Mostrar el registro sencillo del ítem

dc.contributor.advisorRuiz Jiménez, Elvira Cristina
dc.contributor.authorQuiceno Colorado, July
dc.date.accessioned2021-06-10T17:10:51Z
dc.date.available2021-06-10T17:10:51Z
dc.date.issued2021-06-09
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/16723
dc.descriptionIlustraciones, gráficas, mapasspa
dc.description.abstractspa: Geográfica y temporalmente, los cerros El Morro y Florencia hacen parte de la Provincia Volcánico Tectónica San Diego-Cerro Machín (PVTSC) en Colombia. Esta provincia volcánica es la consecuencia de la interacción (margen activo subductivo) entre las placas Nazca y Sudamericana que deriva en el arco magmático actual. Las características petrográficas, químicas y geotermobarométricas permitieron asociar el fundido formador de los cerros El Morro y Florencia al mismo magma que originó a los volcanes El Escondido y San Diego, también ubicados al norte de la PVTSC. Estos cuerpos, de afinidad calcoalcalina, con contenidos en sílice de 57.67 a 61.98 wt%, compuestos por microcuarzodioritas y microtonalitas (cerro El Morro), y andesitas (cerro Florencia) se encuentran encajados en las rocas del Complejo Cajamarca. Petrográficamente están constituidos por cristales de plagioclasa zonados, anfíbol, mica biotita; y para algunas rocas del cerro El Morro se observaron cuarzo y ortosa. Las relaciones isotópicas de 87Sr/86Sr y 144Nd/143Nd indican que los magmas formadores de las rocas para ambos cerros provienen de la fusión parcial de la cuña mantélica de suprasubducción, y que un proceso importante en la evolución del fundido fue la asimilación magmática en la corteza inferior. Adicionalmente, las altas relaciones Ba/Nb (308-253), valores elevados de Sr, K, Rb, Th y bajos valores de elementos HFSE como Ti, Y, Yb, Nb y Hf, sugieren procesos de cristalización fraccionada y contaminación por sedimentos de la corteza subduccida. Las características adakíticas encontradas en ambos cuerpos podría estar relacionada a que el fundido generado atravesó una corteza engrosada ocasionando que la formación de las fases minerales comience a altas presiones y como consecuencia directa se dé la cristalización tardía de las plagioclasas y las relaciones elevadas de Sr/Yb y Sr/Y. Los análisis químicos en núcleo y borde de la plagioclasa permitieron identificar una zonación normal (An60 - An32) en este mineral. El anfíbol fue clasificado como magnesiohastingsita y los cálculos geotermobarométricos sugieren rangos de profundidad de formación para este mineral entre 17 y 35 km, con temperaturas entre 971 a 1036 °C, presiones entre 467 a 911 MPa y con porcentaje de agua entre 6.67 y 9.41 wt%. Adicionalmente, las texturas de desequilibrio en los cristales de plagioclasa indicarían movimientos convectivos al interior de la cámara magmática.spa
dc.description.abstracteng: Geographically and temporarily, the hills El Morro and Florencia are part of the Province San Diego-Cerro Machín Tectonic Volcanic (PVTSC) in Colombia. This province volcanic is the consequence of the interaction (active subductive margin) between the plates Nazca and South American that derives in the current magmatic arc. The characteristics petrographic, chemical and eothermobarometric allowed to associate the molten formation of the El Morro and Florencia hills to the same magma that originated the El Escondido volcanoes and San Diego, also located north of the PVTSC. These bodies, with a calcoalkaline affinity, with silica contents from 57.67 to 61.98 wt%, composed of microquarzodiorites and microtonalites (Cerro El Morro), and andesites (Cerro Florencia) are embedded in the rocks of the Cajamarca Complex. Petrographically they are constituted by zoned plagioclase crystals, amphibole, biotite mica; and for some rocks from Cerro El Morro, quartz and orthoosa were observed. Isotopic ratios of 87Sr / 86Sr and 144Nd / 143Nd indicate that the rock-forming magmas for both hills come from partial fusion of the suprasubduction mantle wedge, and that an important process in the evolution of the melt it was the magmatic assimilation in the lower crust. Additionally, the high Ba / Nb ratios (308-253), high values ​​of Sr, K, Rb, Th and low values ​​of HFSE elements such as Ti, Y, Yb, Nb and Hf, suggest processes of fractional crystallization and sediment contamination of the subduced crust. The Adakitic characteristics found in both bodies could be related to the fact that the The melt generated passed through a thickened crust causing the formation of the minerals begin at high pressures and as a direct consequence crystallization occurs late plagioclase and high Sr / Yb and Sr / Y ratios. Chemical analysis in nucleus and border of the plagioclase allowed to identify a normal zonation (An60 -An32) in this mineral. The amphibole was classified as magnesiumhastingsite and the calculations Geothermobarometrics suggest formation depth ranges for this mineral between 17 and 35 km, with temperatures between 971 and 1036 ° C, pressures between 467 and 911 MPa and with percentage of water between 6.67 and 9.41 wt%. Additionally, the imbalance textures in plagioclase crystals would indicate convective movements within the chamber magmatic.eng
dc.description.tableofcontents1. Introducción / 2. Objetivos/ 2.1 Objetivo general/ 2.1 Objetivos específicos/ 3. Marco geológico/ 4. Marco teórico/ 4.1. Magmatismo en zonas de subducción/ 4.2. Características químicas de los magmas generados en zonas de subducción/ 4.3. Adakitas / 4.4. Mecanismos de ascenso magmático / 4.4.1 Diapirismo/ 4.4.2 Propagación de fracturas/ 4.5. Emplazamiento de cuerpos intrusivos / 4.5.1 Geometría de los plutones/ 4.6. Vulcanismo / 4.6.1. Vulcanismo poligenético / 4.6.2. Vulcanismo monogenético/ 5. Metodología / 5.1 Análisis petrográfico/ 5.2 Química mineral/ 5.2.1. Geotermobarometría de anfíbol / 5.3 Análisis químicos de roca total/ 5.4. Isótopos de Sr y Nd/ 6. Resultados/ 6.1. Descripción de campo/ 6.1.1. Cerro El Morro/ 6.1.2. Cerro Florencia / 6.2. Análisis petrográfico/ 6.2.1. Cerro El Morro/ 6.2.2. Cerro Florencia / 6.3 Química mineral/ 6.3.1. Plagioclasas/ 6.3.2. Anfíbol / 6.3.3. Biotita/ 6.4. Análisis químicos/ 6.5. Análisis isotópicos/ 7. Discusión e interpretación de los resultados/ 7.1. Origen y evolución del magma / 7.2. Características adakíticas del magma / 7.3. Texturas de desequilibrio en cristales de plagioclasa / 7.4. Geotermobarometría / 7.4.1. Presión, temperatura y profundidad/ 7.4.2. Agua en el fundido y fugacidad de oxígeno. / 7.5. Modelo de cristalización y emplazamiento del magma/ 8. Conclusiones. ii / Lista de Referencias.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleCaracterísticas composicionales de los cerros El Morro y Florencia en el Departamento de Caldas, Colombia: Implicaciones sobre su origen y evolución.spa
dc.typeTrabajo de grado - Maestríaspa
dc.description.degreelevelMaestríaspa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesBarbosa-Espitia, Á. A., Kamenov, G. D., Foster, D. A., Restrepo-Moreno, S. A., & PardoTrujillo, A. (2019). Contemporaneous Paleogene arc-magmatism within continental and accreted oceanic arc complexes in the northwestern Andes and Panama. Lithos, 348, 105185. https://doi.org/10.1016/j.lithos.2019.105185spa
dc.relation.referencesBarbosa-González, S. (2018). Análisis petrográfico comparativo entre dos cuerpos ígneos de Samaná (Caldas), a través de la caracterización textural y cuantitativa “CSD”. Tesis de pregrado. Universidad de Caldas.spa
dc.relation.referencesBest, M. G. & Christiansen, E. H. (2001). Igneous petrology. Oxford: Blackwell Science.spa
dc.relation.referencesBissig, T., Leal-Mejía, H., Stevens, R. & Hart, C. (2017). High Sr/Y Magma Petrogenesis and the Link to Porphyry Mineralization as Revealed by Garnet-Bearing I-Type Granodiorite Porphyries of the Middle Cauca Au-Cu Belt, Colombia. Economic Geology, 112 (3), 551–568. https://doi.org/10.2113/econgeo.112.3.551.spa
dc.relation.referencesBlanco-Quintero, I. F., García-Casco, A., Toro, L. M., Moreno, M., Ruiz, E. C., Vinasco, C. J. & Morata, D. (2014). Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). International Geology Review, 56 (15), 1852–1872. https://doi.org/10.1080/00206814.2014.963710spa
dc.relation.referencesBorrero, C., Murcia, H., Agustín-Flores, J., Arboleda, M. T. & Giraldo, A. M. (2017). Pyroclastic deposits of San Diego maar, central Colombia: an example of a silicic magma-related monogenetic eruption in a hard substrate. Geological Society, London, Special Publications, 446, 361-374. https://doi.org/10.1144/SP446.10.spa
dc.relation.referencesBrown, M.A., Brown, M., Carlson, W.D., and Denison, C. (1999). Topology of syntectonic melt-flow networks in the deep crust; inferences from three-dimensional images of leucosome geometry in migmatites, American Mineralogist. 84, 1793-1818spa
dc.relation.referencesCastillo, P.R. (2006). An overview of adakite petrogenesis. Chinese Science Bulletin. 51, 257-268. https://doi.org/10.1007/s11434-006-0257-7.spa
dc.relation.referencesCastro–Dorado. A. (2015) petrografía de rocas ígneas y metamórficas. Ediciones Paraninfo, SA. 1era edición, 2015. España.spa
dc.relation.referencesChiaradia, M. (2009). Adakite-like magmas from fractional crystallization and melting assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador). Chemical Geology, 265(3-4), 468- 487.https://doi.org/10.1016/j.chemgeo.2009.05.014spa
dc.relation.referencesClass, C., Miller, D. M., Goldstein, S. L. & Langmuir C. H. (2000). Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry Geophysics Geosystems, 1 (1), 1-28. https://doi.org/10.1029/1999GC000010.spa
dc.relation.referencesClemens, J.D., and Mawer, C.K., (1992) Granitic magma transport by fracture propagation. Tectonophysics. 204, 339-360. https://doi.org/10.1016/0040-1951(92)90316-Xspa
dc.relation.referencesCochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A., & Chiaradia, M. (2014). Distinguishing between in-situ and accretionary growth of continents along active margins. Lithos, 202, 382-394.https://doi.org/10.1016/j.lithos.2014.05.031.spa
dc.relation.referencesCondie, K.C. (2005). High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes?. Lithos, 79, 491–504. https://doi.org/10.1016/j.lithos.2004.09.014spa
dc.relation.referencesCortés, J. (2015). CFU-PINGU. Consultado el 15 de mayo de 2020. https://vhub.org/resources/cfupingu.2015 . [ Links ]spa
dc.relation.referencesCouch, S., Sparks, R. & Carroll, M. (2001). Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature, 411, 1037–1039. https://doi.org/10.1038/35082540spa
dc.relation.referencesCosta, A. (2005) Viscosity of high cristal content melts: Dependence on solid fraction, Geophysical Research Letters. 32. L22308, https://doi.org/10.1029/2005GL024303spa
dc.relation.referencesCruden, A.R., (1988), Deformation around a rising diapir modeled by creeping flow past a Sphere. Tectonics, v. 7, 1091-1101. https://doi.org/10.1029/TC007i005p01091spa
dc.relation.referencesCruden, A.R., and McCaffrey, K.J.W. (2001). Growth of plutons by floor subsidence: Implications for rates of emplacement, intrusion spacing and melt-extraction mechanism, Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy. 26, 303-315. https://doi.org/10.1016/S1464-1895(01)00060-6spa
dc.relation.referencesDeer, W. A., Howie, R. A. & Zussman, J. (1992). An introduction to the rock-forming minerals. Hong Kong, Longman, 552–553. https://doi.org/10.1180/DHZspa
dc.relation.referencesDefant, M. & Drummond, M. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662–665. https://doi.org/10.1038/347662a0.spa
dc.relation.referencesDe Paolo, D.J. (1981). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53 (2), 189- 202. doi:10.1016/0012-821x(81)90153-9spa
dc.relation.referencesErrázuriz-Henao, C., Gómez-Tuena, A., Duque-Trujillo, J., & Weber, M. (2019). The role of subducted sediments in the formation of intermediate mantle-derived magmas from the Northern Colombian Andes. Lithos, 336, 151-168. https://doi.org/10.1016/j.lithos.2019.04.007spa
dc.relation.referencesFeininger, T. (1970). The Palestina Fault, Colombia. Geological Society of America Bulletin, 81, 1201-1216.spa
dc.relation.referencesFoster, M.D. (1960). Interpretation of composition of trioctaheral micas. USA Geological Survey. Professional Papers. 354-B, 1–49. https://doi.org/10.3133/pp354B.spa
dc.relation.referencesGómez-Tapias, J., Nivia, A., Montes, N.E., Almanza, M.F., Alcárcel, F.A. & Madrid, C.A. (2015). Notas explicativas: Mapa Geológico de Colombia. En: Gómez, J. & Almanza, M.F. (Editores), Compilando la geología de Colombia: Una visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, Bogotá, 33, 9–33.spa
dc.relation.referencesGonzález, H. (1993). Mapa geológico de Caldas, escala 1: 250.000. Memoria Explicativa. INGEOMINAS. Bogotá, 62p.spa
dc.relation.referencesGudmundsson, A. & Brenner, S. L. (2005). On the conditions of sheet injections and eruptions in stratovolcanoes. Bulletin of Volcanology, 67 (8), 768-782. https://doi.org/10.1007/s00445-005-0433-7spa
dc.relation.referencesHarrison, T.M. & Watson, E.B. (1984). The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48 (7), 1467–1477. https://doi.org/10.1016/0016-7037(84)90403-4.spa
dc.relation.referencesHasenaka, T. & Carmichael, I. S. (1985). The cinder cones of Michoacán—Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. Journal of Volcanology and Geothermal Research, 25 (1-2), 105-124. https://doi.org/10.1016/0377-0273(85)90007-1.spa
dc.relation.referencesHiggins, M. (2002). Closure in crystal size distribution (CSD), verification of CSD calculations and the significance of CSD fans. American Mineralogist, (87) 160–164. https://doi.org/10.2138/am-2002-0118.spa
dc.relation.referencesHiggins, M. D. & Roberge, J. (2007). Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland: Evidence from plagioclase crystal size distribution (CSD) and geochemistry. Journal of Volcanology and Geothermal Research, 161 (3), 247–260. https://doi.org/10.1016/j.jvolgeores.2006.12.002.spa
dc.relation.referencesIdárraga-García, J., Kendall, J.M. & Vargas, C. A. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry Geophysics Geosystems, 17 (9), 3655–3673. https://doi.org/10.1002/2016GC006323.spa
dc.relation.referencesIrvine, T.N. & Baragar, W.R.A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8 (5), 523-548. https://doi.org/10.1139/e71-055.spa
dc.relation.referencesJames, D. E and Murcia, L. A. (1984). Crustal contamination in northern Andean Volcanics. Journal of the Geological Society, 141, 823-830. https://doi.org/10.1144/gsjgs.141.5.0823.spa
dc.relation.referencesJiménez, B.J. (1991). Carta geológica del municipio de Pensilvania, Caldas. Tesis de pregrado. Universidad de Caldas.spa
dc.relation.referencesJones, D. W. R., Katz, R. F., Tian, M., Rudge, J. F. (2018). Thermal impact of magmatism in subduction zones. Earth and Planetary Science Letters, 481, 73-79. https://doi.org/10.1016/j.epsl.2017.10.015spa
dc.relation.referencesKawakatsu, H., and Watada, S. (2007). Seismic evidence for deep-water transportation in the mantle. Nature, 316, 1468-1471. https://doi.org/10.1126/science.1140855spa
dc.relation.referencesKeating, G. N., Valentine, G. A., Krier, D. J. & Perry, F. V. (2008). Shallow plumbing systems for small-volume basaltic volcanoes. Bulletin of Volcanology, 70 (5), 563-582. https://doi.org/10.1007/s00445-007-0154-1.spa
dc.relation.referencesKereszturi, G., Németh, K., Cronin, S. J., Agustín-Flores, J., Smith, I. E. & Lindsay, J. (2013). A model for calculating eruptive volumes for monogenetic volcanoes— Implication for the Quaternary Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 266, 16-33. https://doi.org/10.1016/j.jvolgeores.2013.09.003.spa
dc.relation.referencesLe Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas M.J., Bonin, B. & Bateman, P. (2002). Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press. https://doi.org/10.1017/CBO9780511535581.spa
dc.relation.referencesLeake, B., Woolley, A., Arps, C., Birch, W., Gilbert, M., Grice, J. & Linthout, K. (1997). Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35 (1), 219–246. https://doi.org/10.1180/minmag.1997.061.405.13.spa
dc.relation.referencesLeal-Mejia, I. (2011). Phanerozoic Gold Metallogeny in the Colombian Andes: a tectonomagmatic approach. Tesis de Doctorado. Universidad de Barcelona.spa
dc.relation.referencesLondoño, J.M. (2016). Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes. Journal of Volcanology and Geothermal Research, 324, 156–168. https://10.1016/j.jvolgeores.2016.06.003.spa
dc.relation.referencesLópez-Isaza J.A, Luengas C. S, Velásquez L.E, Celada C.M, Sepúlveda M.J, Prieto D.A Gómez, G. M. (2018). Memoria explicativa Mapa Metalogénico de Colombia: principios, conceptos y modelos de depósito y manifestaciones u ocurrencias minerales para Colombia. Servicio Geológico Colombiano. Bogotá, Colombia.spa
dc.relation.referencesLosantos, E., Cebria, J. M., Morán-Zenteno, D. J., Martiny, B. M. & López-Ruiz, J. (2014). Condiciones de cristalización y diferenciación de las lavas del volcán El Metate (Campo volcánico de Michoacán-Guanajuato, México). Estudios Geológicos, 70 (2), 1-13.spa
dc.relation.referencesMaccaferri, F., Bonafede, M., and Rivalta, E. (2011). A quantitative study of the mechanisms governing dike propagation, dike arrest and sill formation, Journal of Volcanology and Geothermal Research, 208, 39-50. https://doi.org/10.1016/j.jvolgeores.2011.09.001spa
dc.relation.referencesManville, V., Németh, K. & Kano, K. (2009). Source to sink: a review of three decades of progress in the understanding of volcanoclastic processes, deposits, and hazards. Sedimentary Geology, 220 (3-4), 136-161. https://doi.org/10.1016/j.sedgeo.2009.04.022.spa
dc.relation.referencesMarín-Cerón, M. I., Leal-Mejía, H., Bernet, M. & Mesa-García, J. (2019). Late Cenozoic to modern-day volcanism in the Northern Andes: A geochronological, petrographical, and geochemical review. In: Cediel, F., Shaw, R.P., (eds). Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-76132-9_8.spa
dc.relation.referencesMarschall, H. R. & Schumacher, J. C. (2012). Arc magmas sourced from mélange diapirs in subduction zones. Nature Geoscience, 5 (12), 862-867. https://doi.org/10.1038/ngeo1634spa
dc.relation.referencesMartin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46 (3), 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0.spa
dc.relation.referencesMartínez, T., Valencia, R., Ceballos, H., Narváez, M., Pulgarín, A., Correa, T., Navarro, A., Murcia, A., Zuluaga, M., Rueda, G. & Pardo, V. (2014). Geología y estratigrafía del Complejo Volcánico Nevado del Ruiz. Informe final, Bogotá–Manizales–Popayán. Servicio Geológico Colombiano.spa
dc.relation.referencesMiddlemost, E.A. (1994). Naming materials in the magma/igneus rock system. Earth Science Reviews, 37 (3-4), 215-234. https://doi.org/10.1016/0012-8252(94)90029-9.spa
dc.relation.referencesMonsalve, M.L., Ortiz, I.D. & Norini, G. (2019). El Escondido, a newly identified silicic quaternary volcano in the NE region of the northern volcanic segment (Central Cordillera of Colombia). Journal of Volcanology and Geothermal Research, 383, 47– 62. https://doi.org/10.1016/j.jvolgeores.2017.12.010.spa
dc.relation.referencesMori, L. (2007). Origen del magmatismo miocénico en el sector central de la FVTM y sus implicaciones en la evolución del sistema de subducción mexicano. Tesis de Doctorado. Universidad Autónoma de México.spa
dc.relation.referencesMori, L. (2009). Lithospheric Removal as a Trigger for Flood Basalt Magmatism in the Trans-Mexican Volcanic Belt. Journal of Petrology, 50 (11), 2157-2186.spa
dc.relation.referencesMurcia, H., Borrero, C. & Németh, K. (2017). Monogenetic volcanism in the Cordillera Central of Colombia: unknown volcanic fields associated with the northernmost Andes volcanic chain related subduction. EGU General Assembly 2017, April 23-28 Vienna, Austria.spa
dc.relation.referencesMurcia, H., Borrero, C. & Németh, K. (2019). Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes’ volcanic province. Journal of Volcanology and Geothermal Research, 383, 77–87. https://doi.org/10.1016/j.jvolgeores.2018.06.013.spa
dc.relation.referencesNémeth, K. & Kereszturi, G. (2015). Monogenetic volcanism: personal views and discussion. International Journal of Earth Sciences, 104 (8), 2131-2146. https://doi.org/10.1007/s00531-015-1243-6.spa
dc.relation.referencesOsorio, P., Botero-Gómez, L. A., Murcia, H., Borrero, C., & Grajales, J. A. (2018). Campo Volcánico Monogenético Villamaría-Termales, Cordillera Central, Andes colombianos (Parte II): Características composicionales. Boletín de Geología, 40(3), 103- 123. https://dx.doi.org/10.18273/revbol.v40n3-2018006spa
dc.relation.referencesPearce, J.A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. New York, John Wiley and Sons. 525-548spa
dc.relation.referencesPearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J. and Norry, M.J. (Eds). Continental basalts and mantle xenoliths, Nantwich, Cheshire: Shiva Publications, 230-249.spa
dc.relation.referencesPetford, N. (2003). Rheology of granitic magmas during ascent and emplacement, Annual Review of Earth and Planetary Science, 31, 399 – 427. https://doi.org/10.1146/annurev.earth.31.100901.141352spa
dc.relation.referencesPichavant, M., Montel, J.M. & Richard, L.R. (1992). Apatite solubility in peraluminous liquids: Experimental data and an extension of the Harrison-Watson model. Geochimica et Cosmochimica Acta, 56 (10), 3855–3861. https://doi.org/10.1016/0016- 7037(92)90178-Lspa
dc.relation.referencesRahman, S., & MacKenzie, W. S. (1969). The crystallization of ternary feldspars: a study from natural rocks. American Journal of Science, 267, 391-406.spa
dc.relation.referencesReubi, O. & Blundy, J. (2009). A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 461, 1269–1273. https://doi.org/10.1038/nature08510.spa
dc.relation.referencesRichards, J.P., Spell, T., Rameh, E., Razique, A. & Fletcher, T. (2012). High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu - Mo -Au potential: Examples from the Tethyan arcs of central and eastern Iran and Western Pakistan, Economic Geology, 107 (2), 295–332. https://doi.org/10.2113/econgeo.107.2.295spa
dc.relation.referencesRidolfi, F., Renzulli, A. & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc‐alkaline magmas: an overview, new thermobarometric formulations and application to subduction‐related volcanoes. Contributions to Mineralogy and Petrology, 160, 45‐66. https://doi.org/10.1007/s00410-009-0465-7.spa
dc.relation.referencesRieder, M., Cavazzini, G., D'yakonov, Y.S., Frank‐Kamenetskii, V.A., Gottardi, G., Guggenheim, S. & Robert, J. L. (1998). Nomenclature of the micas. Clays and Clay Minerals, 46 (5), 586‐595. https://doi.org/10.1346/CCMN.1998.0460513spa
dc.relation.referencesRollinson, H. R. (1993). Using geochemical data: evaluation, presentation, interpretation. London: Longman Scientific and Technical. 352 pspa
dc.relation.referencesRueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B.E., Walter, A.E., Arena, E.T. & Eliceiri, K.W. (2017). ImageJ2: ImageJ for the next generation of scientific image data, BMC Bioinformatics, 18 (1), 529. https://doi.org/10.1186/s12859-017-1934-zspa
dc.relation.referencesSánchez-Torres. L., Toro, A., Murcia, H., Borrero, C., Delgado R. & Gómez-Arango. J. (2019). El Escondido tuff cone (38 ka): a hidden history of monogenetic eruptions in the northernmost volcanic chain in the Colombian Andes. Bulletin of Volcanology, 81 (71), 1-14. https://doi.org/10.1007/s00445-019-1337-2.spa
dc.relation.referencesSchmidt, M.W., and Poli, S. (1998). Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth and Planetary Science Letters, v. 163, p. 36379.spa
dc.relation.referencesSchmidt, M. & Poli, S. (2013). Devolatilization during subduction. Treatise on geochemistry, 4, 669-701. https://doi.org/10.1016/B978-0-08-095975-7.00321.spa
dc.relation.referencesShelley, D. (1993). Igneous and metamorphic rocks under the microscope: classification, textures, microstructures and mineral preferred orientation. New York, United States: Chapman & Hall. https://doi.org/10.1016/S0012-821X(98)00142-3spa
dc.relation.referencesSmith, I. E. M., & Németh, K. (2017). Source to surface model of monogenetic volcanism: a critical review. Geological Society London Special Publications, 446 (1), 1-28.spa
dc.relation.referencesStern, C. R., Futa, K. & Muehlenbachs, K. (1984). Isotope and trace element data for orogenic andesites from the Austral Andes. Harmon R.S., Barreiro B.A. (eds) Andean Magmatism. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-7335-3_4.spa
dc.relation.referencesStreckeisen, A. (1976). To each plutonic rock its proper name. Earth-Science Reviews, 12, 144-240. https://doi.org/10.1016/0012-8252(76)90052-0spa
dc.relation.referencesStreckeisen, A. (1978). IUGS Subcommission on the Systematics of Igneous Rocks. Classification and Nomenclature of Volcanic Rocks, Lamprophyres, Carbonatites and Melilite Rocks. Recommendations and Suggestions. Neues Jahrbuch fur Mineralogie. Stuttgart. Abhandlungen, 143 1-14.spa
dc.relation.referencesSun, S.S. & McDonough, W. S. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publications, 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.spa
dc.relation.referencesSyracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H. & Ammon, C.J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050.spa
dc.relation.referencesThybo, H., & Artemieva, I. M. (2013). Moho and magmatic underplating in continental lithosphere. Tectonophysics, 609, 605-619. https://doi.org/10.1016/j.tecto.2013.05.032spa
dc.relation.referencesToro-Toro, L.M., Borrero-Peña, C.A. & Ayala, L.F. (2010). Petrografía y Geoquímica de las rocas ancestrales del Volcán Nevado del Ruiz. Boletín de Geología, 32, 95-105.spa
dc.relation.referencesValentine, G. A. & Gregg, T. K. P. (2008). Continental basaltic volcanoes—processes and problems. Journal of Volcanology and Geothermal Research, 177 (4), 857-873. https://doi.org/10.1016/j.jvolgeores.2008.01.050.spa
dc.relation.referencesValentine, G. A. & Perry, F. V. (2007). Tectonically controlled, time-predictable basal‐ tic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth and Planetary Science Letters, 261 (1-2), 201-16. https://doi.org/10.1016/j.epsl.2007.06.029.spa
dc.relation.referencesVargas, C. A. & Mann, P. (2013). Tearing and breaking off subducted slabs as the result of collision of the Panama Arc‐Indenter with northwestern South America. Bulletin of the Seismological Society of America, 103, 2025-2046. https://doi.org/10.1785/0120120328spa
dc.relation.referencesVesga, C. J. & Barrero, D. (1978). Edades K/Ar en rocas ígneas y metamórficas de la Cordillera Central de Colombia y su implicación geológica. In II Congreso Colombiano de Geología, Bogotá.spa
dc.relation.referencesVespermann, D., Schmincke, H.U. & Ballard, R.D. (2000). Scoria cones and tuff rings. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) The Encyclopedia of volcanoes. Academic Press, San Diego.spa
dc.relation.referencesVillagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125 (3-4), 875–896. https://doi.org/10.1016/j.lithos.2011.05.003.spa
dc.relation.referencesVigneresse, J.L., Tikoff, B., and Améglio, L. (1999). Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons, Tectonophysics. 302, 203-224. https://doi.org/10.1016/S0040-1951(98)00285-6spa
dc.relation.referencesWagner, L.S., Jaramillo, J.S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A. &. Becker T.W. (2017). Transient slab flattening beneath Colombia, Geophysical Research Letters, 44, 6616–6623. https://doi.org/10.1002/2017GL073981.spa
dc.relation.referencesWasserburg, G.J., Jacobsen, S.B., DePaolo, D.J., McCulloch, M.T. & Wen, T. (1981). Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimica Acta, 45 (12), 2311-2323. https://doi.org/10.1016/0016-7037(81)90085-5.spa
dc.relation.referencesWeber, M., Tarney, J., Kemptomh, P. & Kent, R.W. (2002). Crustal make-up of the northern Andes: evidence based on Deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics, 345 (1-4), 49–82. https://doi.org/10.1016/S0040- 1951(01)00206-2.spa
dc.relation.referencesWilson, B.M. (1989). Igneous Petrogenesis. A Global Tectonic Approach. Netherlands: Springer.spa
dc.relation.referencesWinchester, J.A & Floyd, P.A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343. https://doi.org/10.1016/0009-2541(77)90057-2.spa
dc.relation.referencesWhitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American mineralogist, 95(1), 185-187.spa
dc.relation.referencesWinter, J.D. (2001). An introduction to igneous and metamorphic petrology. Upper Saddle River, New Jersey, United States. Prentice Hall.spa
dc.relation.referencesZellmer, G.F., and Annen, C. (2008). An introduction to magma dynamics. En: Annen C., Zellmer, G.F., editores, Dynamics of crustal magma transfer, storage and differentiation, Geological Society Special Publication. 304, 1-13. https://doi.org/10.1144/SP304.1spa
dc.relation.referencesZindler, A. & Hart, S. (1986). Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14 (1), 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.lembAnálisis químico
dc.subject.lembGeomorfología
dc.subject.lembRocas
dc.subject.lembVulcanología
dc.subject.proposalMagmatismospa
dc.subject.proposalZonaciónspa
dc.subject.proposalGeotermobarometríaspa
dc.subject.proposalCerro El Morrospa
dc.subject.proposalCerro Florenciaspa
dc.subject.proposalSamanáspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
dc.description.degreenameMagister en Ciencias de la Tierraspa
dc.publisher.programMaestría en Ciencias de la Tierraspa
dc.description.researchgroupPetrología ígnea y geoquímicaspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem