Mostrar el registro sencillo del ítem

dc.contributor.advisorRios Vasquez, Luz Amalia
dc.contributor.authorAguirre Giraldo , Santiago
dc.date.accessioned2021-06-29T19:52:43Z
dc.date.available2021-06-29T19:52:43Z
dc.date.issued2021-10-01
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/16840
dc.descriptionIlustraciones, gráficasspa
dc.description.abstractspa: El cáncer ha sido, según la Organización Mundial de la Salud (OMS), una de las causas más destacadas de morbilidad y mortalidad en todo el mundo, se estima que la tasa mundial de cáncer aumentó a 18,1 millones de nuevos casos y 9,6 millones de muertes en 2018. El cáncer colorrectal (CCR) según la “National Comprehensive Cancer Network –NCCN-” ocupa, con respecto al número de nuevos casos y la probabilidad en todo el mundo en ambos sexos, el cuarto grado en incidencia y el tercero en prevalencia respectivamente. El cáncer es la segunda causa de muerte a nivel mundial después de las enfermedades cardiovasculares y es responsable de una por cada 8 muertes en el mundo por encima, inclusive del SIDA, la tuberculosis y la malaria en su conjunto. En Colombia, según “New Global Cancer Data: GLOBOCAN 2018” el CCR ocupa el quinto lugar con una incidencia del 5,6% y una mortalidad del 7,4%. El cáncer es una enfermedad de un nivel de complejidad alto, debido a que puede promover la proliferación y la invasión de las distintas células del organismo a través del ciclo celular hiperactivo que da lugar a un incremento de la división celular. Para el tratamiento del cáncer en cualquier fase se incluyen la quimioterapia, la radioterapia, la inmunoterapia, la cirugía, y las terapias dirigidas a moléculas asociadas al cáncer. El cáncer colorrectal, comúnmente conocido como cáncer de colon o cáncer de intestino, es un cáncer de crecimiento celular descontrolado en el colon, el recto (partes del intestino grueso) o el apéndice. Los cánceres colorrectales se extienden más comúnmente a los ganglios linfáticos locales antes de viajar a órganos distantes. En este trabajo se exponen los siguientes medicamentos los cuales se encontró que son los más comúnmente usados como tratamientos químicos contra el cáncer colorrectal, así mismo la ruta sintética más eficiente, reportada en la literatura para su preparación: i) 5–fluorouracilo (5FU), ii) tegafur, iii) capecitabina, iv) trifluridina y tipiracilo, v) oxaliplatino, vi) carboplatino, vii) cisplatino, iv) irinotecan, v) leucovorina, vi) regorafenib y vii) compuestos derivados de selenio. De otra parte, la nanoencapsulación de medicamentos permite mejorar aspectos fisicoquímicos de los fármacos que han sido aprobados para el tratamiento de enfermedades como el cáncer, siendo estos aspectos los siguientes: baja solubilidad en agua, la elevada toxicidad, la poca biodisponibilidad, el perfil farmacocinético, la seguridad y la biocompatibilidad del medicamento; mejorando la focalización del medicamento a sitios específicos del cuerpo. Por esto, actualmente se han presentado grandes avances en esta rama de la medicina, siendo esta una solución factible a los aspectos mencionados. Debido a la importancia de la nanoencapsulación cada vez se reportan nuevos tipos de nanopartículas, y entre éstas las más relevantes son: nanopartículas poliméricas, nanopartículas de lípidos sólidos y liposomas. Es así, como en este trabajo se exponen los reportes sobre la nanoencapsulación polimérica (formulación PLGA–PEG) del 5–fluorouracilo (5-FU), el uso de nanopartículas de lípidos sólidos cargadas con oxaliplatino y el irinotecan en su forma liposomal. Finalmente, mediante este trabajo de revisión de la literatura sobre la temática expuesta anteriormente es necesario resaltar que fue posible concluir que la búsqueda de nuevos medicamentos terapéuticos innovadores que permitan combatir el cáncer colorrectal, es un importante reto en la actualidad, mediante su preparación a través de nuevas rutas sintéticas que sean más cortas, con mejores rendimientos globales y con el uso de reactivos disponibles comercialmente, de bajo costo y que no contaminen el medio ambiente. Además, la nanoencapsulación es una alternativa importante para focalizar el medicamento hacia el sitio activo y disminuir los efectos secundarios de los tratamientos disponibles contra el CCR.spa
dc.description.abstracteng: Cancer has been, according to the World Health Organization (WHO), one of the most prominent causes of morbidity and mortality worldwide, it is estimated that the global rate of cancer increased to 18.1 million new cases and 9 , 6 million deaths in 2018. Colorectal cancer (CRC) according to the "National Comprehensive Cancer Network -NCCN-" occupies, with respect to the number of new cases and the probability worldwide in both sexes, the fourth degree in incidence and the third in prevalence respectively. Cancer is the second leading cause of death worldwide after cardiovascular diseases and is responsible for one in every 8 deaths in the world above, including AIDS, tuberculosis and malaria as a whole. In Colombia, according to “New Global Cancer Data: GLOBOCAN 2018”, the CRC ranks fifth with an incidence of 5.6% and a mortality of 7.4%. Cancer is a disease of a high level of complexity, because it can promote the proliferation and invasion of the different cells of the body through the overactive cell cycle that leads to an increase in cell division. Cancer treatment at any stage includes chemotherapy, radiation therapy, immunotherapy, surgery, and therapies targeting cancer-associated molecules. Colorectal cancer, commonly known as colon cancer or bowel cancer, is cancer of uncontrolled cell growth in the colon, rectum (parts of the large intestine), or appendix. Colorectal cancers most commonly spread to local lymph nodes before traveling to distant organs. In this work, the following drugs are exposed, which were found to be the most commonly used as chemical treatments against colorectal cancer, as well as the most efficient synthetic route, reported in the literature for their preparation: i) 5-fluorouracil (5FU) , ii) tegafur, iii) capecitabine, iv) trifluridine and tipiracil, v) oxaliplatin, vi) carboplatin, vii) cisplatin, iv) irinotecan, v) leucovorin, vi) regorafenib and vii) compounds derived from selenium. On the other hand, nanoencapsulation of drugs makes it possible to improve physicochemical aspects of drugs that have been approved for the treatment of diseases such as cancer, these aspects being the following: low solubility in water, high toxicity, low bioavailability, pharmacokinetic profile , the safety and biocompatibility of the drug; improving drug targeting to specific body sites For this reason, great advances have now been made in this branch of medicine, this being a feasible solution to the aforementioned aspects. Due to the importance of nanoencapsulation, new types of nanoparticles are increasingly being reported, and among these the most relevant are: polymeric nanoparticles, solid lipid nanoparticles and liposomes. Thus, as in this work reports on polymeric nanoencapsulation (PLGA-PEG formulation) of 5-fluorouracil (5-FU), the use of solid lipid nanoparticles loaded with oxaliplatin and irinotecan in its liposomal form are exposed. Finally, through this work to review the literature on the subject discussed above, it is necessary to highlight that it was possible to conclude that the search for new innovative therapeutic drugs that allow fighting colorectal cancer is an important challenge today, through its preparation through of new synthetic routes that are shorter, with better overall yields and with the use of commercially available, low-cost reagents that do not pollute the environment. Furthermore, nanoencapsulation is an important alternative for targeting the drug to the active site and reducing the side effects of available CRC treatments.eng
dc.description.tableofcontentsÍndice de figuras / Índice de esquemas/ Índice de tablas/ Abreviaturas/ 1. Resumen / 2. Objetivos/ 2.1 Objetivo general / 2.2 Objetivos específicos/ 3. Resultados / Capítulo I. Generalidades, historia y tratamientos químicos más utilizados contra en cáncer colorrectal/ 3.1 Generalidades del cáncer colorrectal/ 3.1.1 Descripción y causas del cáncer colorrectal/ 3.1.2 Estadios del cáncer colorrectal / 3.1.3 Epidemiología del cáncer colorrectal/.2 Historia del cáncer colorrectal / 3.3 Tratamientos químicos para el cáncer colorrectal/ 3.3.1 Quimioterapia del cáncer colorrectal/ 3.3.1.1 Derivados de pirimidinas (fluoropirimidinas con excepción del tipiracilo) / 3.3.1.2 Derivados de platino/ 3.3.1.3 Irinotecan: derivado de camptotecina/ 3.3.1.4 Leucovorina: un alcaloide de vinca / 3.3.1.5 Regorafenib: compuesto fluorado citotóxico usado en bioterapia / 3.3.2 Compuestos derivados de selenio: agentes quimioterapéuticos más actuales comúnmente usados para cáncer colorrectal / 3.3.3 Quimioterapias combinadas en el tratamiento del cáncer colorrectal / Capítulo II. Rutas sintéticas para la obtención de medicamentos utilizados como tratamientos químicos contra el cáncer colorrectal / 3.4 Rutas sintéticas de medicamentos usados para cáncer colorrectal / 3.4.1 Derivados de pirimidinas/ 3.4.1.1 Síntesis de 5–fluorouracilo/ 3.4.1.2 Síntesis de capecitabina/ 8 3.4.1.3 Síntesis de tegafur / 3.4.1.4 Síntesis de trifluridina / 3.4.1.5 Síntesis de tipiracilo / 3.4.2 Derivados de platino / 3.4.2.1 Síntesis de oxaliplatino / 3.4.2.2 Síntesis de carboplatino/ 3.4.2.3 Síntesis de cisplatino/ 3.4.3 Síntesis de irinotecan: derivado de camptotecina / 3.4.4 Síntesis de leucovorina: alcaloide de vinca/ 3.4.5 Síntesis de regorafenib: compuesto fluorado citotóxico usado en bioterapia / 3.4.6 Síntesis de agentes quimioterapéuticos más actuales comúnmente usados para cáncer colorrectal: compuestos derivados de selenio / 3.4.6.1 Síntesis de selenometionina (SeMet) / 3.4.6.2 Síntesis de seleniuros: compuestos a base de quinona mediante reacciones-click con cobre/ 3.4.6.3 Síntesis de seleniuros: metilimidoselenocarbamatos/ 3.4.6.4 Síntesis de etaselen / 3.4.6.5 Síntesis de selenediazoles: Se-NHC (Carbeno N-Heterocíclico de selenio) / 3.4.6.6 Síntesis de emedicamento antiinflamatorio no esteroideo de selenio (Se-NSAID) / Capítulo III. Nanoencapsulación de medicamentos utilizados como tratamientos químicos contra el cáncer colorrectal / 3.5 Nanomedicina: características generales sobre la nanoencapsulación de fármacos..61 3.6 Nanoformulaciones como vehículos de moléculas usadas en tratamientos químicos contra el cáncer colorrectal: aspectos generales y ejemplos/ 3.6.1 Aspectos generales de las nanoformulaciones / 3.6.1.1 Nanopartículas de liposomas / 3.6.1.2 Nanopartículas poliméricas de ácido poli láctico y ácido poli glicólico (PLGA) / 3.6.1.3 Nanopartículas de lípidos sólidos (SLN) / 3.6.2 Ejemplos de nanoformulaciones como vehículos para moléculas usadas contra el cáncer colorrectal / 3.6.2.1 Nanopartículas de liposomas encapsulando el irinotecan / 3.6.2.2 Nanopartículas poliméricas de 5-fluorouracilo/ 3.6.2.3 Nanopartículas de lípidos sólidos encapsulando el oxaliplatino / 9 3.7 El revestimiento de Eudragit: un polímero administrado por vía oral, usado como recubrimiento de las nanopartículas poliméricas o lipídicas en medicamentos para cáncer colorrectal / 4. Conclusiones/ 5. Bibliografía.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.titleNanoencapsulación y rutas sintéticas para preparar medicamentos usados como tratamientos químicos contra cáncer colorrectal: una descripción generalspa
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.researchgroupQuímica teórica y bioinformáticaspa
dc.description.degreelevelMaestríaspa
dc.description.notesSe realizará publicación científica (artículo, ponencia, otro).spa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Caldas, Colombiaspa
dc.relation.references1. Lopart, N. MEDICINAL PLANTS AS A SOURCE OF ANTINEOPLASTIC COMPOUNDS. vol. 16 (2000)spa
dc.relation.references2. Globocan. Cifras y estimaciones de cáncer en el mundo. Instituto Nacional de Cancerología, Colombia. 2018 vol. 380 https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdf (2018).spa
dc.relation.references3. Incidencia, mortalidad y prevalencia de cáncer en Colombia 2007-2011. (2011).spa
dc.relation.references4. Yamamoto, T., Uemura, K., Moriyama, K., Mitamura, K. & Taga, A. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells. Oncol. Rep. 33, 1579–1584 (2015).spa
dc.relation.references5. Di Lena, M., Travaglio, E. & Altomare, D. F. New strategies for colorectal cancer screening. World J. Gastroenterol. 19, 1855– 1860 (2013).spa
dc.relation.references6. Doll, R. & Peto, R. The causes of cancer: Quantitative estimates of avoidable risks of cancer in the united states today. J. Natl. Cancer Inst. 66, 1192–1308 (1981).spa
dc.relation.references7. Cisterna, B. A. et al. Targeted nanoparticles for colorectal cancer. Nanomedicine 11, 2443–2456 (2016).spa
dc.relation.references8. GLOBOCAN. Estimated age-standardized incidence rates (World) in 2018, all cancers, both sexes, all ages. World Heal. Organ. 2018 (2018)spa
dc.relation.references9. Organization, W. H. World health statistics 2018. Mathematics Education Journal vol. 1 http://dx.doi.org/10.1016/j.biotechadv.2010.07.003%0Ahttp://dx.doi.org/10.1016/j.scitotenv.2016.06.080%0Ahttp://dx.doi.org/ 10.1016/j.bbapap.2013.06.007%0Ahttps://www.frontiersin.org/article/10.3389/fmicb.2018.02309/full%0Ahttp://dx.doi.org/10. 1007/s13762- (2018).spa
dc.relation.references10. Globocan Observatory, W. Cancer Today - World. Int. Agency Res. Cancer 876, 2018–2019 (2019)spa
dc.relation.references11. Pardo, C., de Vries, E., Buitrago, L. & Gamboa, O. Atlas de mortalidad por cancer en Colombia. (2017). doi:http://dx.doi.org/10.1007/BF01411734.spa
dc.relation.references12. Pardo, C. & Cendales, R. Cancer incidence estimates and mortality for the top five cancer in Colombia, 2007-2011. Colomb. Med. 49, 16–22 (2018).spa
dc.relation.references13. Gustavsson, B. et al. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin. Colorectal Cancer 14, 1–10 (2015).spa
dc.relation.references14. Henrikson, N. B. et al. Family history and the natural history of colorectal cancer: Systematic review. Genet. Med. 17, 702–712 (2015).spa
dc.relation.references15. ASCO. Cancer Progress Timeline | ASCO. American Society of Clinical Oncology https://www.asco.org/researchguidelines/cancer-progress-timeline/colorectal-cancer (2018).spa
dc.relation.references16. Mei, H. et al. Fluorine-Containing Drugs Approved by the FDA in 2018. Chem. - A Eur. J. 25, 11797–11819 (2019).spa
dc.relation.references17. Arias, B., García, N., Uribe, T. & Betancur, J. Colorectal Cancer: a clinical, genetic and molecular view. Med. Arch. 13–2, 14 (2013).spa
dc.relation.references18. De Este Número, Í., Revistas, M., Reservados, D. & Number, N. History of rectal cancer and its surgical treatment. Rev. Mex. Coloproctología Mayo-Agosto 11, 60–63 (2005)spa
dc.relation.references19. Lynch, P. M. HISTORY OF NON-POLYPOSIC HEREDITARY COLORECTAL CANCER. Rev. Médica Clínica Las Condes 28, 512–523 (2017)spa
dc.relation.references20. Winawer, S. J. Natural history of colorectal cancer. Am. J. Med. 106, (1999).spa
dc.relation.references21. Seifert, P., Baker, L., Reed, M. & Veitkevicius, K. Comparison of continuously infused 5-fluorouracil with bolus injection in treatment of patients with colorectal adenocarcinoma. Cancer Lett. 123–128 (1975).spa
dc.relation.references22. Greegor, D. H. Diagnosis of Large-Bowel Cancer in the Asymptomatic Patient. JAMA J. Am. Med. Assoc. 201, 943–945 (1967).spa
dc.relation.references23. ASCO. Colorectal Cancer: Types of Treatment | Cancer.Net. American Society of Clinical Oncology https://www.cancer.net/cancer-types/colorectal-cancer/types-treatment?sectionTitle=Treatment (2019)spa
dc.relation.references24. Hutterer, F. & Pichlmaier, H. Endoscopic Surgery in the Rectum. Endoscopy 31–35 (1985) doi:10.1055/s-2007-1018451.spa
dc.relation.references25. Edwards, B. K. et al. Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer 116, 544–573 (2010).spa
dc.relation.references26. Boland, R. et al. A National Cancer Institute Workshop on Microsatellite Instability for Cancer Detection and Familial Predisposition: Development of International Criteria for the Determination of microsatellite Instability in Colorectal Cancer. Cancer Res. 58, 5248–5257 (1998).spa
dc.relation.references27. Saltz, L. et al. Irinotecan Plus Fluorouracil and Leucovorin for Metastatic Colorectal Cancer. Massachusetts Med. Soc. 343, 905–914 (2014).spa
dc.relation.references28. Fernandez, F. G. et al. Five-year survival after resection of hepatic metastases from colorectal cancer in patients screened by positron emission tomography with F-18 fluorodeoxyglucose (FDG-PET). Ann. Surg. 240, 438–450 (2004).spa
dc.relation.references29. Chan, A. et al. Long-term Use of Aspirin and Nonsteroidal Anti-inflamatory Drugs and Risk of Colorectal Cancer. Am. Medican Assoc. 294, 914–923 (2005).spa
dc.relation.references30. André, T. et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J. Clin. Oncol. 27, 3109–3116 (2009).spa
dc.relation.references31. Twelves, C. et al. Capecitabine as adjuvant treatment for stage III colon cancer. N. Engl. J. Med. 352, 2696–2704 (2005).spa
dc.relation.references32. Sauer, R. et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N. Engl. J. Med. 351, 1731–1740 (2004).spa
dc.relation.references33. Nelson, H. et al. A Comparison of Laparoscopically Assisted and Open Colectomy for Colon Cancer. N. Engl. J. Med. 350, 2050–2059 (2004).spa
dc.relation.references34. Hurwitz, H. et al. Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer. N. Engl. J. Med. 350, 2335–2342 (2004).spa
dc.relation.references35. Suenaga, M. et al. Predictors of the efficacy of FOLFIRI plus bevacizumab as second-line treatment in metastatic colorectal cancer patients. Surg. Today 41, 1067–1074 (2011)spa
dc.relation.references36. Morton, R. F. & Hammond, E. H. ASCO Provisional Clinical Opinion: KRAS , Cetuximab, and Panitumumab—Clinical Implications in Colorectal Cancer . J. Oncol. Pract. 5, 71–72 (2009).spa
dc.relation.references37. Imperiale, T. F., Ransohoff, D. F., Itzkowitz, S. H., Turnbull, B. A. & Ross, M. E. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N. Engl. J. Med. 351, 2704–2714 (2004).spa
dc.relation.references38. Bressler, B. et al. Colonoscopic Miss Rates for Right-Sided Colon Cancer : 127, 452–456 (2004).spa
dc.relation.references39. Barclay, R., Vicari, J., Doughty, A., Johanson, J. & Greenlaw, R. Colonoscopic withdrawal times and adenoma detection during screening colonoscopy: Commentary. N. Engl. J. Med. 355, 2533–2541 (2006).spa
dc.relation.references40. Chang, G. J., Rodriguez-Bigas, M. A., Skibber, J. M. & Moyer, V. A. Lymph node evaluation and survival after curative resection of colon cancer: Systematic review. J. Natl. Cancer Inst. 99, 433–441 (2007).spa
dc.relation.references41. Meyerhardt, J. et al. Association of Dietary Patterns With Cancer Recurrence and Survival in Patients With Stage III Colon Cancer. Am. Medican Assoc. 298, 754–764 (2007).spa
dc.relation.references42. Watanabe, T. et al. Molecular Predictors of Survival After Adjuvant Chemotherapy for Colon Cancer. N. Engl. J. Med. 344, 1196–1206 (2001).spa
dc.relation.references43. Soetikno, R. M. et al. Prevalence of nonpolypoid (flat and depressed) colorectal neoplasms in asymptomatic and symptomatic adults. JAMA - J. Am. Med. Assoc. 299, 1027–1035 (2008).spa
dc.relation.references44. ASCO. The Genetics of Cancer | Cancer.Net. American Society of Clinical Oncology https://www.cancer.net/navigatingcancer-care/cancer-basics/genetics/genetics-cancer (2018).spa
dc.relation.references45. Poultsides, G. A. et al. Outcome of primary tumor in patients with synchronous stage IV colorectal cancer receiving combination chemotherapy without surgery as initial treatment. J. Clin. Oncol. 27, 3379–3384 (2009).spa
dc.relation.references46. Crispin, A., Birkner, B., Munte, A., Nusko, G. & Mansmann, U. Process quality and incidence of acute complications in a series of more than 230000 outpatient colonoscopies. Endoscopy 41, 1018–1025 (2009).spa
dc.relation.references47. Van Cutsem, E. et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J. Clin. Oncol. 30, 1–9 (2012).spa
dc.relation.references48. Tejpar, S. et al. Prognostic and predictive relevance of primary tumor location in patients with ras wild-type metastatic colorectal cancer retrospective analyses of the CRYSTAL and FIRE-3 trials. JAMA Oncol. 3, E1–E8 (2016)spa
dc.relation.references49. Erlandsson, J. et al. Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (Stockholm III): a multicentre, randomised, non-blinded, phase 3, non-inferiority trial. Lancet Oncol. 18, 1–11 (2017).spa
dc.relation.references50. Grothey, A. et al. Duration of adjuvant chemotherapy for stage III colon cancer. N. Engl. J. Med. 378, 1177–1188 (2018).spa
dc.relation.references51. Hagos, G. K. et al. Colon cancer chemoprevention by a novel NO chimera that shows anti-inflammatory and antiproliferative activity in vitro and in vivo. Mol. Cancer Ther. 6, 2230–2239 (2007).spa
dc.relation.references52. ESMO. Patient Guide with colorectal cancer (ESMO). (2016).spa
dc.relation.references53. NCCN. Colon Cancer NCCN Guidelines for Patients. Natiinal Compr. Cancer Netw. 86 (2018).spa
dc.relation.references54. NCCN Colon Cancer Panel. NCCN Clinical Practice Guidelines in Oncology: colon cancer. V2.2015. Natl. Compr. Cancer Netw. 1, 1–132 (2015).spa
dc.relation.references55. Zhang, R., Song, X. Q., Liu, R. P., Ma, Z. Y. & Xu, J. Y. Fuplatin: An Efficient and Low-Toxic Dual-Prodrug. J. Med. Chem. 62, 4543–4554 (2019).spa
dc.relation.references56. Inés Castro Núñez, Eduardo Echarri Arrieta, F. F. L. MEDICAMENTOS CITOSTÁTICOS Sociedad Española de Farmacéuticos de Hospitales. RAÍZ, TG., S.L. Gamonal, 19. 28031 (MADRID) vol. 4a Edición (2003).spa
dc.relation.references57. Ota, Y., Nakamura, A., Elboray, E. E., Itoh, Y. & Suzuki, T. Design, synthesis, and biological evaluation of a conjugate of 5- fluorouracil and an LSD1 inhibitor. Chem. Pharm. Bull. 67, 192–195 (2019).spa
dc.relation.references58. Ducreux, M. et al. Optimization of 5-fluorouracil (5-FU)/cisplatin combination chemotherapy with a new schedule of leucovorin, 5-FU and cisplatin (LV5FU2-P regimen) in patients with biliary tract carcinoma. Ann. Oncol. 13, 1192–1196 (2002).spa
dc.relation.references59. Perkhofer, L. et al. Nal-IRI with 5-fluorouracil (5-FU) and leucovorin or gemcitabine plus cisplatin in advanced biliary tract cancer - The NIFE trial (AIO-YMO HEP-0315) an open label, non-comparative, randomized, multicenter phase II study. BMC Cancer 19, 1–7 (2019).spa
dc.relation.references60. Benson, A. B. et al. NCCN Guidelines ® Insights Colon Cancer, Version 2.2018 Featured Updates to the NCCN Guidelines. JNCCN J. Natl. Compr. Cancer Netw. 16, 359–369 (2018)spa
dc.relation.references61. Glynne-Jones, R. et al. Anal cancer: ESMO-ESSO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 25, 10–20 (2014).spa
dc.relation.references62. Mohammadian, M., Zeynali, S., Azarbaijani, A. F., Khadem Ansari, M. H. & Kheradmand, F. Cytotoxic effects of the newlydeveloped chemotherapeutic agents 17-AAG in combination with oxaliplatin and capecitabine in colorectal cancer cell lines. Res. Pharm. Sci. 12, 517–525 (2017).spa
dc.relation.references63. Di Desidero, T. et al. Pharmacokinetic analysis of metronomic capecitabine in refractory metastatic colorectal cancer patients. Invest. New Drugs 36, 709–714 (2018).spa
dc.relation.references64. Müller, V. et al. Quality of life under capecitabine (Xeloda®) in patients with metastatic breast cancer: Data from a German non-interventional surveillance study. Oncol. Res. Treat. 37, 748–755 (2014).spa
dc.relation.references65. Broto, M., McCabe, R., Galve, R. & Marco, M. P. A high throughput immunoassay for the therapeutic drug monitoring of tegafur. Analyst 142, 2404–2410 (2017).spa
dc.relation.references66. Li, W. et al. Maintenance treatment of Uracil and Tegafur (UFT) in responders following first-line fluorouracil-based chemotherapy in metastatic gastric cancer: A randomized phase II study. Oncotarget 8, 37826–37834 (2017).spa
dc.relation.references67. Peeters, M., Cervantes, A., Moreno Vera, S. & Taieb, J. Trifluridine/tipiracil: An emerging strategy for the management of gastrointestinal cancers. Futur. Oncol. 14, 1629–1645 (2018).spa
dc.relation.references68. Side Effects of Lonsurf (Trifluridine and Tipiracil Tablets), Warnings, Uses. https://www.rxlist.com/lonsurf-side-effects-drugcenter.htm.spa
dc.relation.references69. Orlandi, P. et al. Pharmacological effects of the simultaneous and sequential combinations of trifluridine/tipiracil (TAS-102) and 5-fluorouracil in fluoropyrimidine-sensitive colon cancer cells. Invest. New Drugs 38, 92–98 (2020).spa
dc.relation.references70. Trifluridine / tipiracil (Lonsurf) for metastatic colorectal cancer: Overview. (2016).spa
dc.relation.references71. Kitada, N. et al. Factors affecting sensitivity to antitumor platinum derivatives of human colorectal tumor cell lines. Cancer Chemother. Pharmacol. 62, 577–584 (2008).spa
dc.relation.references72. Paraskar, A., Soni, S., Roy, B., Papa, A. & Sengupta, S. Rationally designed oxaliplatin-nanoparticle for enhanced antitumor efficacy. Nanotechnology 23, 1–17 (2012).spa
dc.relation.references73. Grothey, A. & Goldberg, R. M. A review of oxaliplatin and its clinical use in colorectal cancer. Expert Opin. Pharmacother. 5, 2159–2170 (2004).spa
dc.relation.references74. Rubiano, J. A., Garrido, A. & Castillo, J. S. Uso de bevacizumab en pacientes con cáncer de colon metastásico en el Instituto Nacional de Cancerología: una serie de casos. Rev. Colomb. Cancerol. 16, 227–233 (2012).spa
dc.relation.references75. Conroy, T. et al. Quality-of-life findings from a randomised phase-III study of XELOX vs FOLFOX-6 in metastatic colorectal cancer. Br. J. Cancer 102, 59–67 (2010)spa
dc.relation.references76. Jeremic, B., Acimovic, L. & Mijatovic, L. Carboplatin and etoposide in advanced colorectal carcinoma. A phase II study. Cancer 71, 2706–2708 (1993).spa
dc.relation.references77. Harrington, S. E. & Smith, T. J. Role of Chemotherapy at the End of life. JAMA - J. Am. Med. Assoc. 299, 1–22 (2008)spa
dc.relation.references78. Saber, M. M., Al-mahallawi, A. M., Nassar, N. N., Stork, B. & Shouman, S. A. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes. BMC Cancer 18, 1–11 (2018).spa
dc.relation.references79. De Jongh, F. E. et al. Weekly high-dose cisplatin is a feasible treatment option: Analysis on prognostic factors for toxicity in 400 patients. Br. J. Cancer 88, 1199–1206 (2003)spa
dc.relation.references80. Kaku, Y., Tsuchiya, A., Kanno, T. & Nishizaki, T. Irinotecan induces cell cycle arrest, but not apoptosis or necrosis, in Caco-2 and CW2 colorectal cancer cell lines. Pharmacology 95, 154–159 (2015).spa
dc.relation.references81. Irinotecan (Campto) | Cancer information | Cancer Research UK. https://www.cancerresearchuk.org/about-cancer/cancer-ingeneral/treatment/cancer-drugs/drugs/irinotecanspa
dc.relation.references82. Ikehata, M. et al. Different effects of epigenetic modifiers on the cytotoxicity induced by 5-fluorouracil, irinotecan or oxaliplatin in colon cancer cells. Biol. Pharm. Bull. 37, 67–73 (2014).spa
dc.relation.references83. Starling, N., Tilden, D., White, J. & Cunningham, D. Cost-effectiveness analysis of cetuximab/irinotecan vs active/best supportive care for the treatment of metastatic colorectal cancer patients who have failed previous chemotherapy treatment. Br. J. Cancer 96, 206–212 (2007).spa
dc.relation.references84. Hare, J. I. et al. Treatment of Colorectal Cancer Using a Combination of Liposomal Irinotecan (Irinophore CTM) and 5- Fluorouracil. PLoS One 8, (2013).spa
dc.relation.references85. Hegde, V. S. & Nagalli, S. Leucovorin. StatPearls (StatPearls Publishing, 2020)spa
dc.relation.references86. Folinic Acid - Drug Information - Chemocare. http://chemocare.com/chemotherapy/drug-info/folinic-acid.aspx.spa
dc.relation.references87. Tsukihara, H., Tsunekuni, K. & Takechi, T. Folic acid-metabolizing enzymes regulate the antitumor effect of 5-fluoro-2′- deoxyuridine in colorectal cancer cell lines. PLoS One 11, 1–10 (2016).spa
dc.relation.references88. Zoetemelk, M., Ramzy, G. M. & Rausch, M. Folinic Acid and Oxaliplatin and Its Activity in. (2020).spa
dc.relation.references89. Pectasides, D. et al. Oxaliplatin plus high-dose leucovorin and 5-fluorouracil in pretreated advanced breast cancer: A phase II study. Ann. Oncol. 14, 537–542 (2003).spa
dc.relation.references90. Wei, N., Chu, E., Wu, S. yu, Wipf, P. & Schmitz, J. C. The cytotoxic effects of regorafenib in combination with protein kinase D inhibition in human colorectal cancer cells. Oncotarget 6, 4745–4756 (2015).spa
dc.relation.references91. Regorafenib. Metastatic colorectal cancer in treatment failure: may prolong survival by a few weeks - PubMed. https://pubmed.ncbi.nlm.nih.gov/24516902/.spa
dc.relation.references92. Dennert, G. & Horneber, M. Selenium for alleviating the side effects of chemotherapy, radiotherapy and surgery in cancer patients. Cochrane Database Syst. Rev. 2017, (2006).spa
dc.relation.references93. Gandin, V., Khalkar, P., Braude, J. & Fernandes, A. P. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic. Biol. Med. 127, 80–97 (2018).spa
dc.relation.references94. Cao, S., Durrani, F. A., Rustum, Y. M. & Yu, Y. E. Ugt1a is required for the protective effect of selenium against irinotecaninduced toxicity. Cancer Chemother. Pharmacol. 69, 1107–1111 (2012).spa
dc.relation.references95. Romano, B., Font, M., Encío, I., Palop, J. A. & Sanmartín, C. Synthesis and antiproliferative activity of novel methylselenocarbamates. Eur. J. Med. Chem. 83, 674–684 (2014).spa
dc.relation.references96. Jardim, G. A. M. et al. Synthesis of selenium-quinone hybrid compounds with potential antitumor activity via Rh-Catalyzed CH bond activation and click reactions. Molecules 23, (2018).spa
dc.relation.references97. He, J. et al. Inhibition of thioredoxin reductase by a novel series of bis-1,2-benzisoselenazol-3(2H)-ones: Organoselenium compounds for cancer therapy. Bioorganic Med. Chem. 20, 3816–3827 (2012).spa
dc.relation.references98. Iqbal, M. A. et al. Green synthesis of mono- and di-selenium-N-heterocyclic carbene adducts: Characterizations, crystal structures and pro-apoptotic activities against human colorectal cancer. J. Organomet. Chem. 801, 130–138 (2016).spa
dc.relation.references99. Haque, R. A. et al. Synthesis, structure, anticancer, and antioxidant activity of para-xylyl linked bis-benzimidazolium salts and respective dinuclear Ag(I) N-heterocyclic carbene complexes (Part-II). Med. Chem. Res. 22, 4663–4676 (2013).spa
dc.relation.references100. Haque, R. A., Iqbal, M. A., Khadeer Ahamed, M. B., Majid, A. M. S. A. & Abdul Hameed, Z. A. Design, synthesis and structural studies of meta-xylyl linked bis-benzimidazolium salts: Potential anticancer agents against ‘human colon cancer’. Chem. Cent. J. 6, (2012).spa
dc.relation.references101. Plano, D. et al. Design, Synthesis, and Biological Evaluation of Novel Selenium (Se-NSAID) Molecules as Anticancer Agents. J. Med. Chem. 59, 1946–1959 (2016).spa
dc.relation.references102. Avendaño, C. & Menéndez, C. Medicinal Chemistry of Anticancer Drugs. (2008)spa
dc.relation.references103. A new route to the synthesis of 5-Fluorouracil. J. Fluor. Chem. 58, 99–104 (1989).spa
dc.relation.references104. Carda, M. Synthetic Methodology Applied to Drug Synthesis. (2016).spa
dc.relation.references105. organic-chemistry. Biginelli Reaction. https://www.organic-chemistry.org/namedreactions/biginelli-reaction.shtm.spa
dc.relation.references106. In, K. I. N., No, H. & Nagar, N. L. B. Wo 2010/065586 a2. 2, (2010).spa
dc.relation.references107. Smart, K. F., Aggio, R. B. M., Van Houtte, J. R. & Villas-Bôas, S. G. Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nat. Protoc. 5, 1709– 1729 (2010).spa
dc.relation.references108. Zasada, A., Mironiuk-Puchalska, E. & Koszytkowska-Stawińska, M. Synthesis of Tegafur by the Alkylation of 5-Fluorouracil under the Lewis Acid and Metal Salt-Free Conditions. Org. Process Res. Dev. 21, 885–889 (2017).spa
dc.relation.references109. Zasada, A., Puchalska, E. & Stawinska, M. Synthesis of tegafur by alkylation of 5-fluorouracil under the Lewis acid-and metal salt-free conditions. http://www.forsanelhaq.com/showthread.php?t=151497.spa
dc.relation.references110. Kobayashi, Y., Kumadaki, I. & Yamamoto, K. Simple synthesis of trifluoromethylated pyrimidine nucleosides. J. Chem. Chem. Commun. 536–537 (1977) doi:10.1039/C39770000536.spa
dc.relation.references111. Patent - synthesis of trifluridine.pdf. (2012).spa
dc.relation.references112. ELSEVIER. Organofluorine Pharmaceuticals. Organofluorine Compounds in Biology and Medicine (2015). doi:10.1016/b978-0-444-53748-5.00005-8spa
dc.relation.references113. Suzuki, N., Ito, M. & Takechi, T. Discovery and Development of Trifluridine / Tipiracil. 3, 417–441 (2018)spa
dc.relation.references114. Application, I., Under, P., Patent, T. H. E. & Treaty, C. Wo 2019/002407. vol. 1 (2019).spa
dc.relation.references115. Allen, H. R., Maxson, R. N., Booth, H. S. & Herrmann, C. V. Sulfuryl Chloride. Org. Synth. 1, 114–117 (2007).spa
dc.relation.references116. Habala, L. et al. Synthesis and structure-activity relationships of mono- and dialkyl-substituted oxaliplatin derivatives. Eur. J. Med. Chem. 40, 1149–1155 (2005).spa
dc.relation.references117. Galanski, M. et al. Synthesis, crystal structure and cytotoxicity of new oxaliplatin analogues indicating that improvement of anticancer activity is still possible. Eur. J. Med. Chem. 39, 707–714 (2004).spa
dc.relation.references118. Avendaño, C. & Menéndez, J. C. Medicinal Chemistry of Anticancer Drugs. Medicinal Chemistry of Anticancer Drugs (2008). doi:10.1016/B978-0-444-52824-7.X0001-7.spa
dc.relation.references119. Wilson, J. J. & Lippard, S. J. Synthetic methods for the preparation of platinum anticancer complexes. Chem. Rev. 114, 4470– 4495 (2014).spa
dc.relation.references120. Kawamura, K. et al. Synthesis, metabolite analysis, and in vivo evaluation of [11C]irinotecan as a novel positron emission tomography (PET) probe. Nucl. Med. Biol. 40, 651–657 (2013)spa
dc.relation.references121. Martino, E. et al. The long story of camptothecin: From traditional medicine to drugs. Bioorganic Med. Chem. Lett. 27, 701– 707 (2017).spa
dc.relation.references122. Felder, A. United States Patent [19]. (1998)spa
dc.relation.references123. Zakrzewski, S. & Sansone, A. Preparation of Folinic Acid. J. Chem. Inf. Model. 53, 1689–1699 (2013).spa
dc.relation.references124. Francese, G., Corana, F., Meneghetti, O. & Marazza, F. LC-MS characterization of trace impurities contained in calcium folinate. J. Pharm. Biomed. Anal. 39, 757–763 (2005).spa
dc.relation.references125. Forsch, R. A., Rosowsky, A. & Wan, P. A new ine-step synthesis of Leucovorin from Folic Acid and of 5-formyl-5,6,7,8- tetrahydrohomofolic acid from Homofolic Acid using Dimethylamine-Norane in Formic Acid. 2582–2583 (1985)spa
dc.relation.references126. Xiaochao, G. et al. Degradation of folic acid wastewater by electro-Fenton with three-dimensional electrode and its kinetic study. R. Soc. Open Sci. 5, 170926 (2018).spa
dc.relation.references127. Wang, L. M. et al. An efficient and high-yielding protocol for the production of Regorafenib via a new synthetic strategy. Res. Chem. Intermed. 42, 3209–3218 (2016)spa
dc.relation.references128. Du, F. et al. A new pathway via intermediate 4-amino-3-fluorophenol for the synthesis of regorafenib. Synth. Commun. 49, 576–586 (2019).spa
dc.relation.references129. Czakó, B. & Kurti, L. Strategic Applications of Named Reactions in Organic Synthesis. Elsevier Academic Press vol. 1 (2005).spa
dc.relation.references130. Koch, T. & Buchardt, O. Synthesis of L-(+)-Selenomethionine. Res. Cent. Med. Biotechnol. (1993).spa
dc.relation.references131. Kogami, M. & Koketsu, M. An efficient method for the synthesis of selenium modified nucleosides: its application in the synthesis of Se-adenosyl-l-selenomethionine (SeAM). Org. Biomol. Chem. 13, 9405–9417 (2015).spa
dc.relation.references132. Block, E. et al. Identification and synthesis of a novel selenium-sulfur amino acid found in selenized yeast: Rapid indirect detection NMR methods for characterizing low-level organoselenium compounds in complex matrices. J. Agric. Food Chem. 52, 3761–3771 (2004).spa
dc.relation.references133. Plenevaux, A., Cantineau, R., Guillaume, M., Christiaens, L. & Tihange, G. Fast chemical synthesis of [Se]Lselenomethionine. Int. J. Radiat. Appl. Instrumentation. Part 38, 59–61 (1987).spa
dc.relation.references134. Zhou, Z. S., Smith, A. E. & Matthews, R. G. L-selenohomocysteine: One-step synthesis from L-selenomethionine and kinetic analysis as substrate for methionine synthases. Bioorganic Med. Chem. Lett. 10, 2471–2475 (2000).spa
dc.relation.references135. Iwaoka, M., Ooka, R., Nakazato, T., Yoshida, S. & Oishi, S. Synthesis of selenocysteine and selenomethionine derivatives from sulfur-containing amino acids. Chem. Biodivers. 5, 359–374 (2008).spa
dc.relation.references136. Lim, D., Gründemann, D. & Seebeck, F. P. Total Synthesis and Functional Characterization of Selenoneine. Angew. Chemie 131, 15168–15172 (2019)spa
dc.relation.references137. Shaaban, S. et al. Novel peptidomimetic compounds containing redox active chalcogens and quinones as potential anticancer agents. Eur. J. Med. Chem. 58, 192–205 (2012).spa
dc.relation.references138. Cieza, L. Reacciones click: Síntesis de fármacos para el tratamiento del cáncer de mama. (2015)spa
dc.relation.references139. Ibáñez, E. et al. Synthesis and antiproliferative activity of novel symmetrical alkylthio- and alkylseleno-imidocarbamates. Eur. J. Med. Chem. 46, 265–274 (2011).spa
dc.relation.references140. Begini, F. et al. Continuous flow synthesis of 2,2′-diselenobis(benzoic acid) and derivatives. React. Chem. Eng. 5, 641–644 (2020).spa
dc.relation.references141. Krasowska, D., Iraci, N., Santi, C., Drabowicz, J. & Cieslak, M. Diselenides and Benzisoselenazoles as Antiproliferative Agents and Glutathione-S-Transferase Inhibitors. Molecules 1–19 (2014).spa
dc.relation.references142. Krasowska, D. et al. Ultrasound-assisted synthesis of alkali metals diselenides (M2Se2) and their application for the gram-scale preparation of 2,2’-diselenobis(benzoic acid). Arkivoc 2019, 24–37 (2019).spa
dc.relation.references143. Liu, L. et al. Synthesis of NSAIDs–Se derivatives as potent anticancer agents. Med. Chem. Res. 27, 2071–2078 (2018)spa
dc.relation.references144. Ravera, M. et al. Antiproliferative activity of Pt(IV) conjugates containing the non-steroidal anti-inflammatory drugs (NSAIDs) Ketoprofen and Naproxen. Int. J. Mol. Sci. 20, 1–18 (2019).spa
dc.relation.references145. Hoshyar, N., Gray, S., Han, H. & Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11, 673–692 (2016).spa
dc.relation.references146. Hillaireau, H. & Couvreur, P. Nanocarriers’ entry into the cell: Relevance to drug delivery. Cell. Mol. Life Sci. 66, 2873–2896 (2009).spa
dc.relation.references147. Tran, S., DeGiovanni, P.-J., Piel, B. & Rai, P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Trans Med 6, 1–21 (2017).spa
dc.relation.references148. Patra, J. K. et al. Nano based drug delivery systems: Recent developments and future prospects 10 Technology 1007 Nanotechnology 03 Chemical Sciences 0306 Physical Chemistry (incl. Structural) 03 Chemical Sciences 0303 Macromolecular and Materials Chemistry 11 Medical and He. J. Nanobiotechnology 16, 1–33 (2018).spa
dc.relation.references149. Sahoo, S. K. & Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today 8, 1112–1120 (2003)spa
dc.relation.references150. Panchagnula, R. & Thomas, N. S. Biopharmaceutics and pharmacokinetics in drug research. Int. J. Pharm. 201, 131–150 (2000).spa
dc.relation.references151. Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chemie - Int. Ed. 51, 8529–8533 (2012).spa
dc.relation.references152. Aljuffali, I., Huang, C.-H. & Fang, J.-Y. Nanomedical Strategies for Targeting Skin Microbiomes. Curr. Drug Metab. 16, 255– 271 (2015).spa
dc.relation.references153. Tran, S., DeGiovanni, P.-J., Piel, B. & Rai, P. Cancer nanomedicine: a review of recent success in drug delivery. Clin. Transl. Med. 6, 0–21 (2017).spa
dc.relation.references154. Witika, B. A. et al. Biocompatibility of Biomaterials for Nanoencapsulation: Current Approaches. Nanomaterials 10, 1649 (2020).spa
dc.relation.references155. Naahidi, S. et al. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release 166, 182–194 (2013).spa
dc.relation.references156. Kohane, D. S. & Langer, R. Biocompatibility and drug delivery systems. Chem. Sci. 1, 441–446 (2010).spa
dc.relation.references157. Oropesa, R. & Jáuregui, U. Las nanopartículas como portadores de fármacos: características y perspectivas Nanoparticles as drug carriers : characteristics and perspectives. CENIC Ciebcias Biológicas 43, (2012).spa
dc.relation.references158. Williams, H. D. et al. Strategies to Address Low Drug Solubility in Discovery and Development. Pharmacol. Rev. 65, 315–499 (2013).spa
dc.relation.references159. Zafar, N., Bashir, I., Alvi, N. & Sajid, M. I. Structural components of liposomes and characterization tools. Indo Am. J. Pharm. Res. 4, 3559–3567 (2014).spa
dc.relation.references160. Balzola, A. NUEVOS VECTORES EN LA APLICACIÓN VÍA TÓPICA DE MEDICAMENTOS. LIPOSOMAS (I). (2018).spa
dc.relation.references161. Paul, M. et al. Physicochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: Implication in the intracellular drug release in Leishmania major infected mice. J. Drug Target. 5, 481–490 (1998).spa
dc.relation.references162. Margaroni, M. et al. PLGA nanoparticles modified with a TNFα mimicking peptide, soluble Leishmania antigens and MPLA induce T cell priming in vitro via dendritic cell functional differentiation. Eur. J. Pharm. Biopharm. 105, 18–31 (2016).spa
dc.relation.references163. Fernandez, M. Desarrollo de una formulacion oral de Yoduro de N-yodometil-N,N-dimetil-N-(6,6-difenilhex-5-en-1-il) amonio para el tratamiento de la Leishmaniasis Cutánea. (Universidad de Antioquia, 2017).spa
dc.relation.references164. Danhier, F. et al. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 161, 505–522 (2012).spa
dc.relation.references165. Want, M. Y. et al. A new approach for the delivery of artemisinin: Formulation, characterization, and ex-vivo antileishmanial studies. J. Colloid Interface Sci. 432, 258–269 (2014).spa
dc.relation.references166. Santos, I., Ponte, B., Boonme, P., Silva, A. & Souto, E. Nanoencapsulation of polyphenols for protective effect against colon– rectal cancer. Soc. Sci. China 33, 149–156 (2012).spa
dc.relation.references167. Vasir, J. & Labhasetwar, V. Polymeric nanoparticles for gene delivery. Polym. Nanomater. Gene Ther. 3, 325–344 (2006).spa
dc.relation.references168. JANI, P., HALBERT, G. W., LANGRIDGE, J. & FLORENCE, A. T. Nanoparticle Uptake by the Rat Gastrointestinal Mucosa: Quantitation and Particle Size Dependency. J. Pharm. Pharmacol. 42, 821–826 (1990).spa
dc.relation.references169. Makadia, H. & Siegel, S. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polym. 3, 1377–1397 (2011).spa
dc.relation.references170. Schwarz, C. & Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery. II. Drug incorporation and physicochemical characterization. J. Control. Release 16, 83–96 (1994).spa
dc.relation.references171. Geszke-Moritz, M. & Moritz, M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Mater. Sci. Eng. C 68, 982–994 (2016).spa
dc.relation.references172. Qiu, Y. Understanding Drug Properties in Formulation and Process Design of Solid Oral Products. J. Valid. Technol. 74–84 (2010).spa
dc.relation.references173. Liu, X., Testa, B. & Fahr, A. Lipophilicity and its relationship with passive drug permeation. Pharm. Res. 28, 962–977 (2011).spa
dc.relation.references174. Gonçalves, L. M. D. et al. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur. J. Pharm. Biopharm. 102, 41–50 (2016).spa
dc.relation.references175. Li, X. et al. Nano carriers for drug transport across the blood–brain barrier. J. Drug Target. 25, 17–28 (2017).spa
dc.relation.references176. Porter, C. J. H., Trevaskis, N. L. & Charman, W. N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. 6, 231–248 (2007).spa
dc.relation.references177. Fonseca-santos, B., Daflon, M. & Chorilli, M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer ’ s disease. Int. J. Nanomedicine 10, 4981–5003 (2015).spa
dc.relation.references178. Huang, J. R., Lee, M. H., Li, W. S. & Wu, H. C. Liposomal irinotecan for treatment of colorectal cancer in a preclinical model. Cancers (Basel). 11, 1–19 (2019).spa
dc.relation.references179. Iqbal, S., Jubeen, F. & Sher, F. Future of 5-Fluorouracil in Cancer Therapeutics, Current Pharmacokinetics Issues and a Way Forward. J. Cancer Res. Pract. 6, 155–161 (2020)spa
dc.relation.references180. Haggag, Y. A. et al. Polymeric nano-encapsulation of 5-fluorouracil enhances anti-cancer activity and ameliorates side effects in solid Ehrlich Carcinoma-bearing mice. Biomed. Pharmacother. 105, 215–224 (2018)spa
dc.relation.references181. Kumar, G. V., Nair, L., Sankar, J. & Nair, S. A. Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int. J. Nanomedicine 1685 (2011) doi:10.2147/ijn.s20165.spa
dc.relation.references182. Rajpoot, K. & Jain, S. K. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation. Artif. Cells, Nanomedicine Biotechnol. 46, 1–12 (2017).spa
dc.relation.references183. Zhang, W. et al. Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions. Int. J. Nanomedicine 9, 4305–4315 (2014).spa
dc.relation.references184. Jain, A., Jain, S. K., Ganesh, N., Barve, J. & Beg, A. M. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomedicine Nanotechnology, Biol. Med. 6, 179–190 (2010).spa
dc.relation.references185. Yassin, A. E. B. et al. Optimization of 5-fluorouracil solid-lipid nanoparticles: A preliminary study to treat colon cancer. Int. J. Med. Sci. 7, 398–408 (2010).spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.lembCáncer
dc.subject.lembEpidemiología
dc.subject.lembMedicamentos
dc.subject.proposalCáncer colorrectaspa
dc.subject.proposalNanomedicinaspa
dc.subject.proposalNanoencapsuladospa
dc.subject.proposalQuimioterapiaspa
dc.subject.proposalLiberación controlada de fármacosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
dc.description.degreenameMagister en Químicaspa
dc.publisher.programMaestría en Químicaspa
dc.description.researchgroupQuímica medicinalspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem