Mostrar el registro sencillo del ítem

dc.contributor.authorDevia, Carlosspa
dc.contributor.authorTorres, Andrésspa
dc.date.accessioned2020-07-01 00:00:00
dc.date.available2020-07-01 00:00:00
dc.date.issued2020-07-01
dc.identifier.urihttps://doi.org/10.17151/luaz.2019.49.12
dc.description.abstractIntroducción. Este trabajo de investigación se realizó en la Ciudad de Honda, Colombia.  Identificó el efecto de la sombra de los árboles en la atenuación de la temperatura, humedad relativa, temperatura de superficie del suelo, radiación solar y ultravioleta (UV) y determinó requerimientos de agua para la vegetación arbórea. Metodología. Se tomaron datos de temperatura del aire y de superficie de suelo, humedad relativa del aire, radiaciones solares y UV bajo la sombra de árboles y a plena exposición. Resultados. Se encontró que la temperatura del aire osciló entre 50ºC a plena exposición solar y 41ºC bajo sombra. La temperatura de  superficie presentó a plena exposición solar valores de 66.8ºC y 42.6ºC bajo sombra. La variación de la radiación solar registrada ofreció un valor de 17.13 mW/cm2 a plena exposición solar y 1.69 mW/cm2 bajo sombra. La radiación UV presentó valores de 8 a plena exposición solar y 5 bajo sombra. La demanda hídrica por planta/día varió entre 5 y más de 500 litros, siendo la demanda diaria cercana a 2500 m3 . Conclusiones. En la ciudad no se realiza riego a los árboles, lo que conduce a que se produzca un déficit hídrico evidenciado por la pérdida de follaje ocasionando mínimas atenuaciones a la radiación UV. Las especies más relevantes respecto a la sombra son almendro (Terminalia cattapa), Pallandé (Pitecellobium dulce), naranjuelo (Capparis odoratissima), guayacán carrapo (Bulnesia carrapo), chirlobirlo (Tecoma stands), cumulá (Aspidosperma polyneuron) y mango (Manguifera indica). Los árboles pueden generar un buen servicio ecosistémico por la sombra, este servicio está mediado por la selección de la especie y el manejo de que son objeto los árboles.spa
dc.description.abstractIntroduction: This research work was carried out in the city of Honda, Colombia.  It identified the effect of tree shade on temperature attenuation, relative humidity, soil surface temperature, solar and ultraviolet (UV) radiation, and determined water requirements for arboreal vegetation. Methodology: Data on air and soil surface temperature, relative air humidity, solar and UV radiation were taken under the shade of trees and at full exposure. Results: It was found that the air temperature ranged from 50ºC at full sun exposure to 41ºC under shade. The surface temperature was 66.8ºC and 42.6ºC under shade. The variation of the registered solar radiation offered a value of 17.13 mW/cm2 at full solar exposure and 1.69 mW/cm2 under shade. The UV radiation presented values of 8 at full solar exposure and 5 under shade. The water demand per plant/day varied between 5 and more than 500 liters, being the daily demand close to 2500 m3. Conclusions: There is no irrigation of trees in the city which leads to a water deficit evidenced by the loss of foliage causing minimal attenuations to UV radiation. The most relevant species regarding shade are almond (Terminalia cattapa), Pallandé (Pitecellobium dulce), orange (Capparis odoratissima), guayacán carrapo (Bulnesia carrapo), chirlobirlo (Tecoma stands), cumula (Aspidosperma polyneuron) and mango (Manguifera indica). Trees can generate a good ecosystem service by shade which is mediated by the selection of the species and the management of the trees.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Caldasspa
dc.rightsDerechos de autor Carlos Deviaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0spa
dc.sourcehttps://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/2331spa
dc.subjectecosystem serviceseng
dc.subjecturban woodlandeng
dc.subjectwater demandeng
dc.subjectarbolado urbanospa
dc.subjectciudadspa
dc.subjectecología urbanaspa
dc.subjectservicios ecosistémicosspa
dc.titleAtenuación de la temperatura y radiación UV de la vegetación en entornos urbanos de ciudades ribereñas y su demanda hídrica.spa
dc.typeArtículo de revistaspa
dc.typeSección Investigación originalspa
dc.typeJournal Articleeng
dc.identifier.doi10.17151/luaz.2019.49.12
dc.identifier.eissn1909-2474
dc.relation.citationendpage219
dc.relation.citationissue49spa
dc.relation.citationstartpage200
dc.relation.ispartofjournalRevista Luna Azul (On Line)spa
dc.relation.referencesAkbari, H., Pomerantz, M. y Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, 70 (3), 295–310.spa
dc.relation.referencesAlavipanah, S., Wegmann, M., Qureshi, S., Weng, Q. y Koellner, T. (2015). The role of vegetation in mitigating urban land surface temperatures: A case study of Munich, Germany during the warm season. Sustainability (Switzerland), 7(4), 4689-4706.spa
dc.relation.referencesAndersson, E., Barthel, S. y Ahrné, K. (2007). Measuring Social-Ecological Dynamics Behind the Generation of Ecosystem Services. Ecologic Applications, 17, 1267-1278.spa
dc.relation.referencesAsadian, Y. & Weiler M. (2009). A New Approach in Measuring Rainfall Interception by Urban Trees in Coastal British Columbia. Water Qual. Res. J. Can., 44 (1), 16-25.spa
dc.relation.referencesBarcello-Coll, J. G., Rodrigo, B., Sabater. & Sánchez, R. (1987). Fisiología Vegetal. Madrid, España: Ediciones Pirámides S. A.spa
dc.relation.referencesBrezonik, P.L. y Stadelmann, T.H. (2002). Analysis and predictive models of storm wáter runoff volumes, load, and pollutant concentrations from watersheds in the Twin cities Metropolitan area, Minnesota, USA. Water Res., 36 (7), 1743–1757.spa
dc.relation.referencesBurden, D. (2006). Urban Street Trees. 22 Benefits Specific Applications. Recovered from http://www.walkable.org/download/22_benefits.pdf.spa
dc.relation.referencesCalaza, P. e Iglesias, M. (2012). Evaluación de riesgo de arbolado peligroso. Principios, indicadores y métodos. Madrid, España: Editoria Asoc. Española de Arboricultura.spa
dc.relation.referencesCancer Council New South Wales. (2008). The Shade Handbook. Recovered from https://www.centresupport.com.au/wp-content/uploads/2012/10/Shade-handbook.pdf.spa
dc.relation.referencesCrackford, R.H. & Richarson, D. P. (2000). Partitioning of rainfall into throughfall, stemflow and interceptin: effect of forest type, ground cover and climate. Hydrological Processes, 14(16-17), 2903-2920.spa
dc.relation.referencesDe Groot, R. S., Wilson, M. & Roelof, M.J. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41, 393–408.spa
dc.relation.referencesDevia, C. y Torres, A. (2012). Thermic Attenuation on Concrete Sidewalk under Urban Trees. Case Study: Santa Marta–Colombia. SEEFOR (South-East European Forestry), 3(2), 79-85.spa
dc.relation.referencesDwyer, J., McPherson, E., Schroeder, H. y Rowntree, R. (1992). Assessing The Benefits And Costs of the Urban Forest. Journal of Arboriculture, 18 (5).spa
dc.relation.referencesDudgeon, D., Arthington, A., Gessner, M., Kawabata, Z., Knowler, D., Lévêque, C. y Sullivan, C. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163-182. doi:10.1017/S1464793105006950.spa
dc.relation.referencesDoorenbos, J. y Pruitt, W. O. (1977). Guidelines for predicting crop water requirements. Rome, Italy: FAO.spa
dc.relation.referencesEPA. (2008). Reducing Urban Heat Islands: Compendium of Strategies Urban Heat Island Basics. Recovered from http:// www.epa.gov/hiri/resources/compendium.htm.spa
dc.relation.referencesEscobedo, J., Francisco, T. y Wagner, J. E. (2011). Urban forest and pollution mitigation: Analyzing ecosystem service and disservices. Recovered from https://www.ncbi.nlm.nih.gov/pubmed/21316130.spa
dc.relation.referencesFISRWG. (2005). Stream corridor restoration. Principles, processes and practices. EEUU: The Federal Interagency Stream Restoration Working Group.spa
dc.relation.referencesGeis, P., Lawry, D., Gardner, J., Hook, T., Cockerrell, S. & Henderson, S. (2007). Assessment of the uvr protection provide by different tree species. Photochemistry and Photobiology, 83(6), 1465-1470.spa
dc.relation.referencesGrant, R.H., Heisler, G.M. y Goa, W. (2002). Estimation of pedestrian level UV exposure under trees. Photochemistry and Photobiology, 75(4), 369–376.spa
dc.relation.referencesHeisler, G. M. y Grant, R. H. (2002). Ultraviolet radiation in urban ecosystems with consideration of effects on human health. Urban Ecosyst, 4 (3), 193-229.spa
dc.relation.referencesKonijnendijk, C., Nilsson, K., Randrup, T.B. y Schipperijn, J. (2005). Benefits and uses of urban forests and trees. In C. C. Konijnendijk., K. Nilsson., T. B. Randrup. y J. Schipperjin. (Eds.), Urban Forests and Trees. (pp. 81-114). Berlin: Springer–Verlag.spa
dc.relation.referencesLin, H., Chen, Y., Zhang, H., Fu, P. y Fan, Z. (2017). Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Functional Ecology, British Ecological Society, 31(12), 2202-2211.spa
dc.relation.referencesMcGranahan, P., Marcotullio, X., Bai, T., Braga, I., Douglar, T., Elmqvist, W., Rees, D…,. Zlotnik. (2005). Urban Systems. Millennium Ecosystem Assessment. In Ecosystems and Human Well-being: Current State and Trends (pp. 795-825). Washington: Island Pressm.spa
dc.relation.referencesMcPherson, E. (2003). A benefit-cost analysis of ten street tree species in Modesto, California, U.S. Journal of Arboriculture, 29(1), 1-8.spa
dc.relation.referencesNowak, D., Crane, D., Stevens, J. e Ibarra, M. (2000). Brooklyn’s urban forest. Recovered from https://www.fs.fed.us/ne/newtown_square/publications/technical_reports/pdfs/2002/gtrne290.pdfspa
dc.relation.referencesNowak, D.J., Hoehn, R.E.I.I.I., Crane, D.E., Stevens, J.C. y Walton, J.T. (2007). Assessing urban forest effects and values: Philadelphia's urban forest. Recovered from https://www.fs.usda.gov/treesearch/pubs/19659.spa
dc.relation.referencesOke, T. R. (1978). Boundary layer climates. London: William Clowes and Sons.spa
dc.relation.referencesOke,T. R. (1989). The micrometeorology of the urban forest. Philos T Roy Soc B, 324 (1223), 335-349.spa
dc.relation.referencesOke, T. R. (1995). «The heat island of the urban boundary layer: characteristics, causes and effects». In J. E. Cermak. (Ed), Wind Climate in Cities (22-45 Londres). Kluwer-Academic Publ. Norwell.spa
dc.relation.referencesPallardy, S. G. (2007). Physiology of woody plants. California: Academic Press.spa
dc.relation.referencesPeper, P. J., McPherson, E., Simpson, J. R., Vargas, K. E. y Xiao, Q. (2009). Lower Midwest community tree guide: benefits, costs and strategic planting. Gen. Tech. Rep. PSW-GTR-219. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station.spa
dc.relation.referencesPrats, J., Vicente-Serrano, S. y Sánchez, M. (2005). Los efectos de la Urbanización de Zaragoza (España) 2005. La Isla de calor y sus factores condicionantes. Boletín de la A.G.E., 40, 311 – 327.spa
dc.relation.referencesRandrup, T.B., Konijnendijk, C.C., Dobbertin, M. K. y Prüller, R. (2005). The concept of urban forestry in Europe. In C. C. Konijnendijk., K. Nilsson., T. B. Randrup. y J. Schip-Perijn. (Eds.), Urban Forests and Trees: A Reference Book (pp. 9-21). Berlin: Springer.spa
dc.relation.referencesSalisbury, F. & Ross, C. (1994). Fisiología Vegetal. Ciudad de México, México: Editorial Iberoamericana.spa
dc.relation.referencesSantamouris, M., Haddad, S., Fiorito, F., Osmond, P., Ding, L., Prasad, D., Wang, R. (2017). Urban Heat Island and Overheating Characteristics in Sydney, Australia. An Analysis of Multiyear Measurements. Sustainability, 9(12), 712.spa
dc.relation.referencesUrban Horticulture Institute. (2003). Recommended urban trees: site assessment and tree selection for stress tolerance. Recovered from http://www.hort.cornell.edu/UHI/out-%20reach/recurbtree/index.htmlspa
dc.relation.referencesVieira De Abreu-Harbich, L., Labaki, L. C., Matzarakis, A., Abreu-harbich, L. V., De, Labaki, L.C. y Matzarakis, A. (2012). Different Trees and configuration as microclimate control strategy in Tropics. ICUC8 – 8th International Conference on Urban Climates, Dublin Ireland.spa
dc.relation.referencesVieira De Abreu-Harbich, L., Labaki, L.C. y Matzarakis, A. (2015). Effect of tree planting design and tree species on human thermal comfort in the tropics. Landscape and Urban Planning, 138, 99-109.spa
dc.relation.referencesWilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1 (6), pp. 80-83.spa
dc.relation.referencesZhao, X., Li, G. y Gao, T. (2017). Research on Optimization and Biological Characteristics of Harbin Trees Based on Thermal Comfort in Summer. Procedia Engineering, 180, 550-561.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.spa
dc.title.translatedAttenuation of temperature and UV radiation of vegetation in urban environments of riverside cities and their water demand.eng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationeditionNúm. 49 , Año 2019 : Julio - Diciembrespa
dc.relation.bitstreamhttps://revistasojs.ucaldas.edu.co/index.php/lunazul/article/download/2331/2233
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

FicherosTamañoFormatoVer
Rev. luna azul (En línea)-2331.pdf944.0Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos de autor  Carlos Devia
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos de autor Carlos Devia