstract: The study of host-parasite interactions is key to understanding the relationship with the functioning of biodiversity, since parasites play an important role in the regulation of populations of host species. The Nycteribiidae and Streblidae (Diptera: Hippoboscoidea) families are ectoparasitic flies exclusive to bats, which present adaptations inherent to their parasitic habit. The relationships generated between this type of interaction show the coevolutionary processes due to the historical associations presented by the species involved. For this reason, the use of ecological networks in parasite-host interactions allows us to elucidate how the structure of their interactions responds to biotic and abiotic factors. In this study we evaluated the changes in ectoparasitic bat-fly interaction networks in 2 different landscapes that included a first landscape composed of savannas and river forests and in contrast a second landscape that presented anthropogenic disturbances (cocoa crops, livestock areas and human settlements) . We use mist nets to catch bats and their flies. 86 of the 524 bats captured presented ectoparasitic flies, with a total of 326 flies belonging to 9 genera of Streblidae and only one genus of Nycteribiidae. Phyllostomidae (Chiroptera) was the most parasitized family, the composition of bats was similar while the composition of the fly species showed variability between the different study areas. We conclude that the interactions have a high rate of specialization but can be modified by environmental conditions.eng
dc.description.tableofcontents1. Abstract /2. Introduction/ 3. Materials and methods /3.1 Study área/ 3.2 Sampling and bat capture /3.3 Hippoboscoidea sampling and identification of Hippoboscoidea species /3.4 Data analysis/ 4. Results/ 4.1 Sampling/ 4.2 Bat-ectoparsiste flies network analyses/ 4.2.1 Specialization/ 4.2.2 Connectivity 4.2.3 Modularity and nesting/ 5. Discussion / 6. Acknowledgements / 7. Literature cited / 8. Figure captioneng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleRedes de interacción entre murciélagos (Mammalia: Chiroptera) y moscas ectoparásitas (Diptera: Hippoboscoidea): una relación de especificidad en la región de la Orinoquia colombianaspa
dc.typeArtículo de revistaspa
dc.contributor.educationalvalidatorOspina Pérez, Erika
dc.contributor.educationalvalidatorVelásquez Guarín, Daniela
dc.contributor.educationalvalidatorMejía Fontecha, Ingrith
dc.contributor.educationalvalidatorOssa Lóez, Paula
dc.contributor.educationalvalidatorRivera Páez, Fredy
dc.contributor.educationalvalidatorMéndez Urbano, Freddy
dc.description.notesSe realizará publicación científica (artículo, ponencia, otro)spa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.placeManizalesspa
dc.relation.referencesALCANTARA, D. M. C., GRACIOLLI, G. and NIHEI, S. S. 2019. Revision of Noctiliostrebla (Diptera: Streblidae), parasites of bulldog bats (Chiroptera: Noctilionidae: Noctilio). Zootaxa, 4560(3), 483-521.).spa
dc.relation.referencesALMEIDA-NETO M and ULRICH W. 2011. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ Modell Softw 26:173–178.spa
dc.relation.referencesÁLVAREZ, J. R., OSORIO, C. G., AUTINO, A. G. and DIAS, L. G. 2020. First records of ectoparasitic insects (Diptera: Hippoboscoidea) of bats in the department of Caldas, Colombia. Papéis Avulsos de Zoologia, 60.spa
dc.relation.referencesAUTINO, A., CLAPS, G. L. and BARQUEZ, R. M. 1999. Insectos ectoparásitos de murciélagos de las yugas de la Argentina. Acta Zoológica Mexicana (78), 119-169.spa
dc.relation.referencesBARBIER, E., BERNARD, E. 2017. From the Atlantic Forest to the borders of Amazonia: species richness, distribution, and host association of ectoparasitic flies (Diptera: Nycteribiidae and Streblidae) in northeastern Brazil. Parasitol, Res 116, 3043–3055.spa
dc.relation.referencesBARBIER, E., NUNES, H., DA ROCHA, P. A., ROCHA, F. L. and CORDEIRO-ESTRELA, P. 2019. Updated species list of the bat ectoparasitic flies (Diptera: Nycteribiidae and Streblidae) in the state of Paraíba, Northeastern Brazil. Revista Mexicana de Biodiversidad, 90spa
dc.relation.referencesBLÜTHGEN, N. 2010. Why network analysis is often disconnected from community ecology: a critique and an ecologist's guide. Basic and Applied Ecology, 11(3), 185-195.spa
dc.relation.referencesBLÜTHGEN, N., MENZEL F. and BLUTHGEN N. 2006. Measuring specialization in species interaction networks. BMC Ecology, 6:9.spa
dc.relation.referencesBRÄNDEL, S. D., HILLER, T., HALCZOK, T. K., KERTH, G., PAGE, R. A., and TSCHAPKA, M. 2020. Consequences of fragmentation for Neotropical bats: The importance of the matrix. Biological Conservation, 252, 108792.spa
dc.relation.referencesBREVIGLIERI, C. P. and UIEDA, W. 2014. Tree cavities used as diurnal roosts by Neotropical bats. Journal of Vertebrate Biology, 63(3), 206-215.spa
dc.relation.referencesBUSH, A. O., LAFFERTY, K. D., LOTZ, J. M. and SHOSTAK, A. W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of parasitology, 575-583.spa
dc.relation.referencesCARDONA-OROZCO, E. 2020. Análisis de redes de interacción murciélagos-insectos ectoparasitos en dos sitios con diferente tipo de manejo en Lázaro Cárdenas, Michoacán. http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/2827spa
dc.relation.referencesCALONGE-CAMARGO, B., & PÉREZ-TORRES, J. 2018. Ectoparasites (Polyctenidae, Streblidae, Nycteribiidae) of bats (Mammalia: Chiroptera) from the Caribbean region of Colombia. Therya, 9(2), 171-178.spa
dc.relation.referencesCSARDI, G. and NEPUSZ, T. 2006. The igraph software package for complex network research. InterJournal Complex Syst. Complex Sy, 1695spa
dc.relation.referencesCOLÍN-MARTINEZ, H., MORALES-MALACARA, J. B., & GARCÍA-ESTRADA, C. 2018. Epizoic fauna survey on phyllostomid bats (Chiroptera: Phyllostomidae) in a shaded coffee plantation of southeastern Chiapas, Mexico. Journal of Medical Entomology, 55(1), 172- 182.spa
dc.relation.referencesDE VASCONCELOS, P. F., FALCÃO, L. A. D., GRACIOLLI, G. and BORGES, M. A. Z. 2016. Parasite-host interactions of bat flies (Diptera: Hippoboscoidea) in Brazilian tropical dry forests. Parasitology Research, 115(1), 367-377.spa
dc.relation.referencesDICK, C. W., PATTERSON, B. D., MORAND, S., KRASNOV, B. and POULIN, R. 2006. Micromammals and macroparasites: from evolutionary ecology to management. Incompletespa
dc.relation.referencesDICK, C.W. and PATTERSON, B.D.2006. Bat Flies: Obligate Ectoparasites of Bats, Micromammals and Macroparasites (págs. 179-194). Springer, Tokyo.spa
dc.relation.referencesDICK, C. W., ESBÉRARD, C. E. L., GRACIOLLI, G., BERGALLO, H. G. and GETTINGER, D.2009. Assessing host specificity of obligate ectoparasites in the absence of dispersal barriers. Parasitology research, 105(5), 1345.spa
dc.relation.referencesDICK, C.W. and DITTMAR K. 2014. Parasitic bat flies (Diptera: Streblidae and Nycteribiidae): host specificity and potential as vectors. In: Klimple S, Mehlhorn H (eds) Bats (Chiroptera) as vectors of diseases and parasites. Springer, Heidelberg, pp 131–155spa
dc.relation.referencesDICK, C. W., GRACIOLLI, G. and GUERRERO, R. 2016. Family streblidae. Zootaxa, 4122(1), 784-802spa
dc.relation.referencesDITTMAR, K., MORSE, S.F., DICK, C.W. and PATTERSON, B. D. 2015. Bat flies evolution from the Eocene to the present (Hippoboscoidea, Streblidae and Nycteribiidae). In: Morand S, Krasnov BR, Littlewood DTJ (eds) Parasite diversity and diversification: evolutionary ecology meets phylogenetics. Cambridge University Press, Cambridge, pp 246–264spa
dc.relation.referencesDORMANN, C. F., GRUBER, B. and FRÜND, J. 2008. Introducing the bipartite Package: analysing ecological networks. R News 8, 8-11.spa
dc.relation.referencesDORMANN, C. F., FRÜND, J., BLÜTHGEN, N. and GRUBER, B. 2009. Indices, graphs and null models: analyzing bipartite ecological networks.The Open Ecology Journal, 2(1)spa
dc.relation.referencesDORMANN, C.F. and R. STRAUSS. 2014. A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution, 5: 90–98.spa
dc.relation.referencesFRAINER, A., MCKIE, B. G., AMUNDSEN, P. A., KNUDSEN, R. and LAFFERTY, K. D. 2018. Parasitism and the biodiversity-functioning relationship. Trends in ecology & evolution, 33(4), 260-268.spa
dc.relation.referencesFRANK, R., MÜNSTER, J., SCHULZE, J., LISTON, A. and KLIMPEL, S. 2014. Macroparasites of Microchiroptera: bat ectoparasites of Central and South America. In Bats (Chiroptera) as Vectors of Diseases and Parasites (pp. 87-130). Springer, Berlin, Heidelberg.spa
dc.relation.referencesFAGUNDES, R., ANTONINI, Y. and AGUIAR, L. M. 2017. Overlap in cave usage and period of activity as factors structuring the interactions between bats and ectoparasites. Zoological studies, 56.spa
dc.relation.referencesFORTUNA, M. A., STOUFFER, D. B., OLESEN, J. M., JORDANO, P., MOUILLOT, D., KRASNOV, B. R. POULIN, R., BASCOMPTE, J. 2010. Nestedness versus modularity in ecological networks: ¿two sides of the same coin? Journal of Animal Ecology, 79, 811-817.spa
dc.relation.referencesGARDNER, L. A. 2008. Mammals of South America, Volume 1. Marsupials, Xenarthrans, Shrews, and Bats. Chicago: The University of Chicago Press.spa
dc.relation.referencesGIORGI, M. S., ARLETTAZ, R., GUILLAUME, F., NUSSLÉ, S., OSSOLA, C., VOGEL, P. and CHRISTE, P. 2004. Causal mechanisms underlying host specificity in bat ectoparasites. Oecologia, 138(4), 648-654.spa
dc.relation.referencesGOBERNACIÓN DE ARAUCA. 2017. Disponible en: https://www.arauca.gov.cospa
dc.relation.referencesGOOSEN, D. 1971. Physiography and soils of the Llanos Orientales, Colombia (No. Doc. 15920 CO-BAC, Santafé de Bogotá). Enschede, The Netherlands: International Institute for Aerial Survey and Earth Sciencesspa
dc.relation.referencesGRACIOLLI, G., and BERNARD, E. 2002. Novo registros de moscas ectoparasitas (Diptera, Streblidae e Nycteribiidae) em morcegos (Mammalia, Chiroptera) do Amazonas e Pará, Brasil. Revista Brasileira de Zoologia, 19, 77-86.spa
dc.relation.referencesGRACIOLLI, G., AUTINO, A. G. and CLAPS, G. L. 2007. Catalogue of American Nycteribiidae (Diptera, Hippoboscoidea). Revista Brasileira de Entomologia, 51, 142–159spa
dc.relation.referencesGUERRA, F. M., TRUJILLO, F., CUERO, C. A., BOLÍVAR, L., VALENCIA, K., ARBOLEDA, A. F. V. and MELUK, H. M. 2019. MAMÍFEROS. Recuperado de:https://www.researchgate.net/profile/Federico- MosqueraGuerra/publication/337340229_Mamiferos_Arauca/links/5dd3dd5292851c382f4 9f1d5/Mamiferos-Arauca.pdfspa
dc.relation.referencesGUERRERO, R. 1994. Catálogo de los Streblidae (Diptera: Pupipara) parasitos de murciélagos (Mammalia: Chiroptera) Del Nuevo Mundo. II. Los grupos: pallidus, caecus, major, uniformis, y longipes del gênero Trichobius Gervais, 1844. Acta Biol Ven 15:1–18spa
dc.relation.referencesGUERRERO, R. 1995. Catálogo de los Streblidae (Diptera: Pupipara) parasitos de murciélagos (Mammalia: Chiroptera) del Nuevo Mundo. V. Trichobiinae con alas reducidas o ausentes y miscelaneos. Bol Entomol Ven 10: 135–160spa
dc.relation.referencesHERNÁNDEZ-MARTÍNEZ, J., MORALES-MALACARA, J. B., ALVAREZ-AÑORVE, M. Y., AMADOR-HERNÁNDEZ, S., OYAMA, K. and AVILA-CABADILLA, L. D. 2018. Drivers potentially influencing host–bat fly interactions in anthropogenic neotropical landscapes at different spatial scales. Parasitology, 1–15. doi:10.1017/s0031182018000732.spa
dc.relation.referencesHERRERA-SEPÚLVEDA, M. T. 2013. Comparación de la carga de ectoparásitos entre harenes y grupos mixtos de la población de Carollia perspicillata en la cueva Macaregua (Santander, Colombia) (Bachelor's thesis).spa
dc.relation.referencesHOFSTEDE, H. and FENTON, M. 2005. Relationships between roosts preference, ectoparasites density ang grooming behaviour of Neotropical bats. J Zool 266:333-340spa
dc.relation.referencesHILLER, T., VOLLSTÄDT, M. G., BRÄNDEL, S. D., PAGE, R. A. and TSCHAPKA, M. 2021. Bat–bat fly interactions in Central Panama: host traits relate to modularity in a highly specialised network. Insect Conservation and Diversity. https://doi.org/10.1111/icad.12508.spa
dc.relation.referencesHOLZ, P. H., LUMSDEN, L. F. and HUFSCHMID, J. 2018. Ectoparasites are unlikely to be a primary cause of population declines of bent-winged bats in south-eastern Australia. International Journal for Parasitology: Parasites and Wildlife, 7(3), 423–428spa
dc.relation.referencesJACOMY, M., VENTURINI, T., HEYMANN, S. and BASTIAN, M. 2014. ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE 9(6): e98679. https://doi.org/10.1371/journal.pone.0098679spa
dc.relation.referencesLIÉVANO-ROMERO, K. S., RODRÍGUEZ-POSADA, M. E. and CORTÉS-VECINO, J. A. 2019. Nuevos registros de ectoparásitos de murciélagos en sabanas inundables de la orinoquía colombiana. Mastozoología Neotropical, 26(2), 377-389.spa
dc.relation.referencesLÓPEZ-CARRETERO, A., DÍAZ-CASTELAZO, C., BOEGE, K., and RICO-GRAY, V. 2014. Evaluating the spatio-temporal factors that structure network parameters of plant-herbivore interactions. PLoS One, 9(10), e110430.spa
dc.relation.referencesMARINKELLE, C. J. and GROSE, E. S. 1981. A list of ectoparasites of Colombian bats. Revista de Biología Tropical, 29(1), 11-20.spa
dc.relation.referencesMARSHALL, A. G. 1981. The ecology of ectoparasitic insects. Academic Press Inc. (London) Ltd.spa
dc.relation.referencesMEDELLÍN, R., ARITA, H. and SÁNCHEZ, O. 2008. Identificación de los murciélagos de México, 2nd edn., México D.Fspa
dc.relation.referencesMELLO, M. A. R., MUYLAERT, R., PEREIRA, R. and FELIX, G. 2016. Guia para análise de redes ecológicas. 1a edicão. Published by the authors. Avaliable at: https://www. researchgate.net/profile/Marco_Mello/publication/307940803_Guia_para_analise_de_red es_ecologicas/links/5ceb0c31458515712ec5f040/Guia-para-analise-de-redes-ecologicas. pdf. Access in, 11(10), 2018.spa
dc.relation.referencesMORENO, C. E. 2001.Métodos para medir la biodiversidad . M&T-Manuales y Tesis SEA, vol.1. Zaragoza, 84 ppspa
dc.relation.referencesMORRISON D.W. 1980: FORAGING AND DAY-ROOSTING DYNAMICS OF CANOPY FRUIT IN PANAMÁ. J. MAMMAL. 61: 20–29spa
dc.relation.referencesOBAME-NKOGHE, J., RAHOLA, N., BOURGAREL, M., YANGARI, P., PRUGNOLLE, F., MAGANGA, G. D. and PAUPY, C. 2016. Bat flies (Diptera: Nycteribiidae and Streblidae) infesting cave-dwelling bats in Gabon: diversity, dynamics and potential role in Polychromophilus melanipherus transmission. Parasites & vectors, 9(1), 333.spa
dc.relation.referencesPARDO, A. and RANGEL-CH, J. O. 2014. Mamíferos de la Orinoquia. Colombia Diversidad Biótica XIV. Bogotá: Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, 751-784.spa
dc.relation.referencesPATTERSON, B. D., DICK, C. W. and DITTMAR, K. 2007. Roosting habits of bats affect their parasitism by bat flies (Diptera: Streblidae). Journal of Tropical Ecology, 23(2), 177-189.spa
dc.relation.referencesPATTERSON, B. D., DICK, C. W. and DITTMAR, K. 2009. Nested distributions of bat flies (Diptera: Streblidae) on Neotropical bats: artifact and specificity in host‐ parasite studies. Ecography, 32(3), 481-487spa
dc.relation.referencesPILOSOF, S., DICK, C. W., KORINE, C., PATTERSON, B. D. and KRASNOV, B. R. 2012. Effects of anthropogenic disturbance and climate on patterns of bat fly parasitism. PLoS One, 7(7), e41487spa
dc.relation.referencesPOULIN, R., KRASNOV, B. R. and MORAND, S. 2006. Patterns of host specificity in parasites exploiting small mammals. In Micromammals and macroparasites (pp. 233-256). Springer, Tokyo.spa
dc.relation.referencesPRESLEY, S. J., DALLAS, T., KLINGBEIL, B. T. and WILLIG, M. R. 2015. Phylogenetic signals in host–parasite associations for Neotropical bats and Nearctic desert rodents. Biological Journal of the Linnean Society, 116(2), 312-327.spa
dc.relation.referencesRIVERA-GARCIA, K. D., SANDOVAL-RUIZ, C. A., SALDANA-VAZQUEZ, R. A. and SCHONDUBE, J. E. 2017. The effects of seasonality on host–bat fly ecological networks in a temperate mountain cave. Parasitology, 144(5), 692-697.spa
dc.relation.referencesSALDAÑA-VÁSQUEZ, R.A., SANDOVAL-RUIZ, C.A. and VELOZ-MALDONADO, O.S. 2019. Host ecology moderates the specialization of Neotropical bat-fly interaction networks. Parasitol Res 118, 2919–2924spa
dc.relation.referencesTARQUINO-CARBONELL, A. 2014. Ectoparásitos asociados a la quiropterofauna en la vereda chorrillo municipio de Ambalema, Tolima, Colombia. Tesis de pregrado. Ibagué- Tolima. Colombia. Universidad del Tolima.spa
dc.relation.referencesTARQUINO-CARBONELL, A., GUTIÉRREZ-DÍAZ, K. A., GALINDO-ESPINOSA, E. Y., REINOSO-FLÓREZ, G., SOLARI, S. and GUERRERO, R. 2015. Ectoparasites associated with bats in northeastern Tolima, Colombia. Mastozoología neotropical, 22(2), 349-358.spa
dc.relation.referencesTAYLOR, P. D. and MERRIAM, G. 1996. Habitat fragmentation and parasitism of a forest damselfly. Landscape Ecology, 11(3), 181-189.spa
dc.relation.referencesTAMSITT, J. R. and FOX, I. 1970. Records of bat ectoparasites from the Caribbean region (Siphonaptera, Acarina, Diptera). Canadian Journal of Zoology, 48(5), 1093-1097spa
dc.relation.referencesTYLIANAKIS, J. M., TSCHARNTKE, T. and LEWIS, O. T. 2007. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature, 445(7124), 202-205.spa
dc.relation.referencesURBIETA, G. L., GRACIOLLI, G., and VIZENTIN-BUGONI, J. 2021. Modularity and specialization in bat–fly interaction networks are remarkably consistent across patches within urbanized landscapes and spatial scales. Current Zoology, 67(4), 403-410.spa
dc.relation.referencesWENZEL, R. L., TIPTON; V.J, KIEWLICZ, A. 1966. The streblid batflies of Panama (Diptera: Calyptera: Streblidae). In: Wenzel RL, TiptonVJ (eds) Ectoparasites of Panama. Field Museum of Natural History, Chicago, pp 405–675.spa
dc.relation.referencesWENZEL, R. L. 1976. The Streblid bat flies of Venezuela (Diptera: Streblidae). Brigham Young University Science Bulletin, Utah.spa
dc.relation.referencesWOLINSKA, J. and KING, K. C. 2009. Environment can alter selection in host–parasite interactions. Trends in parasitology, 25(5), 236-244.spa
dc.relation.referencesZARAZÚA-CARBAJAL, M., SALDAÑA-VÁSQUEZ, R. A., SANDOVAL-RUIZ, C. A., STONER, K. E. and BENITEZ-MALVIDO, J. 2016. The specificity of host-bat fly interaction networks across vegetation and seasonal variation. Parasitology Research, 115(10), 4037-4044.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.lembParásitos
dc.subject.proposalDisturbancespa
dc.subject.proposalNycteribiidaeeng
dc.subject.proposalParasitismeng
dc.subject.proposalStreblidaeeng
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem