UNIVERSIDAD DE CALDAS FACULTAD DE CIENCIAS EXACTAS Y NATURALES MAESTRÍA EN CIENCIAS DE LA TIERRA

Palynology of Aptian – Albian amber deposits of the Oriente Basin-Ecuador and the Eastern Cordillera-Colombia

Rafael Francisco Castaño Cardona

Manizales, Colombia

Diciembre, 2022

Palynology of Aptian – Albian amber deposits of the Oriente Basin-Ecuador and the Eastern Cordillera-Colombia

Rafael Francisco Castaño Cardona

Tesis presentada como requisito parcial para optar al título de:

Magíster en Ciencias de la Tierra

Director:

Ph.D. Carlos Jaramillo Codirector: Ph.D. Andrés Pardo Trujillo Asesor:

Ph.D. Barbara Vento

Universidad de Caldas

Facultad de Ciencias Exactas y Naturales

Maestría en Ciencias de la Tierra

Manizales, Colombia

2022

Dedicado a mamá y papá

Agradecimientos

Gracias a mamá por apoyarme incondicionalmente en cada nuevo proyecto y por motivarme a mejorar cada día, a papá por enseñarme a apreciar el valor de las cosas, y a Laura Vargas por estar siempre presente.

Gracias a mi director de tesis, Carlos Jaramillo, su ayuda y el conocimiento que me compartió durante las diferentes etapas de este proyecto los considero invaluables.

Gracias a mi codirector, Andrés Pardo y a mi asesora, Barbara Vento, por su gran ayuda durante la elaboración de este trabajo.

Gracias al Instituto Smithsonian de Investigaciones Tropicales por financiar este proyecto y por permitirme aprender a hacer ciencia.

Gracias al Instituto de Investigaciones en Estratigrafía por formarme y permitirme el acceso a los equipos necesarios.

Gracias a los jurados de esta tesis, Paula Mejia y Mario Moreno, por sus comentarios y correcciones.

Gracias a Felipe Vallejo por el análisis de la muestra con nanofósiles calcáreos.

Gracias a Angelo Plata, Andrés Diaz, Jhonatan Martinez y a las demás personas que ayudaron de una u otra manera a la realización de este proyecto.

Abstract

Two Cretaceous localities with presence of amber were identified, one in the Oriente Basin of Ecuador (Genoveva Mine), and another in the Eastern Cordillera of Colombia (La Popa Mine). A palynological study was developed in these units and it was determined that the formations present in both localities correspond to the uppermost part of the lower Hollin Formation (early Albian) and the lower Une Formation (Albian), respectively. In Ecuador, the study was also realized in other localities near to the mine, both in the Hollin Formation and of the overlying Napo Formation.

The palynomorphs found in the studied locations were grouped into five groups: angiosperm pollen, non-gnetalean gymnosperm pollen, gnetalean pollen, spores, and marines. The question of whether the tropical belt in the Albian was arid or humid is still controversial, but in these studied localities, spore diversity predominates in comparison with the other groups of plants, especially some gymnosperms that indicate aridity (*Classopollis*, ephedroid pollen grains and elater-bearing species) which would suggest predominant humid climate conditions in the northwestern margin of Gondwana for this time.

Keywords: Palynology, Cretaceous, Amber, Colombia, Ecuador.

Resumen

Se identificaron dos localidades cretácicas con presencia de ámbar, una en la Cuenca de Oriente de Ecuador (Mina Genoveva), y otra en la Cordillera Oriental de Colombia (Mina La Popa). En estas unidades se desarrolló un estudio palinológico y se determinó que las formaciones presentes en ambas localidades corresponden a la parte superior de la Formación Hollín inferior (Albiano temprano) y a la Formación Une inferior (Albiano), respectivamente. En Ecuador, el estudio se realizó también en otras localidades cercanas a la mina, tanto de la Formación Hollín como de la suprayacente Formación Napo.

Los palinomorfos encontrados se agruparon en cinco grupos: polen de angiospermas, polen de gimnospermas no gnetales, polen gnetales, esporas y marinos. La cuestión de si el cinturón tropical en el Albiano era árido o húmedo sigue siendo controversial, pero en las localidades estudiadas predomina la diversidad de esporas en comparación con los otros grupos vegetales, especialmente de algunas gimnospermas que indican aridez (*Classopollis*, granos de polen efedroides y especies portadoras de eláteres) lo que sugeriría un clima predominantemente húmedo en el margen noroccidental de Gondwana para este momento.

Palabras clave: Palinología, Cretácico, Ámbar, Colombia, Ecuador.

Table of contents

1. Introduction
2. Objectives
3. Geological setting
3.1. Stratigraphy5
3.1.1. Hollin Formation
3.1.2. Napo Formation
3.1.3. Une Formation
3.1.4. Chipaque Formation
3.2. Paleogeography and climate
3.3. Cretaceous sedimentation
4. Theoretical framework
4.1. Origin and radiation of angiosperms15
4.2. Cretaceous palynological zonations16
4.3. Amber
4.4. Oceanic Anoxic Events
5. Methods
5.1. Sampling and processing
5.2. Palynological analysis
6. Results
6.1. Floristic composition
6.1.1. lower Hollin Formation
6.1.2. Napo Formation
6.1.3. Une Formation
6.2. Climatic estimation
7. Discussion
7.1. Geological Age

7.1.1. lower Hollin Formation	43
7.1.2. Napo Formation	44
7.1.3. Une Formation	46
7.2. Rainfall conditions (humid versus arid)	47
8. Conclusions	49
References	50
Supplemental material	65

List of Figures

Figure 1. Location of the two study sites2
Figure 2. Geologic maps
Figure 3. Climatic models proposed for the Albian9
Figure 4. Climatic models proposed for the Cenomanian10
Figure 5. Stratigraphic sections along central Colombia and Ecuador13
Figure 6. Oceanic Anoxic Events (OAEs)14
Figure 7. Biostratigraphic zonation of Regali et al. (1974) during the Aptian – Turonian 19
Figure 8. Biostratigraphic zonation of Muller et al. (1987) during the Aptian – Turonian20
Figure 9. Amber from Genoveva Mine and La Popa Mine21
Figure 10. Example of a digitized Index Card27
Figure 11. Spore taxa from all localities29
Figure 12. Angiosperm taxa from all localities
Figure 13. Gymnosperm taxa from all localities
Figure 14. Marine palynomorphs from all localities
Figure 15. Stratigraphic column with 1:200 scale of the Genoveva Mine
Figure 16. Temporal distribution of the biostratigraphy index taxa found in this study
Figure 17. Calcareous nannofossils in sample 47748, lower Napo Formation

List of Tables

Table 1. Mean Annual Temperature (MAT) and Mean Annual Precipitation (MAP)	1
Table 2. CO ₂ estimations for the middle Cretaceous	11
Table 3. Palynological zones of Regali et al. (1974)	17
Table 4. Palynological zones of Muller et al. (1987)	18
Table 5. Samples analyzed with their locality data and geological formation	23
Table 6. Samples collected from the Genoveva Mine	33
Table 7. List of palynomorphs found in the Hollin Formation	34
Table 8. List of palynomorphs found in the Napo Formation	39
Table 9. List of palynomorphs found in the Une Formation	10
Table 10. Indicators of arid climate	41
Table 11. Indicators of humid climate	12
Table 12. Age of the taxa found in Hollin Formation	14
Table 13. Age of the taxa found in Napo Formation	15
Table 14. Age of the taxa found in Une Formation	17

1. Introduction

The main sources of information about early angiosperm diversification have been dispersed pollen and detached leaves (e.g., Doyle & Hickey, 1976; Hughes, 1976; Hickey & Doyle, 1977; Hughes, 1994) and also pollen grains found in-situ within flowers (Friis *et al.*, 2011). Most of the research on the subject has been done at temperate latitudes and there is not a distinct pattern in the latitudinal distribution of the early angiosperm records. There is extensive information on Early Cretaceous angiosperms from middle paleolatitudes in the Northern Hemisphere, but angiosperms were also diverse and abundant at low paleolatitudes (Friis *et al.*, 2011). Macrobotanical evidence from North America indicates that angiosperms only became ecologically significant at high latitudes by the earliest Late Cretaceous, but mostly restricted to riparian environments (Wing *et al.*, 1993). Estimates based on pollen (diversity and abundance) suggest that angiosperms were already dominant in some environments at mid-paleolatitudes by the Cenomanian (Lupia, 1999). In contrast, the patterns of angiosperm radiation and diversification at low latitudes are not well understood (Mejia-Velasquez *et al.*, 2012; Jaramillo, 2012, 2019), particularly because of the few studies from tropical latitudes (e.g., Crane & Lidgard, 1989; Lupia *et al.*, 1999).

In this study, the results of the palynological analysis of two Cretaceous successions in Ecuador (Hollin Formation) and Colombia (Une Formation) are presented, in order to date the sites, determine the floristic composition, and assess whether the climate on the western margin of South America was humid or arid.

Two localities were studied (Figure 1): 1) The Genoveva Mine in the Oriente Basin, Ecuador (Figure 2A), which belongs to the lower Hollin Formation (Lat: -0.71102, Long: -77.78778) with Albian Paleolatitude: -6.92 and Paleolongitude: -53.87, according to the reconstructions made by Muller *et al.* (2016). 2) La Popa Mine in the Eastern Cordillera of Colombia (Figure 2B), from the Une Formation (Lat: 4.70866, Long: -73.95213) with Albian Paleolatitude: -1.77 and Paleolongitude: -50.29, according to the reconstructions made by Muller *et al.* (2016).

Figure 1. Location of the two study sites (Genoveva Mine in Ecuador and La Popa Mine in Colombia).

Figure 2. Geologic maps. A. Genoveva Mine in Ecuador. Information from Eguez *et al.* (2017). B. La Popa Mine in Colombia. Information from Buitrago *et al.* (2008) and Alcárcel & Gómez (2019).

2. Objectives

General objective

To study the palynological assemblages from rocks associated with Early Cretaceous amber deposits in two different localities of South America: the Oriente Basin of Ecuador and the Eastern Cordillera of Colombia.

Specific objectives

- To identify the palynological content of the samples from Genoveva Mine and La Popa Mine.
- To date both sites using palynology.
- To discuss the rainfall conditions (humidity versus aridity) using palynological proxies.

3. Geological setting

3.1. Stratigraphy

In the Oriente Basin of Ecuador, Paleozoic basement, Mesozoic–Cenozoic volcanic rocks, and sedimentary units are exposed (Vallejo *et al.*, 2002). One of the most studied units is the Hollin Formation because it is the main oil reservoir in the Oriente Basin (Dashwood & Abbotts, 1990). The Eastern Cordillera of Colombia is composed of Phanerozoic sedimentary rocks, with local exposures of Proterozoic-lower Paleozoic basement with multiple orogenic episodes (Etayo-Serna *et al.*, 1983; Cediel *et al.*, 2003; Horton *et al.*, 2010; Saylor *et al.*, 2012). The Une Formation is widely distributed in the Eastern Cordillera and corresponds to a clastic unit (Zavala *et al.*, 2009).

3.1.1. Hollin Formation

The Hollin unit comprises two formations, the lower Hollin Formation, known as the Main Hollin Sandstone (Baby *et al.*, 2004), and the Lower Sandstone, known as the Upper Hollin Sandstone or upper Hollín Formation (Jaillard *et al.*, 1997). The age of this unit ranges from middle-late Aptian to middle Albian (White *et al.*, 1995; Jaillard *et al.*, 1997; Vallejo *et al.*, 2002; Ordoñez *et al.*, 2006; Romero *et al.*, 2017) while Sarmiento-Rojas (2019) suggests an early Aptian – middle Albian age. The lower Hollin Formation is dominated by conglomeratic sandstones graded to quartz sandstones with cross-bedding, deposited in braided river channels (White *et al.*, 1995; Romero *et al.*, 2019). The upper Hollin Formation is characterized by sandstones intercalated with mudstones rich in organic matter and leaf fragments accumulated in coastal plains to shallow platforms (White *et al.*, 1995; Romero *et al.*, 2019; Sarmiento-Rojas, 2019). The levels containing amber at the Genoveva Mine are within the lower Hollin Formation. The upper limit of this unit with the overlying Napo Formation corresponds to a major flooding surface (Romero *et al.*, 2019).

3.1.2. Napo Formation

The Napo Formation ranges from late Albian to early Campanian (Mello *et al.*, 1995; Vallejo *et al.*, 2002; Sarmiento-Rojas, 2019) and consists of organic-rich shales, limestones, and sandstones. It is subdivided into several informal members, that can be correlated over large distances in the Oriente Basin of eastern Ecuador (Tschopp, 1953). Two sandstone units (labelled T and U sandstones) constitute the most important hydrocarbon reservoirs, and the organic-rich zones (e.g., Basal Shale Member) are considered the source of almost all hydrocarbons in the basin (Rivadeneira, 1986; Dashwood & Abbotts, 1990; Mello *et al.*, 1995; Vallejo *et al.*, 2002). The Napo Basal member has been dated as late Albian by palynological studies (Vallejo *et al.*, 2002) and has been interpreted as deposited in dysoxic-anoxic, paralic-neritic environments (Mello *et al.*, 1995) or by deposition of inner shelf mudstones (Sarmiento-Rojas, 2019).

3.1.3. Une Formation

The Une Formation forms a strong geomorphological escarpment that contrasts with the underlying Fómeque Formation and the overlying Chipaque Formation with fine-grained lithologies that generate valleys (Ulloa *et al.*, 2001; Corredor & Terraza, 2015). The Une Formation is composed by black mudstones, dark grey quartz-siltstones and white quartz-sandstones with dark siltstone intercalations that are found in thin to very thick tabular layers. The siltstones are locally calcareous and fossiliferous, while the mudstones have lenticular bedding with the presence of fossil bivalves and abundant plant remains (Reyes, 1984; Corredor & Terraza, 2015). The unit has been dated as Albian – Cenomanian (Renzoni, 1981; Fabre, 1985; Montoya & Reyes, 2003) and interpreted as formed by accumulation of sediments in very shallow marine settings and deltaic deposits (Renzoni, 1962; Ulloa *et al.*, 2001; Sarmiento-Rojas, 2019).

3.1.4. Chipaque Formation

The Chipaque Formation is characterized mainly by thick and very thick layers of claystones and mudstones, alternated with siltstones and fine-grained sandstones in medium and thin layers (Renzoni, 1962; Guerrero & Sarmiento, 1996; Corredor & Terraza, 2015). This formation has been dated as late Cenomanian to Santonian (Montoya & Reyes, 2003; Corredor & Terraza, 2015), while Guerrero & Sarmiento (1996) indicated that the lower part of the Chipaque Formation is early Turonian. It was accumulated in a shallow marine platform (Ulloa & Rodríguez, 1976; Villamil, 1998; Garcia *et al.*, 2009; Sarmiento-Rojas, 2019) when the tectono-eustatic base level reached its maximum level during the Mesozoic (Sarmiento-Rojas *et al.*, 2006; Corredor & Terraza, 2015; Sarmiento-Rojas, 2019).

3.2. Paleogeography and climate

The paleogeographic evolution of South America during the Early Cretaceous is driven by two main tectonic events: an active western continental margin with permanent subduction of the Pacific plates and its concomitant magmatic arc; and the separation of Africa from South America with an expansion of the ocean floor initiating in the southern South Atlantic Ocean (Spalletti *et al.*, 1999; Prámparo *et al.*, 2007).

The Aptian – Albian was characterized by elevated worldwide temperatures and high mean annual tropical temperatures, which reached ~32 °C (Schouten *et al.*, 2003) and levels of CO₂ up to ~1000 ppm (Haworth *et al.*, 2005). The Cenomanian was even warmer with temperatures reaching 32 – 36 °C (Schouten *et al.*, 2003) and >1000 ppm of CO₂ (Haworth *et al.*, 2005; Fletcher, 2006; Barclay *et al.*, 2010). Whether the Early Cretaceous tropical belt was arid or humid remains controversial (Mejia-Velasquez *et al.*, 2012). Several climatic reconstructions based on lithological evidence and palynological data suggested aridity conditions for that time (Ziegler *et al.*, 1987; Chumakov *et al.*, 1995; Herngreen *et al.*, 1996). In contrast, other palynological studies suggested that tropical latitudes were humid (de Lima, 1983; Thusu *et al.*, 1988; Herngreen & Dueñas-Jimenez, 1990; Schrank, 1992; Mejia-Velasquez *et al.*, 2012). Mejia-Velasquez *et al.* (2018) indicated that a humid climate prevailed in northwestern South America during the Berriasian – Hauterivian and the Albian intervals, although it does not preclude that the interior of the South America-Africa presented much drier conditions. For the study areas, published climate models for Albian – Cenomanian indicated a Mean Annual Temperature (MAT) of ~30 °C (Barron & Peterson, 1993; Barron *et al.*, 1995; Poulsen *et al.*, 2001; Donnadieu *et al.*, 2006) (Figures 3 and 4; Table 1). Some climate models indicated a tropical humid climate (Fluteau *et al.*, 2007; Hay & Floegel, 2012; Kuethe, 2016) while Parrish *et al.* (1982) indicated a moderately low Mean Annual Precipitation (MAP) (Figure 4C; Table 1). Global atmospheric CO₂ levels for the middle Cretaceous were estimated at up to 2000 ppm (Table 2) (Wang *et al.*, 2014).

Figure 3. Climatic models proposed for the Albian. A. Albian climate indicators and zones (Hay & Floegel, 2012); B. Climatic model of the late Albian (Kuethe, 2016).

Figure 4. Climatic models proposed for the Cenomanian. A. Mean annual surface temperature (°C) simulated for the Cenomanian (Donnadieu *et al.*, 2006); B. Simulated climate for the Cenomanian (Fluteau *et al.*, 2007); C. Predicted distribution of rainfall patterns for the Cenomanian, the rainfall was divided into four categories: < 50 = low rainfall, 50 - 100 = moderately low rainfall, 100 - 200 = moderately high rainfall, > 200 = high rainfall (Parrish *et al.*, 1982).

Table 1. Mean Annual Temperature (MAT) and Mean Annual Precipitation (MAP) estimates for the Albian –

 Cenomanian in tropical latitudes for the study area.

Reference	MAT		MAP	Proxy
Parrish et al., 1982			Moderately low rainfall	Atmospheric circulation
Barron & Peterson, 1993	20-30 °C			Global Environmental and Ecological Simulation of Interactive System (GENESIS)
Barron <i>et al.</i> , 1995	27-32 °C			Global Environmental and Ecological Simulation of Interactive System (GENESIS)
Poulsen et al., 2001	24-30 °C			Ocean general circulation model
Donnadieu et al., 2006	30 °C			Fast Ocean-Atmosphere Model (FOAM)
Fluteau et al., 2007		Tropical hu	mid	Atmospheric circulation
Hay & Floegel, 2012		Tropical hu	mid	Climate-sensitive fossils and sediments
Kuethe, 2016		Tropical hu	mid	Climate-sensitive fossils and sediments

Table 2. CO₂ estimations for the middle Cretaceous (Wang *et al.*, 2014).

Age	Stage	CO ₂ (ppm)	Proxy	Locality	Reference
		37-2000-500	Stomata	USA	Barclay <i>et al.</i> , 2010
Late Cretaceous	Cenomanian	700-1400	Stomata	UK, USA	Haworth <i>et al.</i> , 2005
		1000-1400 Liverwort isotope Antarctica		Antarctica	Fletcher, 2006
Early Cretaceous	Albian	620-1200	Stomata	UK, USA	Haworth <i>et al.</i> , 2005

3.3. Cretaceous sedimentation

The Aptian – early Albian deposition of shallow marine to coastal sandstone facies in the Oriente Basin in Ecuador (Hollin Formation) was capped by a middle Albian Transgression Surface (TS) that corresponds to the Hollin/Napo boundary, and it is genetically associated with a subsequent Maximum Flooding Surface (MFS) 10 in the lower Napo Formation (Figure 5) (Sarmiento-Rojas, 2019). The Une-Chipaque boundary corresponds to a late Cenomanian – early Turonian TS 8, and it is associated to the maximum flooding surface at the Cenomanian – Turonian boundary that represents the highest sea-level of the Cretaceous (MFS 8; Figure 5) (Sarmiento-Rojas, 2019). The MFS 10 regionally could correspond to either one of two Albian Oceanic Anoxic Events (OAEs), the middle Albian OAE 1c or the late Albian OAE 1d (Figure 6). The MFS 8 corresponds to OAE 2, the Cenomanian – Turonian boundary (Figure 6) (Villamil, 1998; Villamil & Arango, 1998).

Figure 5. Stratigraphic sections along central Colombia (A-B) and Ecuador (C-D). Geological time in vertical axis. Horizontal red lines indicate proposed Sequences Boundaries (SB); horizontal blue lines indicate Maximum Flooding Surfaces (MFS) for the proposed stratigraphic sequences (Sarmiento-Rojas, 2019).

Figure 6. Oceanic Anoxic Events (OAEs); Maximum Flooding Surfaces (MFS) 8 and 10 according to Sarmiento-Rojas (2019).

4. Theoretical framework

This study examines the palynological assemblages from strata associated with amber in two localities of South America: The Oriente Basin of Ecuador and the Eastern Cordillera of Colombia. The palynoflora found in these sites will be useful to understand the origin and radiation of angiosperms during the Albian in tropical latitudes.

4.1. Origin and radiation of angiosperms

The Early Cretaceous radiation of angiosperms was one of the major biotic events in the history of life yielding dramatic consequences for the composition and subsequent evolution of terrestrial ecosystems (Doyle & Hickey, 1976; Dilcher, 1979; Hughes, 1994; Friis *et al.*, 2011; Friis *et al.*, 2015; Shi *et al.*, 2022). However, the timing of their origin still remains as a controversial topic (Silvestro *et al.*, 2021; Cui *et al.*, 2022).

One of the oldest reliable angiosperm fossil records are *Nymphaeales* reproductive structures with *in-situ* pollen from the Barremian – Albian in Portugal (Friis *et al.*, 2000, 2001). Older records are controversial. Some examples are the dispersed pollen with morphological characteristics of angiosperms found in the Middle Triassic? of the Barents Sea, Norway (Hochuli & Feist-Burkhardt, 2004) or the Late Triassic in Virginia, USA (Cornet, 1989), the isolated Triassic leaf imprints in northwestern Texas, USA (Cornet, 1986), and the Early Cretaceous Archaefructus in Northeast China (Zhou et al., 2003) previously dated as Late Jurassic (Sun *et al.*, 1998). A particular case, it is the pre-Cretaceous origin of angiosperms postulated by Silvestro et al. (2021), who, using Bayesian statistics, demonstrated that this age is supported not only by molecular clock approaches but also by analyses of the fossil record that explicitly fill the incomplete sampling. The estimated age, however, has strongly conflicted with the known temporal distribution of angiosperm fossils (Budd et al., 2021). Another important case is *Florigerminis jurassica*, a very well-preserved fossil flower bud discovered in the Jurassic of Inner Mongolia, China; the developed interpolated existence of a blooming flower between the flower bud and mature fruit in Florigerminis suggests an earlier origin of angiosperms (Cui et al., 2022).

New evidence shows that the transition to widespread angiosperm-dominated biomes was delayed until the Paleocene (66 - 56 Ma) and families with the shortest lags to dominance are overrepresented in temperate and arid biomes compared with tropical biomes (Ramírez-Barahona *et al.*, 2020). Today, there are more living species of angiosperms than all other groups of land plants combined (Friis *et al.*, 2011).

4.2. Cretaceous palynological zonations

There are only two palynological zonations for the Cretaceous of tropical South American which were used to assess the age of the study sites, Regali *et al.* (1974) (Figure 7) and Muller *et al.* (1987) (Figure 8).

In Regali et al. (1974) the Aptian – Turonian interval is divided into three superzones:

- Exesipollenites tumulus superzone (Aptian): The base is characterized by the Last Appearance Datum (LAD) of *Cedripites*? sp. and the top by the LAD of *Exesipollenites tumulus*. It is divided into six zones (Table 3).
- Inaperturopollenites microclavatus superzone (early middle Albian): The base is characterized by the LAD of *Exesipollenites tumulus* and the top by the LAD of *Inaperturopollenites microclavatus*. It is divided into three zones (Table 3).
- Elateroplicites africaensis superzone (late Albian Turonian): The base is characterized by the LAD of *Inaperturopollenites microclavatus* and the top by the LAD of *Elateroplicites africaensis*. It is divided into four zones (Table 3).

Palynological superzone	Palynological zone	Palynological zone-Base	Palynological zone-Top
	Inaperturopollenites Crisopolensis	LAD Aequitriradites spinulosus	LAD Inaperturopollenites crisopolensis
	Inaperturopollenites curvimuratus	LAD Inaperturopollenites crisopolensis	LAD Inaperturopollenites curvimuratus
Exesipollenites tumulus	Foveotriletes sp.	LAD Inaperturopollenites curvimuratus	LAD Foveotriletes sp.
	Inaperturopollenites turbatus	LAD Foveotriletes sp.	LAD Inaperturopollenites turbatus
	Sergipea variverrucata	LAD Inaperturopollenites turbatus	LAD Sergipea variverrucata
	Caytonipollenites? sp. 1	LAD Sergipea variverrucata	LAD <i>Caytonipollenites</i> ? sp. 1
	Pentapsis valdiviae	LAD <i>Caytonipollenites</i> ? sp. 1	LAD Pentapsis valdiviae
Inaperturopollenites microclavatus	Elateropollenites jardinei	LAD Pentapsis valdiviae	LAD Elateropollenites jardinei
	Steevesipollenites alatiformis	LAD Elateropollenites jardinei	LAD Steevesipollenites alatiformis
	Elaterosporites protensus	LAD Steevesipollenites alatiformis	LAD Elaterosporites protensus
	Psilatricolpites papilioniformis	LAD Elaterosporites protensus	LAD Psilatricolpites papilioniformis
Elateroplicites africaensis	Gnetaceaepollenites diversus	LAD Psilatricolpites papilioniformis	LAD Gnetaceaepollenites diversus
	Gnetaceaepollenites crassipoli	LAD Gnetaceaepollenites diversus	LAD Gnetaceaepollenites crassipoli

Table 3. Palynological zones of Regali et al. (1974).

In Muller et al. (1987) the Aptian – Turonian interval is divided into four superzones:

- Superzone II (early middle Aptian) comprises the "Inaperturopollenites" crisopolensis-Afropollis zone. The base of the superzone is the LAD of Dicheiropollis etruscus; the top of the superzone is the First Appearance Datum (FAD) of (Psila-), (Reti-), Striatricolpites sp. (Table 4).
- 2. Superzone III (late Aptian middle Albian) comprises both the "Tricolpites"-Exesipollenites tumulus and Elateropollenites jardinei zones. The base of the

superzone is the FAD of (*Psila-*), (*Reti-*), *Striatricolpites* sp.; the top of the superzone is the FAD of *Psilatricolporites* sp. (Table 4).

- Superzone IV (late Albian Cenomanian) comprises both the *Elaterosporites* protensus/verrucatus-Afropollis and Triorites africaensis zones. The base of the superzone is the FAD of Psilatricolporites sp.; the top of the superzone is the LAD of Triorites africaensis and Corollina sp. (Table 4).
- 4. Superzone V (Turonian) comprises the "Interval zone". The base of the superzone is the LAD of *Triorites africaensis* and *Corollina* sp.; the top of the superzone is the FAD of *Droseridites senonicus* (Table 4).

Palynological superzone	Palynological zone	Palynological zone- Base	Palynological zone-Top
			FAD tricolpate angiosperm pollen
Superzone II	"Inaperturopollenites" crisopolensis-Afropollis	FAD <i>Afropollis</i> sp.	LAD "Inaperturopollenites" crisopolensis
Supersone III	"Tricolpites"- Exesipollenites tumulus	FAD tricolpate angiosperm pollen	FAD Elaterosporites, Elateropollenites, Elateroplicites sp. LAD Exesipollenites
Superzone III		FAD	tumulus
	Elateropollenites jardinei	Elaterosporites, Elateropollenites, Elateroplicites sp.	FAD triporate pollen types and <i>Psilatricolporites</i> sp.
	Elaterosporites protensus/verrucatus- _Afropollis	FAD triporate pollen types and <i>Psilatricolporites</i> sp.	LAD Afropollis sp.
Superzone IV	Triorites africaensis	LAD <i>Afropollis</i> sp. FAD <i>Triorites</i> <i>africaensis</i>	LAD <i>Corollina</i> sp. and <i>Triorites africaensis</i>
Superzone V	"Interval zone"	LAD Corollina sp.	FAD Droseridites senonicus

Table 4. Palynological zones of Muller et al. (1987).

	Regali <i>et al.</i> (1974)																																																
																								MA	RK	ER	ΓΑΧ	Α																					
	CHRONOSTF	RATIGRAPHY	PALYNOLOGICAL SUPERZONE	PALYNOLOGICAL ZONE	Perotriletes sp. Concavissimisporites variverrucatus Inaperturopolienites crisopolensis	Applanopsis trilobatus Rumurilatas ser	Insperturopolienites curvimuratus Verrutriletes sp.	Foveotriletes sp. Striatricolptes reticulatus	inaperturpowenies turbatus Sergipea variverrucata Controlioniacieco en 1	Caytonipollenites? sp. 1 Exesipollenites tumulus	Schizea certa forma 12 Pentapsis valdiviae	Elateropollenites jardinei Sominon poliformin	sergipea navriormis Inaperturopollenites microclavatus	Steevesipollenites alatiformis Schizea certa forma 11	Applanopsis dampieri	Trifossapollenites sp. Cicatricosisporites sp.	Cingulatisporites verrucatus Bavres polymorchus	Negree portionprus Matonisportes sp. SCI 56	Inaperturopolienties simplex Schizea certa forma 7	Striopollenites dubius	Alaticolpites limai Elaterosporites protensus	Aequitriradites sp. S.C.I. 168	Lycopodiumsporites sp. SCI 410 Elaterosporites verrucatus	Classopollis echinatus Reticulatasportas iardinus	Hexaporotricolpites lameilaferus	Ephedripites subtilis Incertae sedis E	Psilatricolpites papilioniformis	Steevesipollenites giganteus Ephedripites pentacostatus	Elaterosporites aff. E. klaszi	Triites sp. Klukisporites variegatus	Ephedripites undulatus Peromonolites peroreticulatus	Schizea certa forma 10	reroumeres parmuceus Steevesipolienites duplibaculum	Steevesipollenites binodosus	rrysucuospiraeriaum maramensis Elaterosporties klaszi	Elaterocolpites castelaini Hexaporotricolpites potoniei	Classopollis major	Galeacomea causea Crassulina sp.	Triorites africaensis	Greaterprine multilineatus Steevesipollenites multilineatus	Elateroplicites africaensis Sofrepites legouxae	Gretaceaepollenites clathratus	Gnetaceaepollenites crassipoli Gnetaceaepollenites similis	Cicatricosisporites venustus	Hexaporotricolpites emelianovi Multiporopolienites aff. M. maculosus	Multiporopollenites polygonalis	Multiporopolienites sp. SUI 1U5 Classopoliis classoides	Araucariacites australis	Pediastrum paleogeneites Lycopodiumsporites cf. L. novomexicanum
	Uppor	Turonian		Gnetaceaepollenites crassipoli																																													
	Орреі	Cenomanian	Elateroplicites africaensis	Gnetaceaepollenites diversus																																Ш									Ш		Ш		
sno				Psilatricolpites papilioniformis																	_															μ		Ш	Ш					!	Ш		Щ		
tacec				Elaterosporites protensus Steevesipollenites alatiformis										┱╂											┦			-									\square	+	\vdash	+			+	++	4	+			-
Crei		Albian	Inaperturopollenites microclavatus	Elateropillenites jardinei																																							_						
	Lower			Pentapsis valdiviae										Ц		Ш							_											\square		_			\square	\downarrow		++	_	++	_	$\downarrow \downarrow$			_
		Aptian	Exesipollenites tumulus	Caytonipolienites? sp. 1 Sergipea variverrucata Inaperturopollenites turbatus Foveotriletes sp. Inaperturopollenites curvimuratus																																													
				Inaperturopollenites crisopolensis																																													

Figure 7. Biostratigraphic zonation of Regali et al. (1974) during the Aptian – Turonian. Black bars represent the ranges of the taxa within each of the palynological zones.

	Muller <i>et al.</i> (1987)																																							
																				Ν	/IAF	RKE	RT	AX/	4															
	CHRONOSTF	RATIGRAPHY	PALYNOLOGICAL SUPERZONE	PALYNOLOGICAL ZONE	Hexaporotricolpites emilianova	Regalipollenites spp.	Steeves/pollenites spp. Canadatocondate patrobraci	Jriorites africaensis	Gnetaceaepollenites diversus	Hexaporotricolpites potoniei Elaterocolpites castelatni	Elateroplicites africaensis	Elaterosporites klaszi	Galeacomea clavis Retitricolpites operculatus	Sofrepites legouxii	servopoiremens auorus Ephedripites - complex	Galeacomea causea	Gretaceaepolienites - complex Perotrilites pannuceus	Retimonocolpites peroreticulatus	Schizaea certa Cicatricosisporites hallei / venustus gr.	ischyosporites spp.	Corollina spp. Eucommidites spp.	Hexaporotricolpites lamelliferus	Psilatricolpites papilioniformis Alaticoloites son.	Elaterosporites protensus	Elaterosporites verrucatus Matonisporites spp.	Uvaesportes spp.	Afropoliis - complex Calilalasporites dampieri	Dicotetradites spp.	Elateropollenites jardinei Pentapsis valdiviae	Balmeisporites minutus	Clavatipollenites spp. Gemmatriletes clavatus	Paludites spp.	renetetradites mollis Rouseisporites reticulatus	"Inaperturopollenites" microclavatus	Reyrea polymorpha Contignisporites glebulentus	Plicatella tricornitatus Striatricoloitas ratioutatus	Exespolenties tumulus	Calilalasporites trilobatus Leptolepidites major	Pilosisporites spp.	"Inaperturopollenites" crisopolensis
		Turonian	v	"Interval zone"																																				
	Upper	Cenomanian		Triorites africaensis																																				
ceous		Cenomanian Albian		Elaterosporites protensus / Elaterosporites verrucatus - Afropollis																																				
Creta		Albian		Elateropollenites jardinei																																				
	Lower	Albian Aptian		"Tricolpites" - Exesipollenites tumulus																																				
		Aptian	Ш	"Inaperturopollenites" crisopolensis - Afropollis																																				

Figure 8. Biostratigraphic zonation of Muller et al. (1987) during the Aptian – Turonian. Black bars represent the ranges of the taxa within each of the palynological zones.

4.3. Amber

Amber is fossilized resin secreted by a wide range of plant families (Arillo, 2007) (Figure 9), is entirely organic and its composition from the original resin changed over millions of years (Grimaldi, 1996). It is found in several deposits around the world. Fossiliferous ambers have a range of ages from Early Cretaceous to subrecent hardened resins called copal. When the resin is still fresh and sticky, animal and plant remains can become trapped and fossilized as the resin hardens. The result is preserved fossils with extremely fine three-dimensional detail (Poinar, 1992; Grimaldi, 1996; Arillo, 2007).

Amber can be found wherever the hardened resin of various extinct plants is preserved, but special conditions are required to preserve this substance for millions of years, and only occasionally it survived in large enough quantities to be mined. Only a few of these rich amber deposits exist in the world, and the deposits vary greatly in age (Poinar, 1992; Grimaldi, 1996; Seyfullah *et al.*, 2020). Amber has rarely been reported from South America. The only significant described fossiliferous deposit is from the middle Miocene Pebas Formation of Peru and is probably of angiosperm origin (Antoine *et al.*, 2006; Seyfullah *et al.*, 2020). Older Early Cretaceous (late Aptian – early Albian) South American amber has been reported from Brazil (Pereira *et al.*, 2007).

Figure 9. A. Amber from Genoveva Mine, Oriente Basin-Ecuador. B. Amber from La Popa Mine, Eastern Cordillera-Colombia.

4.4. Oceanic Anoxic Events

The OAEs (Oceanic Anoxic Events) are global perturbations in the ocean–atmosphere system during periods of organic-carbon burial (Schlanger & Jenkyns, 1976; Jenkyns, 2010). They represent an important case of study for modern trends because there were widespread anoxia events and enhanced organic carbon burial linked to exceptionally warm climates and high atmospheric CO₂ concentrations (van Helmond *et al.*, 2013). These events also had elevated the organic carbon preservation in multiple ocean basins and under various paleowater depths, paleolatitudes and depositional conditions (Arthur *et al.*, 1987; Jenkyns, 2010; Kuroda & Ohkouchi, 2006; Schlanger *et al.*, 1987; Takashima *et al.*, 2006; Owens *et al.*, 2018). The magnitude of these excursions recorded in marine organic and carbonate carbon ranges between \sim 2 and \sim 7 ‰ with an average of \sim 3 ‰ (Schlanger *et al.*, 1987; Erbacher *et al.*, 2005; Jarvis *et al.*, 2006).

5. Methods

5.1. Sampling and processing

Thirty-seven samples of the dark and fine-grained facies were collected including 10 samples along the stratigraphic column in the Genoveva mine. Near this mine, 18 additional samples were collected in six localities from the Hollin Formation and five samples in four localities from the Napo Formation. Moreover, four samples were collected in La Popa Mine, in the Eastern Cordillera of Colombia (Table 5).

Mine	Sample (STRI-ID)	Locality name	Locality ID	Locality coordinates	Geological Formation			
Genoveva Mine	(STRI-ID) 47720 47721 47722 47723 47724 47725 47731 47732 47733	Genoveva Mine	880033	Lat: -0.71102 Long: -77.78778	Hollin			
	47734 44661 44662 44663 44880 44882 44882 44883 44884	Pungarayacu Quarry	440071	Lat: -0.70700 Long: -77.74100	Hollin			
	46872	NA	880031	Lat: -0.74060 Long: -77.52300	Hollin			
	46873	NA	880032	Lat: -0.74036 Long: -77.52401	Hollin			
	47726 47727 47728 47729 47730	Pungarayacu	910003	Lat: -0.71161 Long: -77.73966	Hollin			
	47735	Second Genoveva Mine	econd Genoveva 910004 Lat: -0.71172 fine 910004 Lat: -0.71172					
	44889 44890 44891	Misahualli Hollin River	Lat: -1.00120 Long: -77.67280	Hollin				
	44886 44887	Misahualli Napo top	440072	Lat: -1.01620 Long: -77.67070	Napo			

Table 5. Analyzed samples information with their locality data and geological formation.

Mine	Sample (STRI-ID)	Locality name	Locality ID	Locality coordinates	Geological Formation
	44892	Misahualli Napo middle	440075	Lat: -1.00470 Long: -77.67120	Napo
	47746	Puerto Napo	910001	Lat: -1.04215 Long: -77.79404	Napo
	47748	Puerto Misahualli	910002	Lat: -1.00964 Long: -77.67011	Napo
	46426	Chipaque 1	860032	Lat: 4.70967 Long: -73.94975	Une
La Popa	46427	Chipaque 2	860033	Lat: 4.70866 Long: -73.95213	Une
Mine	46428	Chipaque 3	860034	Lat: 4.70905 Long: -73.95181	Une
	46487	Chipaque 4	860035	Lat: 4.71265 Long: -73.94826	Une

Samples were prepared following the standard procedure described by Traverse (1988, 2007) and modified in the Laboratorio de Palinología y Materia Orgánica of the Instituto de Investigaciones en Estratigrafía (IIES) at Universidad de Caldas, described as follows:

- 1. Each sample was washed with neutral soap and water with a coarse bristle brush to remove recent organic matter and possible oxidation.
- 2. The sample was dried in an oven at 50 °C using aluminum foil.
- 3. While the sample was drying, the label and container to be used were prepared.
- 4. Once the sample was dry, it was crushed, 20-30 g, weighed and placed in labeled containers; the remaining material was returned to the airtight bags containing the rest of the sample or preserved material for possible reprocessing.
- 5. To eliminate the carbonate, in the fume hood, 20 ml of 37% hydrochloric acid (HCl) were added to each sample for 12 hours.
- 6. The lid and the top of the container were cleaned to make all the material descend using distilled water after 12 hours.
- 7. The total content obtained from the sample was centrifuged, and the supernatant (water + acid) was discarded in containers for chemical waste. Distilled water was added to the sample residue and agitated with a glass rod to suspend the organic matter.

- To eliminate the silicates, 70% hydrofluoric acid (HF) was added in the fume hood, approximately 25% of the total volume of the sample, and it remains in acid digestion for 16 to 24 hours under agitation.
- 9. To clean the palynomorphs and eliminate the excess suspended organic matter, the 10 μm sieves were cleaned using ultrasound. The sample was filtered by adding distilled water as necessary to eliminate the acid fraction. Once filtered and neutralized with distilled water, the material was heated to boiling with 37% HCl for 15 minutes to eliminate the gels and colloidal material (fluorosilicates). An aliquot was extracted in a test tube (marked with the sample data) from the processed organic residue and preserved for first mounting (unoxidized slide). The protocol involves to place the unoxidized slide next to the sample identification label. The remaining residue of organic material was oxidized using 65% nitric acid (HNO₃). This procedure was preformed by pouring a fraction of the content of the test tubes into a beaker and adding HNO₃ for 2-5 minutes (depending on the sample), after that it was neutralized and filtered through a 10 μm sieve again using distilled water. When the sample had a high content of organic material (coals, carbonaceous mudstones, and some lignites), 5% ammonium hydroxide (NH₄OH) was used to remove the dissolved humic substances.
- 10. Mounting the slide: Two coverslips were mounted, one for the non-oxidized part and the other for the oxidized. Subsequently, a drop of polyvinyl alcohol, which acts as a preservative and adherent, was added to each coverslip.
- 11. Approximately 100 to 200 ml of the sample both non-oxidized and oxidize were deposited.
- 12. The slide was dried on a hot plate at a temperature of 70 °C for 15-20 minutes until the aqueous fraction evaporated.
- 13. Sealing the slide: A drop of Canada balsam was added to each coverslip and then put it in the oven at 70 °C for 1 hour. Subsequently, the slide was placed in oven during 12 hours for final drying. Once the mounting was ready, the excess of Canada balsam was removed using xylene [C₆H₄ (CH₃)₂] as organic solvent. Finally, the slide was labeled with the respective ID of both the IIES and that one used in the field for

sample identification (STRI-ID). The remaining fractions (oxidized and unoxidized) were stored in 2 ml vials.

The sample 47748 from the lower Napo formation was processed for calcareous nannoplankton by smear slide (Backman & Shackleton, 1983) which is quick, simple and requires a small amount of sediment or rock, described as follows:

- 1. An agate mortar was used to pulverize the sample. The mortar was washed with HCl between samples to prevent contamination.
- 2. Small amounts of sediment were deposited on a slide and a couple of drops of buffered water were added to the sediment.
- 3. The previous solution of sediment and buffered water were distributed as homogeneously as possible on the slide with a suitable utensil (wooden toothpick).
- 4. The slide was labeled with the sediment to avoid confusion.
- 5. To dry the preparation, the slide was placed on a hot plate at an intermediate temperature.
- 6. A drop of Canada balsam (dissolved at 50% with xylene) was added on the spread sediment.
- 7. A coverslip was placed on the balsam.
- 8. The material was observed under a polarized light microscope in parallel and crossed nicols.

5.2. Palynological analysis

For the analysis of the palynological slides, a transmitted light microscope (Nikon 50i) with 20X, 40X and 100X objectives was used. The palynomorphs (marine and terrestrial) present in each slide were systematically registered with their respective descriptions and taxonomic classifications on index cards (e.g., Figure 10).

Figure 10. Example of a digitized Index Card showing *Elaterosporites verrucatus* and its morphological description.

The preservation grade of the palynomorphs was established as follows: 1) Poor: when the morphological characteristics did not allow the identification of palynomorphs; 2) Moderate: when despite being poorly preserved, some morphological characteristics allowed the identification of the palynomorphs; and 3) Good: when the morphology of most of the palynomorphs allowed their determination.

For the identification of palynomorphs, the morphological database of Jaramillo & Rueda (2021) was used, which includes all palynological publications from South America. The ages of the successions were determined using two biostratigraphic zonations, Regali *et al.* (1974) from Brazil, which is the most complete Lower Cretaceous biochronostratigraphic work in tropical latitudes of South America, and Muller *et al.* (1987) proposed for northern South America.

The palynomorphs were grouped into five groups including angiosperm pollen, nongnetalean gymnosperm pollen, gnetalean pollen, spores and marine palynomorphs. Gnetales were placed in their own category rather than with other gymnosperms because they are an important component of equatorial Cretaceous floras (Herngreen *et al.*, 1996) as well as climate indicators. Precipitation was estimated by comparing the total diversity of dry indicators (*Classopollis*, ephedroid pollen grains and elater-bearing species) versus humid indicators (fern spores) (Herngreen *et al.*, 1996; Mejia-Velasquez *et al.*, 2012; Mejia-Velasquez *et al.*, 2018).

6. Results

6.1. Floristic composition

The overall floristic assemblage is dominated by fern spores with 84 taxa (Figure 11), followed by angiosperms with 63 taxa (Figure 12), while the remaining 40 taxa correspond to gymnosperms (Figure 13), and five taxa are marine palynomorphs (Figure 14).

Figure 11. Spore taxa from all localities. 1. Appendicisporites erdtmanii; 2. Camarozonosporites ambigens; 3. Cicatricosisporites avnimelechi; 4. Cicatricosisporites hallei; 5. Cicatricosisporites hughesii; 6. Cicatricosisporites kedvesii; 7. Crybelosporites pannuceus; 8. Hamulatisporis insignis; 9. Ischyosporites variegatus; 10. Microfoveolatosporis skottsbergii; 11. Pilosisporites parvispinosus; 12. Sestrosporites pseudoalveolatus.

Figure 12. Angiosperm taxa from all localities. Angiosperm taxa from all localities. 1. *Afropollis jardinus*; 2. *Baculamonocolpites* sp.; 3. *Clavatipollenites hughesii*; 4. *Cornetipollis perforatus*; 5. *Cretacaeiporites* sp.; 6. *Echimonocolpites* sp.; 7. *Pennipollis peroreticulatus*; 8. *Retitricolpites operculatus*; 9. *Stellatopollis barghoornii*; 10. *Stellatopollis densiornatus*; 11. *Stellatopollis dubius*.

Figure 13. Gymnosperm taxa from all localities. 1-6. Non-gnetalean gymnosperm pollen, 7-12. Gnetalean pollen. 1. Araucariacites australis; 2. Callialasporites dampieri; 3. Callialasporites infirmus; 4. Callialasporites trilobatus; 5. Classopollis classoides; 6. Classopollis meyeriana; 7. Elaterosporites klaszii; 8. Elaterosporites verrucatus; 9. Ephedripites ambonoides; 10. Ephedripites barghoornii; 11. Gnetaceaepollenites retangularis; 12. Steevesipollenites cf. multilineatus.

Figure 14. Marine palynomorphs from all localities. 1-2. Dinoflagellates, 3-4. Others. 1. *Coronifera*? sp.; 2. *Hystrichosphaeridium* aff. *tubiferum*; 3. Indeterminate acritarch; 4. *Pterospermella aureolata*.

6.1.1. lower Hollin Formation

The lower Hollin formation in the Genova Mine is 72.5 m thick (Figure 15) and 10 samples were collected there from siltstones and very fine-grained sandstones accumulated in a variety of environments that include proximal braided rivers, lacustrines, hyperpychal flows and distal braided rivers (Table 6). In the Genoveva Mine and the other six localities where 18 samples were obtained (see Table 5) a total of 162 taxa were identified including 47 angiosperms, 17 non-gnetalean gymnosperm pollen, 22 gnetalean pollen and 76 spores (Table 7). In general, these taxa present a good preservation.

Figure 15. General orthomosaic and stratigraphic column with 1:200 scale of the Genoveva Mine. In the orthomosaic, the brown bar shows where the stratigraphic column was created. Sedimentary facies and environment information from Quiroz-Cabascango (2021).

Stratum base (m)	Stratum top (m)	STRI ID	Lithology	Sedimentary facies	Environment
70.4	70.7	47733	Dark grey siltstone	Overbank	Distal braided river system
58.2	58.5	47732	Dark grey siltstone	Inner lake	Distal braided river system
42.5	42.9	47731	Grey siltstone	Fluvial plain	Hyperpycnal flow
33.6	33.7	47724	Dark grey siltstone	Outer lake	Lacustrine
32.6	32.7	47723	Dark grey siltstone	Outer lake	Lacustrine
26.7	26.8	47725	Dark grey very fine-grained sandstone	Fluvial channel	Proximal braided river system
25.8	25.9	47722	Dark grey very fine-grained sandstone	Fluvial channel	Proximal braided river system
24.8	24.9	47721	Dark grey very fine-grained sandstone	Fluvial channel	Proximal braided river system
24	24.1	47720	Dark grey very fine-grained sandstone	Fluvial channel	Proximal braided river system
16.9	17	47734	Dark grey siltstone	Inner lake	Proximal braided river system

Table 6. Samples (top to base) collected from the Genoveva Mine, lithology, sedimentary facies and environment.

Table 7. List of palynomorphs found in the Hollin Formation with their natural affinity.

Taxa name	Author	Natural Affinity
Afropollis jardinus	Doyle et al., 1982	Angiosperm
Arecipites aff. perfectus	Silva-Caminha et al., 2010	Angiosperm
Baculamonocolpites sp.	Solé de Porta, 1971	Angiosperm
Brenneripollis sp.	Juhász & Goczan, 1985	Angiosperm
Clavamonocolpites sp.	González, 1967	Angiosperm
Clavatipollenites hughesii	Couper, 1958	Angiosperm
Cornetipollis perforatus	Dino, 1992	Angiosperm
Cretacaeiporites sp.	Herngreen, 1974	Angiosperm
Dejaxpollenites sp.	Dino, 1994	Angiosperm
Echimonocolpites aff. tersus	Ward, 1986	Angiosperm
Echimonocolpites sp.	van der Hammen & Garcia, 1965	Angiosperm
Foveomonocolpites cf. "brevicolpatus"	Informal	Angiosperm
Foveotricolpites sp.	Pierce, 1961	Angiosperm

Taxa name	Author	Natural Affinity
Foveotricolpites "subgigantoreticulatus"	Informal	Angiosperm
Gemmamonocolpites sp.	van der Hammen & Garcia, 1965	Angiosperm
Liliacidites cf. dividuus	Brenner, 1963	Angiosperm
Liliacidites sp.	Couper, 1953	Angiosperm
Monoporopollenites sp.	Meyer, 1956	Angiosperm
Pennipollis cf. "echinatus"	Informal	Angiosperm
Pennipollis peroreticulatus	Friis <i>et al.</i> , 2000	Angiosperm
Perfotricolpites sp.	González, 1967	Angiosperm
Periretisyncolpites sp.	Kieser & Jan du Chene, 1979	Angiosperm
Polyadopollenites aff. microreticulatus	Salard-Cheboldaeff, 1974	Angiosperm
Proxapertites cf. verrucatus	Sarmiento, 1992	Angiosperm
Psilamonocolpites sp.	van der Hammen & Garcia, 1965	Angiosperm
Retibrevitricolpites sp.	van Hoeken-Klinkenberg 1966	Angiosperm
Retimonocolpites sp.	Pierce, 1961	Angiosperm
Retimonoporites cf. operculatus	Brenner & Bickoff, 1992	Angiosperm
Retimonoporites cf. orteguensis	Informal	Angiosperm
Retimonoporites sp.	Brenner & Bickoff, 1992	Angiosperm
Retipollenites sp.	González, 1967	Angiosperm
Retistephanocolpites sp.	Leidelmeyer, 1966	Angiosperm
Retitrescolpites baculatus	Jaramillo & Dilcher 2001	Angiosperm
Retitricolpites "reticuloghazalatensis"	Mejia <i>et al.</i> , 2017	Angiosperm
Retitricolpites operculatus	Herngreen, 1973	Angiosperm
Retitricolpites sp.	van der Hammen & Wymstra, 1964	Angiosperm
Reyrea aff. polymorphus	Herngreen, 1973	Angiosperm
Rousea aff. miculipollis	Srivastava, 1975	Angiosperm
Scabraperiporites sp.	Regali et al., 1974	Angiosperm
Scabratricolpites sp.	van der Hammen, 1956	Angiosperm
Senectotetradites aff. varireticulatus	Dettmann, 1973	Angiosperm
Stellatopollis aff. largissimus	Singh, 1983	Angiosperm
Stellatopollis barghoornii	Doyle, 1976	Angiosperm
Stellatopollis densiornatus	de Lima, 1989	Angiosperm
Stellatopollis dubius	de Lima, 1978	Angiosperm
Stellatopollis sp.	Doyle, 1976	Angiosperm
Striatopollis sp.	Krutzsch, 1959	Angiosperm
Tricolpites cf. synstriatus	Jardiné & Magloire, 1965	Angiosperm
Tricolpites sp.	Couper, 1953	Angiosperm
Tucanopollis aff. crisopolensis	Regali, 1989	Angiosperm
Verruperiporites sp.	Dueñas, 1986	Angiosperm

Taxa name	Author	Natural Affinity
Araucariacites australis	Cookson, 1947	Non-gnetalean gymnosperm
	,	pollen
Callialasporites dampieri	Dev, 1961	pollen
Callialasponitos infirmus	Mahmaud 2002	Non-gnetalean gymnosperm
Cullulusporties infirmus	Manmoud, 2005	pollen
Callialasporites sp.	Dev, 1961	Non-gnetalean gymnosperm
		Non-gnetalean gymnosperm
Callialasporites trilobatus	Dev, 1961	pollen
Classopollis brasiliensis	Herngreen, 1975	Non-gnetalean gymnosperm pollen
Classopollis classoides	Pocock & Jansonius, 1961	Non-gnetalean gymnosperm pollen
Classopollis meyeriana	de Jersey, 1973	Non-gnetalean gymnosperm
i		Non-gnetalean gymnosperm
<i>Classopollis</i> sp.	Pflug, 1953	pollen
Cvclusphaera aff. psilata	Volkheimer & Sepulveda, 1976	Non-gnetalean gymnosperm
	· · · · · · · · · · · · · · · · · · ·	pollen Non gnetalean gymnosperm
Inaperturopollenites sp.	Potonié, 1966	pollen
Podocarniditas? sp	Couper 1953	Non-gnetalean gymnosperm
Touocurpianes: sp.	Couper, 1955	pollen
Taxacites aff. sahariensis	Reyre, 1973	Non-gnetalean gymnosperm pollen
aff. Ephedripites sp. A	Azema & Boltenhagen, 1974	Gnetalean pollen
<i>Elaterosporites</i> sp.	Jardiné, 1967	Gnetalean pollen
Ephedripites aff. regularis	van Hoeken-Klinkenberg, 1964	Gnetalean pollen
Ephedripites barghoornii	Muller, 1968	Gnetalean pollen
<i>Ephedripites</i> cf. <i>procerus</i>	Brenner, 1968	Gnetalean pollen
Ephedripites multicostatus	Muller, 1968	Gnetalean pollen
Ephedripites sp.	Potonić, 1958	Gnetalean pollen
Equisetosporites aff.	1.1. 1000	
minuticostatus	de Lima, 1980	Gnetalean pollen
Equisetosporites aff. subcircularis	de Lima, 1980	Gnetalean pollen
Equisetosporites ambiguus	Singh, 1983	Gnetalean pollen
Equisetosporites dudarensis	de Lima, 1980	Gnetalean pollen
Equisetosporites fragilis	de Lima, 1980	Gnetalean pollen
Equisetosporites laticostatus	de Lima, 1980	Gnetalean pollen
Gnetaceaepollenites aff. concisus	Regali, 1989	Gnetalean pollen
Gnetaceaepollenites aff. undulatus	de Lima, 1980	Gnetalean pollen
Gnetaceaepollenites barghoornii	de Lima, 1980	Gnetalean pollen
Gnetaceaepollenites jansonii	de Lima, 1980	Gnetalean pollen
Gnetaceaepollenites retangularis	de Lima, 1980	Gnetalean pollen

Taxa name	Author	Natural Affinity
Singhia multicostata	de Lima, 1980	Gnetalean pollen
Steevesipollenites cupuliformis	Azema & Boltenhagen, 1974	Gnetalean pollen
Steevesipollenites cf. multilineatus	Stover, 1964	Gnetalean pollen
Steevesipollenites pygmeus	Azema & Boltenhagen, 1974	Gnetalean pollen
Aequitriradites cf. verrucosus	Cookson & Dettmann, 1961	Spore
aff. Staplinisporites sp.	Pocock, 1962	Spore
Apiculatasporites sp.	Ibrahim, 1933	Spore
Apiculatisporites aff. levis	Balme & Hennely, 1956	Spore
Appendicisporites erdtmanii	Pocock, 1962	Spore
Baculatisporites sp.	Thomson, 1953	Spore
Balmeisporites sp.	Cookson & Dettmann, 1958	Spore
Camarozonosporites ambigens	Playford, 1971	Spore
Camarozonosporites sp.	Potonié, 1956	Spore
Camarozonosporites vermiculaesporites	Krutzsch, 1963	Spore
Ceratosporites equalis	Cookson & Dettmann, 1958	Spore
Chomotriletes minor	Pocock, 1970	Spore
Cicatricosisporites aff. venustus	Deak, 1963	Spore
Cicatricosisporites avnimelechi	Horowitz, 1970	Spore
Cicatricosisporites hallei	Delcourt & Sprumont, 1955	Spore
Cicatricosisporites hughesii	Dettmann, 1963	Spore
Cicatricosisporites kedvesii	Schrank & Mahmoud, 1999	Spore
Cicatricosisporites sinuosus	Hunt, 1985	Spore
Cicatricosisporites sp.	Potonié & Gelletich, 1933	Spore
Clavatisporites aff. clarus	Kedves & Simoncsics, 1964	Spore
Clavatisporites clarus	Kedves & Simoncsics, 1964	Spore
Clavatisporites sp.	Kedves & Simoncsics, 1964	Spore
Collarisporites fuscus	Deak, 1964	Spore
Concavissimisporites aff. kyrtomatus	Jaramillo et al., 2014	Spore
Concavissimisporites globosus	Phillips & Felix, 1971	Spore
Concavissimisporites punctatus	Singh, 1964	Spore
Crybelosporites pannuceus	Srivastava, 1975	Spore
Crybelosporites sp.	Dettmann, 1963	Spore
Deltoidospora minor	Pocock, 1970	Spore
Densoisporites perinatus	Couper, 1958	Spore
Dictyophyllidites excellensus	Kar & Singh, 1986	Spore
Distaltriangulisporites aff. irregularis	Singh, 1971	Spore
Echinatisporis aff. circularis	Silva-Caminha et al., 2010	Spore
Echinatisporis sp.	Krutzsch, 1959	Spore
Echitriletes aff. minispinosus	Jaramillo et al., 2014	Spore

Taxa name	Author	Natural Affinity
Echitriletes sp.	Potonié, 1956	Spore
Foveotriletes aff. margaritae	Germeraad et al., 1968	Spore
Foveotriletes aff. ornatus	Regali <i>et al.</i> , 1974	Spore
Foveotriletes sp.	Potonié, 1956	Spore
Gabonisporis vigourouxii	Boltenhagen, 1967	Spore
Gemmatriletes sp.	Pierce, 1961	Spore
Gleicheniidites aff. apilobatus	Brenner, 1963	Spore
Gleicheniidites senonicus	Ross, 1949	Spore
Gleicheniidites sp.	Dettmann, 1963	Spore
Granulatisporites sp.	Potonié & Kremp, 1954	Spore
Hamulatisporis cf. caperatus	Schrank, 1994	Spore
Hamulatisporis insignis	Kedves, 1995	Spore
Ischyosporites aff. badagriensis	Jan du Chene et al., 1978	Spore
Ischyosporites variegatus	Jansonius & Hills, 1990	Spore
Januasporites sp.	Pocock, 1962	Spore
Leptolepidites macroverrucosus	Schulz, 1967	Spore
Leptolepidites sp.	Couper, 1953	Spore
Leptolepidites verrucatus	Couper, 1953	Spore
Microfoveolatosporis skottsbergii	Srivastava, 1971	Spore
Muerrigerisporis sp.	Solé de Porta, 1972	Spore
Obtusisporis cf. undulus	Kedves, 1995	Spore
Osmundacidites sp.	Couper, 1953	Spore
Osmundacidites wellmanii	Couper, 1953	Spore
Pilosisporites parvispinosus	Dettmann, 1963	Spore
Polypodiisporites sp.	Chlonova, 1961	Spore
Retitriletes aff. eminulus	Srivastava, 1977	Spore
Retitriletes aff. tenuis	Backhouse, 1988	Spore
Retitriletes douglasii	Dettmann, 1986	Spore
Retitriletes sp.	Pierce, 1961	Spore
Ruffordiaspora sp.	Dettmann & Clifford, 1992	Spore
Rugulatisporites sp.	Pflug, 1953	Spore
Sestrosporites pseudoalveolatus	Dettmann, 1963	Spore
Stoverisporites aff. lunaris	Norvick & Burger, 1975	Spore
Striatriletes sp.	van der Hammen, 1954	Spore
Verrucatotriletes aff. tortus	D'Apolito et al., 2019	Spore
Verrucatotriletes sp.	van Hoeken-Klinkenberg, 1964	Spore
Verrucosisporites rotundus	Singh, 1964	Spore
Verrucosisporites sp.	Ibrahim, 1933	Spore
Verrutriletes sp.	Potonié, 1956	Spore
Verrutriletes virueloides	Jaramillo et al., 2007	Spore

Taxa name	Author	Natural Affinity
Zlivisporis sp.	Pacltová, 1961	Spore

6.1.2. lower Napo Formation

Five palynological slides were analyzed for four localities (see Table 5) in which a total of 25 taxa were found, corresponding to nine angiosperms, five gnetalean pollen, six spores and five marine palynomorphs (three dinoflagellates and two acritarchs) (Table 8). These taxa presented good preservation.

Taxa name	Author	Natural Affinity
Ladakhipollenites? "pseudosyncolpatus"	Informal	Angiosperm
<i>Microfoveotriporites</i> aff. <i>cretaceous</i>	van Hoeken-Klinkenberg, 1966	Angiosperm
Monoporopollenites sp.	Meyer, 1956	Angiosperm
Psilabrevitricolporites sp.	van der Kaars, 1983	Angiosperm
Psilamonocolpites sp.	van der Hammen & Garcia, 1965	Angiosperm
Retibrevitricolpites sp.	van Hoeken-Klinkenberg 1966	Angiosperm
Retimonocolpites sp.	Pierce, 1961	Angiosperm
Retipollenites sp.	González, 1967	Angiosperm
Retitrescolpites sp.	Sah, 1967	Angiosperm
Elaterosporites klaszii	Jardiné, 1967	Gnetalean pollen
Elaterosporites verrucatus	Jardiné, 1967	Gnetalean pollen
Ephedripites ambonoides	Brenner, 1968	Gnetalean pollen
Equisetosporites dudarensis	de Lima, 1980	Gnetalean pollen
Sergipea aff. variverrucata	Regali et al., 1974	Gnetalean pollen
Camarozonosporites ambigens	Playford, 1971	Spore
Clavatisporites clarus	Kedves & Simoncsics, 1964	Spore
Clavatisporites sp.	Kedves & Simoncsics, 1964	Spore
Concavissimisporites aff. punctatus	Singh, 1964	Spore
Echitriletes sp.	Potonié, 1956	Spore
Foveotriletes sp.	Potonié, 1956	Spore
Coronifera? sp.	Cookson & Eisenack, 1958	Dinoflagellate
Hystrichosphaeridium aff. tubiferum	Davey & Williams, 1966	Dinoflagellate
Indeterminate acritarch	NA	Acritarch

Table 8. List of palynomorphs found in the Napo Formation with their corresponding natural affinity.

Taxa name	Author	Natural Affinity
Oligosphaeridium aff. totum	Brideaux, 1971	Dinoflagellate
Pterospermella aureolata	Eisenack, 1972	Acritarch?

6.1.3. lower Une Formation

Four samples from La Popa Mine were analyzed (see Table 5). A total of 23 taxa were found with relatively good preservation, corresponding to nine angiosperms, three non-gnetalean gymnosperm pollen and 11 spores (Table 9).

Taxa name	Author	Natural Affinity
Afropollis jardinus	Doyle et al., 1982	Angiosperm
Clavamonocolpites sp.	González, 1967	Angiosperm
Foveotricolpites sp.	Pierce, 1961	Angiosperm
Polyadopollenites cf. mariae	Dueñas, 1980	Angiosperm
Psilamonocolpites sp.	van der Hammen & Garcia, 1965	Angiosperm
Psilatricolpites sp.	van der Hammen & Wymstra, 1964	Angiosperm
Psilatricolporites sp.	van der Hammen & Wymstra, 1964	Angiosperm
Retiacolpites aff. columellatus	Schrank, 2002	Angiosperm
Retitricolpites sp.	van der Hammen & Wymstra, 1964	Angiosperm
Araucariacites australis	Cookson, 1947	Non-gnetalean gymnosperm pollen
Callialasporites dampieri	Dev, 1961	Non-gnetalean gymnosperm pollen
Podocarpidites? sp.	Couper, 1953	Non-gnetalean gymnosperm pollen
Chomotriletes minor	Pocock, 1970	Spore
Cicatricosisporites sp.	Potonié & Gelletich, 1933	Spore
Hamulatisporis insignis	Kedves, 1995	Spore
Ischyosporites variegatus	Jansonius & Hills, 1990	Spore
Laevigatosporites aff. gracilis	Wilson & Webster, 1946	Spore
Osmundacidites wellmanii	Couper, 1953	Spore
Perotriletes sp.	Couper, 1953	Spore
Psilatriletes sp.	van der Hammen, 1954	Spore
Tuberositriletes sp.	Döring, 1964	Spore
Verrucatotriletes sp.	van Hoeken-Klinkenberg, 1964	Spore
Verrutriletes sp.	Potonié, 1956	Spore

Table 9. List of palynomorphs found in the Une Formation with their natural affinity.

6.2. Climatic estimation

The diversity of arid climate-indicating gymnosperms (*Classopollis*, ephedroid pollen grains, and elater-bearing species) was lower than the diversity of spore indicating humid climates (29 taxa versus 83, respectively) (Tables 10 and 11).

Indicators of arid climates				
1. aff. <i>Ephedripites</i> sp. A	11. Ephedripites barghoornii	21. Gnetaceaepollenites aff. concisus		
2. Classopollis brasiliensis	12. Ephedripites cf. procerus	22. Gnetaceaepollenites aff. undulatus		
3. Classopollis classoides	13. Ephedripites multicostatus	23. Gnetaceaepollenites barghoornii		
4. Classopollis meyeriana	14. Ephedripites sp.	24. Gnetaceaepollenites jansonii		
5. Classopollis sp.	15. Equisetosporites aff. minuticostatus	25. Gnetaceaepollenites retangularis		
6. Elaterosporites klaszii	16. Equisetosporites aff. subcircularis	26. Singhia multicostata		
7. Elaterosporites sp.	17. Equisetosporites ambiguus	27. Steevesipollenites cupuliformis		
8. Elaterosporites verrucatus	18. Equisetosporites dudarensis	28. Steevesipollenites cf. multilineatus		
9. Ephedripites aff. regularis	19. Equisetosporites fragilis	29. Steevesipollenites pygmeus		
10. Ephedripites ambonoides	20. Equisetosporites laticostatus			

 Table 11. Indicators of humid climate conditions.

Indicators of humid climates			
1. Aequitriradites cf. verrucosus	29. Crybelosporites sp.	57. Muerrigerisporis sp.	
2. aff. Staplinisporites sp.	30. Deltoidospora minor	58. Obtusisporis cf. undulus	
3. Apiculatasporites sp.	31. Densoisporites perinatus	59. Osmundacidites sp.	
4. Apiculatisporites aff. levis	32. Dictyophyllidites excellensus	60. Osmundacidites wellmanii	
5. Appendicisporites erdtmanii	33. Distaltriangulisporites aff. irregularis	61. Perotriletes sp.	
6. Baculatisporites sp.	34. Echinatisporis aff. circularis	62. Pilosisporites parvispinosus	
7. Balmeisporites sp.	35. Echinatisporis sp.	63. Polypodiaceoisporites cf. reticulatus	
8. Camarozonosporites ambigens	36. Echitriletes aff. minispinosus	64. Polypodiisporites sp.	
9. Camarozonosporites sp.	37. Echitriletes sp.	65. Psilatriletes sp.	
10. Camarozonosporites vermiculaesporites	38. Foveotriletes aff. margaritae	66. Retitriletes aff. eminulus	
11. Ceratosporites equalis	39. Foveotriletes aff. ornatus	67. Retitriletes aff. tenuis	
12. Chomotriletes minor	40. Foveotriletes sp.	68. Retitriletes douglasii	
13. Cicatricosisporites aff. venustus	41. Gabonisporis vigourouxii	69. Retitriletes sp.	
14. Cicatricosisporites avnimelechi	42. Gemmatriletes sp.	70. Ruffordiaspora sp.	
15. Cicatricosisporites hallei	43. Gleicheniidites aff. apilobatus	71. Rugulatisporites sp.	
16. Cicatricosisporites hughesii	44. Gleicheniidites senonicus	72. Scabratriletes sp.	
17. Cicatricosisporites kedvesii	45. Gleicheniidites sp.	73. Sestrosporites pseudoalveolatus	
18. Cicatricosisporites sinuosus	46. Granulatisporites sp.	74. Stoverisporites aff. lunaris	
19. Cicatricosisporites sp.	47. Hamulatisporis cf. caperatus	75. Striatriletes sp.	
20. Clavatisporites aff. clarus	48. Hamulatisporis insignis	76. Tuberositriletes sp.	
21. Clavatisporites clarus	49. Ischyosporites aff. badagriensis	77. Verrucatotriletes aff. tortus	
22. Clavatisporites sp.	50. Ischyosporites variegatus	78. Verrucatotriletes sp.	
23. Collarisporites fuscus	51. Januasporites sp.	79. Verrucosisporites rotundus	
24. Concavissimisporites aff. kyrtomatus	52. Laevigatosporites aff. gracilis	80. Verrucosisporites sp.	
25. Concavissimisporites aff. punctatus	53. Leptolepidites macroverrucosus	81. Verrutriletes sp.	
26. Concavissimisporites globosus	54. Leptolepidites sp.	82. Verrutriletes virueloides	
27. Concavissimisporites punctatus	55. Leptolepidites verrucatus	83. Zlivisporis sp.	
28. Crybelosporites pannuceus	56. Microfoveolatosporis skottsbergii		

7. Discussion

7.1. Geological Age

7.1.1. lower Hollin Formation

An Albian age was determined for the samples analyzed in the Genoveva Mine and in the other six localities, based on the co-occurrence of *Cretacaeiporites* spp., *Retitricolpites operculatus* and *Callialasporites dampieri* (Table 12; Figure 16). This assemblage is found in the zones *Pentapsis valdiviae* to *Elaterosporites protensus* of Regali *et al.* (1974) and the zones *Tricolpites-Exesipollenites tumulus to Elaterosporites protensus/Elaterosporites verrucatus-Afropollis* of Muller *et al.* (1987). Nevertheless, this formation has a middle-late Aptian to middle Albian age (White *et al.*, 1995; Jaillard *et al.*, 1997; Vallejo *et al.*, 2002; Ordoñez *et al.*, 2006; Romero *et al.*, 2017), and that is why a middle-late Aptian age would be expected, however, the found assemblage is Albian. This suggests that the uppermost part of lower Hollin Formation can be associated to early Albian in this study zone.

Two Aptian taxa, *Callialasporites trilobatus* and *Pilosisporites* spp. were also found, which could be reworked, or their age range could be younger as reported by several authors. *C. trilobatus* has been found in the Albian (Morgan, 1978; Zobaa *et al.*, 2013) and Cenomanian (Dino & de Lima, 1991) while for the genus *Pilosisporites*, some species have also been found in the Albian (Norvick & Burger, 1975; Thusu & van der Eem, 1985; Wagstaff *et al.*, 2012; Portela *et al.*, 2014).

Table 12. Age of the taxa found in Hollin Formation according to Regali *et al.* (1974) and Muller *et al.* (1987). The ages with asterisk (*) correspond to those used in the Figure 16.

Taxa	Age from Regali <i>et al.</i> (1974)	Age from Muller et al. (1987)
Afropollis complex	Aptian – middle Cenomanian	Aptian – early Cenomanian*
Araucariacites australis	pre-Aptian – post-Turonian*	NA
Callialasporites dampieri	pre-Aptian – Albian*	pre-Aptian – early Cenomanian
Cicatricosisporites hallei	NA	Aptian – Cenomanian*
Classopollis classoides	pre-Aptian – post-Turonian*	NA
Cretacaeiporites spp.	NA	Albian – post-Turonian*
Crybelosporites pannuceus	middle Albian – Cenomanian	middle Aptian – Cenomanian*
Ephedripites complex	NA	middle Aptian – Cenomanian*
Gnetaceaepollenites complex	NA	middle Aptian – Cenomanian*
Ischyosporites variegatus	Aptian – Cenomanian*	NA
Pennipollis peroreticulatus	late Aptian – Cenomanian*	middle Aptian – Cenomanian
Retitricolpites operculatus	NA	Albian – Cenomanian*
Steevesipollenites complex	NA	middle Aptian – post-Turonian*
Callialasporites trilobatus	pre-Aptian – middle Aptian*	pre-Aptian – late Aptian
Pilosisporites spp.	NA	pre-Aptian – late Aptian*

Figure 16. Temporal distribution of the biostratigraphy index taxa found in this study. The gray band represents the estimated age for each geological formation. The red bars show the taxa with an age range that does not agree with the estimated age of the geological formations.

7.1.2. lower Napo Formation

In the four studied localities of the lower Napo Formation, a middle – late Albian age was determined by the co-occurrence of *Elaterosporites klaszii* and *Elaterosporites verrucatus* (Figure 16; Table 13). This assemblage is found in the zones *E. jardinei* to *E. protensus* of Regali *et al.* (1974) and the zones *E. jardinei* to *E. protensus/E. verrucatus-Afropollis* of Muller *et al.* (1987).

Table 13. Age of the taxa found in Napo Formation according to Regali *et al.* (1974) and Muller *et al.* (1987).The ages with asterisk (*) correspond to those used in the Figure 16.

Taxa	Age from Regali <i>et al.</i> (1974)	Age from Muller <i>et al.</i> (1987)
Elaterosporites klaszii	middle Albian – Cenomanian*	Albian – Cenomanian
Elaterosporites verrucatus	middle – late Albian*	Albian – early Cenomanian
Ephedripites complex	NA	middle Aptian – Cenomanian*

The calcareous nannoplankton content of sample 47748 (locality 910002; Table 6) from lower Napo Formation was frequent and showed a good to moderate preservation (Figure 17). Based on the recovery of nannofossils *Gartnerago nanum* and *Gartnerago theta*, this sample is placed between biozones UC0b – UC3a (Burnett *et al.*, 1998), which ranges from late Albian to middle Cenomanian.

Figure 17. Calcareous nannofossils in sample 47748, lower Napo Formation. 1. Chiastozygus sp.; 2. Cyclagelosphhaera reinhardtii; 3-4. Rotelapillus crenulatus; 5. Gartnerago nanum; 6. Gartnerago theta; 7. Manivitella pemmatoidea; 8. Prediscosphaera columnata; 9. Radiolithus planus; 10. Staurolithites halfanii; 11. Watznaueria cf. Britannica; 12. Zeugrhabdotus scutula; 13. Zeugrhabdotus diplogrammus; 14. Zeugrhabdotus elegans.

7.1.3. lower Une Formation

In the four studied localities of La Popa Mine, an Aptian – early Cenomanian age was determined based upon the co-occurrence of *Afropollis* complex and *Ischyosporites variegatus* (Figure 16; Table 14). This assemblage is found in the zones *Inaperturopollenites crisopolensis* to *Psilatricolpites papilioniformis* of Regali *et al.* (1974) and the zones *I. crisopolensis-Afropollis* to *E. protensus/E. verrucatus-Afropollis* of Muller *et al.* (1987).

According to some authors (e.g., Renzoni, 1981; Fabre, 1985; Montoya & Reyes, 2003) this unit has been dated as Albian – Cenomanian, however, as was previously mentioned, the age found in the study zone was Aptian – early Cenomanian, which can be related to the few palynomorphs found and to the absence of taxa restricted to the Albian according to the palynological zonations of Regali *et al.* (1974) and Muller *et al.* (1987). Since this formation is not older than Albian, it would be expected for this unit to correspond to the lower Une Formation, and therefore, to have an Albian – early Cenomanian age. Nevertheless, the found Aptian age could be associated to the underlying Fomeque Formation that has an age whose range extends to the late Aptian (Royo, 1939; Hubach, 1957; Campbell, 1962; Etayo-Serna, 1964; Ulloa & Rodriguez, 1979; Ulloa *et al.*, 2000; Patarroyo, 2020).

Table 14. Age of the taxa found in Une Formation according to Regali *et al.* (1974) and Muller *et al.* (1987).The ages with asterisk (*) correspond to those used in the Figure 16.

Taxa	Age from Regali <i>et al.</i> (1974)	Age from Muller <i>et al.</i> (1987)
Afropollis complex	Aptian – middle Cenomanian	Aptian – early Cenomanian*
Araucariacites australis	pre-Aptian – post-Turonian*	NA
Ischyosporites variegatus	Aptian – Cenomanian*	NA

7.2. Rainfall conditions (humid versus arid)

The taxonomic composition indicates a flora dominated by humid indicators for the Albian. This evidence agrees with the previous studies made in the South American west tropics that also shows high levels of rainfall (Mejia-Velasquez *et al.*, 2012; Mejia-Velasquez *et al.*, 2018). However, it is not in accordance with the eastern South American tropics, where the well-studied Crato Formation indicates more arid climate conditions (Mohr & Rydin, 2002; Batten, 2007; Braz, 2012; Bernardes-de-Oliveira *et al.*, 2014).

Assemblages with high abundance and diversity of spores in tropical sediments of similar age have also been found in palynological studies from Colombia (Herngreen & Dueñas-Jimenez, 1990), Brazil (de Lima, 1983) and northeast Africa (Thusu *et al.*, 1988; Schrank, 1992). It is probable that the sites closer to the equatorial tropics, like the localities of this study in Colombia and Ecuador, had a higher rainfall compared to those sites closer to subtropics (Doyle *et al.*, 1982; Schrank, 1990; Brenner, 1996).

de Lima (1983) and Mejia-Velasquez *et al.* (2012) discussed that during the Lower and middle Cretaceous coastal ecosystems were probably more humid than those in the continental interior because of oceanic influences. Our two study localities were located near the coastline at the northwestern corner of South America, where it had the influence of the Pacific Ocean, therefore, higher humidity is possible compared to inland sites. A similar proposal is discussed by Mejia-Velasquez *et al.* (2018) that mention a "supercontinent effect", when the coastal areas of Gondwana were probably more humid than areas in its vast interior, because on the large continents, like Gondwana, the humidity cannot be easily carried from the coast, creating inland deserts at all latitudes (Scotese *et al.*, 1999).

There are other evidences that also supports the presence of a humid climate during the Albian in northwestern Gondwana, such as the isotopic composition of coal layers found in deposits from the Caballos Formation in Colombia that showed mean annual precipitation values slightly higher than the those occurring today in tropical latitudes (Suarez *et al.*, 2010), or global climate models that indicated a humid climate in tropical latitudes (Ufnar *et al.*, 2004; Fluteau *et al.*, 2007; Hay & Floegel, 2012; Kuethe, 2016).

On the other hand, besides of pluviosity, a fluvial system can influence the availability of water for plants in a deltaic system which would affect the amount of the found humid indicators. This is because the vegetation changes following hydrological alterations (Andersson *et al.*, 2000), which has been studied for vascular plants (Nilsson *et al.*, 1991; Toner & Keddy, 1997) and bryophytes (Englund *et al.*, 1997).

It is also important to considerate that high diversity of humid indicators could be biased since the analyses are qualitative. Therefore, it would be required an accounting of the number of palynomorphs per sample to assess the floristic composition in terms of relative diversity and relative abundance. This indicate that the results obtained in this study are preliminary, and further counting could clarify the rainfall conditions (humidity versus aridity) in the northwestern margin of Gondwana.

8. Conclusions

- The lower Hollin Formation at the Genoveva Mine was dated as Albian, palynological zones *Pentapsis valdiviae* to *Elaterosporites protensus* of Regali *et al.* (1974) and the zones *Tricolpites-Exesipollenites tumulus to Elaterosporites protensus/Elaterosporites verrucatus-Afropollis* of Muller *et al.* (1987). Specifically, an early Albian age was inferred for the uppermost part of lower Hollin Formation in this locality.
- The lower Napo Formation was dated as middle to late Albian, zones *Elateropollenites jardinei* to *Elaterosporites protensus* of Regali *et al.* (1974) and the zones *Elateropollenites jardinei* to *Elaterosporites protensus/Elaterosporites verrucatus- Afropollis* of Muller *et al.* (1987). Therefore, a late Albian age was inferred for this unit in the study zone. Based on the calcareous nannoplankton, the sample 47748 is late Albian to middle Cenomanian in age, biozones UC0b to UC3a of Burnett *et al.* (1998).
- The lower Une formation outcropping in La Popa Mine was dated as Aptian early Cenomanian, zones *Inaperturopollenites crisopolensis* to *Psilatricolpites papilioniformis* of Regali *et al.* (1974) and the zones *Inaperturopollenites crisopolensis-Afropollis* to *Elaterosporites protensus/Elaterosporites verrucatus-Afropollis* of Muller *et al.* (1987). In particular, an Albian early Cenomanian age was inferred in this locality and the found Aptian age could correspond to the underlying Fomeque Formation.
- There is a dominance in spore diversity over the other palynomorph groups, suggesting a humid climate in the northwestern margin of Gondwana. However, further counting of palynomorphs per sample could show more results in terms of diversity and abundance.
- Both pluviosity and the fluvial system can affect the amount of the found humid indicators in this study.
- Angiosperms as the second most diverse group could suggest a rapid angiosperm radiation in tropical latitudes.

References

- Alcárcel, F.A. & Gómez, J. 2019. Mapa Geológico de Colombia 2019. Escala 1:2.000.000. Servicio Geológico Colombiano, Bogotá, Colombia.
- Andersson, E., Nilsson, C. & Johansson, M.E. 2000. Effects of river fragmentation on plant dispersal and riparian flora. Regulated Rivers: Research & Management 16: 83-89.
- Antoine, P.O., de Franceschi, D., Flynn, J.J., Nel, A., Baby, P., Benammi, M., Calderon, Y., Espurt, N., Goswami, A. & Salas-Gismondi, R. 2006. Amber from western Amazonia reveals Neotropical diversity during the middle Miocene. PNAS 103(37): 13595-13600.
- Arillo, A. 2007. Paleoethology: fossilized behaviours in amber. Geologica Acta 5(2): 159-166.
- Arthur, M.A., Schlanger, S.O. & Jenkyns, H.C. 1987. The Cenomanian–Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation. Geological Society of London, Special Publication 26: 401-420.
- Baby, P., Rivadeneira, M. & Barragán, R. 2004. La cuenca Oriente: geología y petróleo.Trabajo del Instituto Francés de Estudios Andinos 144, Quito, Ecuador. 295 p.
- Backman, J. & Shackleton, N.J. 1983. Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Indian and Pacific oceans. Marine Micropaleontology 8: 141-170.
- Barclay, R.S., McElwain, J.C. & Sageman, B.B. 2010. Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nature Geoscience 3: 205-208.
- Barron, E.J. & Peterson, W.H. 1993. Past climate and the role of ocean hear transport: Model simulations for the Cretaceous. Paleoceanography 8(6): 785-798.
- Barron, E.J., Fawcett, P.J. & Peterson, W.H. 1995. A "simulation" of mid-Cretaceous climate. Paleoceanography 10(5): 953-962.

- Batten, D. 2007. Spores and pollen from the Crato Formation: Biostratigraphic and palaeoenvironmental implications. In Martill, D., Bechly, G. & Loveridge, R. (Eds.) The Crato Fossil Beds of Brazil: Window into an Ancient World. Cambridge University Press, Cambridge: 566-574.
- Braz, F.F. 2012. Angiosperms Record from the Early Cretaceous Crato Member, Santana Formation, Araripe Basin, NE Brazil. M.Sc. thesis, Universidade de São Paulo, São Paulo, Brazil. 158 p.
- Bernardes-de-Oliveira, M.E.C., Sucerquia, P.A., Mohr, B., Dino, R., Antonioli, L. & Garcia, M.J. 2014. Indicadores paleoclimáticos na paleoflora do Crato, final do Aptiano do Gondwana norocidental. In de Souza-Carvalho, I., Garcia, M.J., Lana, C.C. & Strohschoen, O. (Eds.) Paleontologia: cenários da vida paleoclimas 5. Interciencia: 101-119.
- Brenner, G.J. 1996. Evidence for the earliest stage of angiosperm pollen evolution: A paleoequatorial section from Israel. In Taylor, D.W. and Hickey, L. (Eds.) Flowering plant origin, evolution and phylogeny. Chapman & Hall, New York, USA: 91-115.
- Budd, G.E., Mann, R.P., Doyle, J.A., Coiro, M. & Hilton, J. 2021. Fossil data do not support a long pre-Cretaceous history of flowering plants. bioRxiv.
- Buitrago, J.A., Terraza, R. & Etayo F. 2008. Plancha 228 Santafé de Bogotá Noreste. INGEOMINAS, Bogotá, Colombia.
- Burnett, J.A., Gallagher, L.T. & Hampton, M.J. 1998. Upper cretaceous. In Bown, P.R. (Ed.) Calcareous nannofossil biostratigraphy. British Micropalaeontological Society Publications Series: 132-199.
- Campbell, C.J. 1962. A section through the Cordillera Oriental of Colombia between Bogotá and Villavicencio. The Colombian Association of Petroleum Geologists and Geophysicists, Bogotá, Colombia. 36 p.
- Cediel, F., Shaw, R. & Caceres, C. 2003. Tectonic assembly of the northern Andean block. In Bartolini, C., Buffler, R. & Blickwede, J. (Eds.) The Circum-Gulf of Mexico and

the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics. American Association of Petroleum Geologists: 815-848.

- Chumakov, N.M., Zharkov, M.A., Herman, A.B., Doludenko, M.P., Kalandadze, N., Lebedev, E.J., Ponomarenko, A.G. & Rautian, A.S. 1995. Climatic zones in the mid-Cretaceous. Stratigraphy and Geological correlation 3: 205-215.
- Cornet, B. 1986. The leaf venation and reproductive structures of a Late Triassic angiosperm, Sanmiguelia lewisii. Evolutionary Theory 7: 231-309.
- Cornet, B. 1989. Late Triassic angiosperm-like pollen from the Richmond Rift Basin of Virginia, U.S.A. Palaeontographica B 213: 37-87.
- Corredor, V.E. & Terraza, R. 2015. Geología de la plancha 228 Bogotá noreste. Servicio Geológico Colombiano, Bogotá, Colombia. 109 p.
- Crane, P.R. & Lidgard, S. 1989. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246: 675-678.
- Cui, D.F., Hou, Y., Yin, P. & Wang, X. 2022. A Jurassic flower bud from China. Geological Society, London, Special Publications 521: 1-13.
- Dashwood, M.F. & Abbotts, I.L. 1990. Aspects of the petroleum geology of the Oriente Basin, Ecuador. In Brooks, J. (Ed.) Classic petroleum provinces. Geological Society, London, Special Publication 50: 89-117.
- de Lima, R. 1983. Paleoclimatic reconstruction of the Brazilian Cretaceous based on palynological data. Revista Brasileira de Geociencias 13: 223-228.
- Dilcher, D.L. 1979. Early angiosperm reproduction: an introductory report. Review of Palaeobotany and Palynology 27: 291-328.
- Dino, R. & de Lima, M.R. 1991. Palinomorfos Cretáceos da Bacía Potiguar na Região de Limoeiro do Norte, Estado do Ceará. Anais da Academia Brasileira de Ciencias 63(4): 381-388.

- Donnadieu, Y., Pierrehumbert, R., Jacob, R. & Fluteau, F. 2006. Modelling the primary control of paleogeography on Cretaceous climate. Earth and Planetary Science Letters 248: 426-437.
- Doyle, J.A. & Hickey, L.J. 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. In Beck, C.B. (Ed.) Origin and Early Evolution of Angiosperms. Columbia University Press, New York: 139-206.
- Doyle, J.A., Jardine, S. & Doerenkamp, A. 1982. Afropollis, a new genus of early angiosperm pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of Northern Gondwana. Bulletin du Centre de Recherches Exploration-Production Elf-Aquitaine 6: 39-117.
- Eguez, A., Gaona, M. & Albán, A. 2017. Mapa Geológico de la República del Ecuador. Instituto de Investigación Geológico y Energético, Quito, Ecuador.
- Englund, G., Jonsson, B.G. & Malmqvist, B. 1997. Effects of flow regulation on bryophytes in North Swedish rivers. Biological Conservation 79: 79-86.
- Erbacher, J., Friedrich, O., Wilson, P.A., Birch, H. & Mutterlose, J. 2005. Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic. Geochemistry, Geophysics, Geosystems 6: 1-9.
- Etayo-Serna, F. 1964. Posición de las faunas en los depósitos cretácicos colombianos y su valor en la subdivisión cronológica de los mismos. Boletín de Geología 16-17: 5-141.
- Etayo-Serna, F., Barrero, D., Lozano, H., Espinosa, A., Gonzalez, H., Orrego, A., Ballesteros,
 I., Forero, H., Ramırez, C., Zambrano, F., Duque, H., Vargas, R., Nunez, A., Alvarez,
 J., Ropain, C., Cardozo, E., Galvis, N., Sarmiento, L., Albers, J., Case, J., Singer, D.,
 Bowen, R., Berger, B., Cox, D. & Hodges, C. 1983. Mapa de Terrenos Geológicos
 de Colombia. INGEOMINAS, Bogotá, Colombia. 135 p.
- Fabre, A. 1985. Geología de la Sierra Nevada del Cocuy, Cordillera Oriental de Colombia.
 Evolución Cretácica y terciaria de una cuenca formada por extensión de la litosfera.
 Universite de Geneve. Département de géologie et paléontologie. 405 p.

- Fletcher, B.J. 2006. Environmental Controls on the Carbon Isotope Fractionation of Bryophytes, and Its Significance for Interpreting their Fossil Record. Ph.D. thesis, University of Sheffield, Sheffield, United Kingdom.
- Fluteau, F., Ramstein, G., Besse, J., Guiraud, R. & Masse, J.P. 2007. Impacts of palaeogeography and sea level changes on Mid-Cretaceous climate. Palaeogeography, Palaeoclimatology, Palaeoecology 247: 357-381.
- Friis, E.M., Pedersen, K.R. & Crane, P.R. 2000. Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana 39, 226-239.
- Friis, E.M., Pedersen, K.R. & Crane, P.R. 2001. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410: 357-360.
- Friis, E.M., Crane, P.R. & Pedersen, K.R. 2011. Early Flowers and Angiosperm Evolution. Cambridge University Press, England. 585 p.
- Friis, E.M., Crane, P.R. & Pedersen, K.R. 2015. Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms. Nature 528: 551-554.
- Garcia, M., Umaña, R., Cruz, L. & Vásquez, M. 2009. Informe Ejecutivo evaluación del potencial hidrocarburífero de las cuencas colombianas. Universidad Industrial de Santander. 219 p.
- Gradstein, F.M., Ogg, J.G., Schmitz, M.D. & Ogg, G. 2020. Geologic Time Scale 2020. Elsevier. 1390 p.
- Grimaldi, D.A. 1996. Amber, window to the past. In Harry, N. (Ed.) Abrams Inc. Publishers, in association with the American Museum of Natural History, New York. 216 p.
- Guerrero, J. & Sarmiento, G. 1996. Estratigrafía Física, Palinológica, Sedimentológica y
 Secuencial del Cretácico Superior y Paleoceno del Piedemonte Llanero.
 Implicaciones en Exploración Petrolera. Geología Colombiana 20: 3-66.

- Haworth, M., Hesselbo, S.P., McElwain, J.C., Robinson, S.A. & Brunt, J.W. 2005. Mid-Cretaceous pCO₂ based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae). Geology 33(9): 749-752.
- Hay, W.W. & Floegel, S. 2012. New thoughts about the Cretaceous climate and oceans. Earth-Science Reviews 115: 262-272.
- Herngreen, G.F.W. & Dueñas-Jimenez H. 1990. Dating of the Cretaceous Une Formation, Colombia and the relationship with the Albian-Cenomanian African-South American microfloral province. Review of Palaeobotany and Palynology 66: 345-359.
- Herngreen, G.F.W., Kedves, M., Rovnina, L.V. & Smirnova, S.B. 1996. Cretaceous palynofloral provinces: a review. In Jansonius, J., McGregor, D. (Eds.) Palynology: Principles and applications. American Association of Stratigraphic Palynologists Foundation. Dallas, USA: 1157-1188.
- Hickey, L.J. & Doyle, J.A. 1977. Early Cretaceous fossil evidence for angiosperm evolution. The Botanical Review 43: 2-104.
- Hochuli, P.A. & Feist-Burkhardt, S. 2004. A boreal early cradle of Angiosperms? Angiosperm-like pollen from the Middle Triassic of the Barents Sea (Norway). Journal of Micropalaeontology 23: 97-104.
- Horton, B.K., Saylor, J.E., Nie, J., Mora, A., Parra, M., Reyes-Harker, A. & Stockli, D.F.
 2010. Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Geological Society of America Bulletin 122: 1423-1442.
- Hubach, E. 1957. Contribución a las unidades estratigráficas de Colombia. Servicio Geológico Nacional, Bogotá, Colombia. 166 p.
- Hughes, N.F. 1976. Palaeobiology of angiosperm origins: problems of Mesozoic seed-plant evolution. Cambridge University Press, Cambridge, United Kingdom. 242 p.
- Hughes, N.F. 1994. The Enigma of Angiosperm Origins. Cambridge University Press. Cambridge, United Kingdom. 303 p.

- Jaillard, E., Caron, M., Dhondt, A., Ordoñez, M., Lascano, M., Andrade, R., Bengtson, P., Bulot, L., Cappetta, H., Dávila, C., Díaz, R., Huacho, J., Huamán, C., Jimenez, D., Jimenez, N., Montenegro, J., Néraudeau, D., Rivadeneira, M., Toro, J., Villagómez, R., & Zambrano, I. 1997. Síntesis Estratigráfica y Sedimentológica del Cretáceo y Paleógeno de la Cuenca Oriental del Ecuador. ORSTOM-Petroproducción, Quito, Ecuador. 164 p.
- Jaramillo, C. 2012. Historia geológica del bosque húmedo neotropical. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 36(138): 57-77.
- Jaramillo, C. 2019. 140 Million Years of Tropical Biome Evolution. In Gomez J. & Pinilla-Chacon, A.O. (Eds.) The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Bogota, Colombia: 1-28.
- Jaramillo, C. & Rueda, M. 2021. A Morphological Electronic Database of Cretaceous-Cenozoic and Extant pollen, spores, and dinoflagellates from Northern South America. Smithsonian Tropical Research Institute databases.
- Jarvis, I., Gale, A.S., Jenkyns, H.C. & Pearce, M.A. 2006. Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian – Campanian (99.6-70.6 Ma). Geological Magazine 143: 561-608.
- Jenkyns, H.C. 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11(3): 1-30.
- Kuethe, J.R. 2016. Flora of the Cretaceous. Diversity and migration with an emphasis on flowering plants. Ph.D. thesis, Birkbeck University, London, United Kingdom. 47 p.
- Kuroda, J. & Ohkouchi, N. 2006. Implication of spatiotemporal distribution of black shales deposited during the Cretaceous oceanic anoxic event-2. Paleontological Research 10: 345-358.
- Lupia, R., Lidgard, S. & Crane, P.R. 1999. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25: 305-340.

- Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25: 1-28.
- Mejia-Velasquez, P.J., Dilcher, D.L., Jaramillo, C.A., Fortini, L.B. & Manchester, S.R. 2012. Palynological composition of a Lower Cretaceous South American tropical sequence: Climatic implications and diversity comparisons with other latitudes. American journal of botany 99(11): 1819-1827.
- Mejia-Velasquez, P.J., Manchester, S.R., Jaramillo, C.A., Quiroz, L. & Fortini, L. 2018. Floristic and climatic reconstructions of two Lower Cretaceous successions from Peru. Palynology 42(3): 420-433.
- Mello, M.R., Koutsoukos, E.A.M. & Erazo, W.Z. 1995. The Napo Formation, Oriente Basin, Ecuador: hydrocarbon source potential and palaeoenvironmental assessment. In Katz, B.J. (Eds.) Petroleum source rocks. Springer-Verlag, Heidelberg: 167-181.
- Mohr, B. & Rydin, C. 2002. Trifurcatia flabellata n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil). Mitteilungen aus dem Museum fur Naturkunde in Berlin, Geowissenschaftliche Reihe 5: 335-344.
- Montoya, D. & Reyes, G. 2003. Geología de la Plancha 209-Zipaquirá. Memoria explicativa. INGEOMINAS, Bogotá, Colombia. 156 p.
- Morgan, R. 1978. Albian to Senonian palynology of Site 364, Angola Basin (DSDP). Reports. D.S.D.P., U.S. Government, Printing Office, Washington 40: 915-951.
- Muller, J., di Giacomo, E. & van Erve, A. 1987. A palynological zonation for the Cretaceous, Tertiary and Quaternary of Northern South America. AASP Contribution Series 19: 7-71.
- Muller, R.D., Qin, X., Sandwell, D.T., Dutkiewicz, A., Williams, S.E., Flament, N., Maus, S. & Seton, M. 2016. The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser. PLOS ONE 11(3): 1-17.

- Nilsson, C., Ekblad, A., Gardfjell, M. & Carlberg, B. 1991. Long-term effects of river regulation on river margin vegetation. Journal of Applied Ecology 28: 963-987.
- Norvick, M.S. & Burger, D. 1975. Palynology of the Cenomanian of Bathurst Island, Northern Territory, Australia. Bureau of Mineral Resources, Geology and Geophysics, Bulletin 151: 1-247.
- Ordoñez, M., Jimenez, N. & Suarez, J. 2006. Micropaleontología Ecuatoriana. Petroproducción-Centro de Investigaciones Geológicas Guayaquil, Ecuador. 634 p.
- Owens, J.D., Lyons, T.W. & Lowery, C.M. 2018. Quantifying the missing sink for global organic carbon burial during a Cretaceous oceanic anoxic event', Earth and Planetary Science Letters 499: 83-94.
- Parrish, J.T., Ziegler, A.M. & Scotese, C.R. 1982. Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeography, palaeoclimatology, palaeoecology 40: 67-101.
- Patarroyo, P. 2020. Barremian deposits of Colombia: A special emphasis on marine successions. In Gómez, J., Pinilla-Pachon, A.O. (Eds.) The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano. Bogotá, Colombia: 1-37.
- Pereira, R., Carvalho, I.S., Azevedo, D.A. & Fernandes, A.C.S. 2007. Ocorrências de ámbar nas bacias sedimentares brasileiras – uma revisão. In Carvalho, I.S., Cassab, R.C.T., Schwanke, C., Carvalho, M.A., Fernandes, A.C.S., Rodrigues, M.A.C. (Eds.) Paleontologia: Cenários de Vida. Interciência 1, Rio de Janeiro: 251-264.
- Poinar, G.O. 1992. Life in amber. Stanford University Press, Stanford, USA. 350 p.
- Portela, H.A., Antonioli, L., Dino, R. & Garcia, M.J. 2014. Caracterização palinoflorística e paleoambiental da Formação Santana (Cretáceo Inferior), poço 4 -BO- 1 -PE, Bacia do Araripe, Nordeste do Brasil. Revista Brasileira de Paleontologia 17(3): 363-372.
- Poulsen, C.J., Barron, E.J., Arthur, M.A. & Peterson, W.H. 2001. Responde of the mid-Cretaceous global oceanic circulation to tectonic and CO₂ forcing. Paleoceanography 16(6): 576-592.

- Prámparo, M.B., Quattrocchio, M., Gandolfo, M.A., Zamaloa, M.C. & Romero, E. 2007. Historia evolutiva de las angiospermas (Cretácico-Paleógeno) en Argentina a través de los registros paleoflorísticos. Ameghiniana 50° aniversario, Publicación Especial 11: 157-172.
- Quiroz-Cabascango, D.E. 2021. Paleobotany and Stratigraphy of the Lower Aptian to Middle Albian in the Central Sub-Andean Zone of Ecuador. B.Sc. Thesis, Universidad Yachay Tech, Ecuador. 80 p.
- Ramírez-Barahona, S., Sauquet, H. & Magallón, S. 2020. The delayed and geographically heterogeneous diversification of flowering plant families. Nature Ecology & Evolution 4: 1232-1238.
- Regali, M.S.P., Uesugui, N. & Santos, A.S. 1974. Palinologia dos sedimentos mesocenozoicos do Brasil (I). Boletim técnico Petrobras 17(3): 177-191.
- Renzoni, G. 1962. Apuntes acerca de la litologia y tectonica de la zona al este y sureste de Bogota. Boletín Geológico 10(1-3): 59-79.
- Renzoni, G. 1981. Geología del cuadrángulo J-12, Tunja. INGEOMINAS, Boletín Geológico 24(2): 31-48.
- Reyes, I. 1984. Geología de la región de Duitama-Sogamoso-Paz de Río (departamento de Boyacá). Universidad Pedagógica de Colombia, Tunja, Colombia. 108 p.
- Rivadeneira, M. 1986. Evaluación geoquímica de Rocas Madres de la Cuenca Amazónica Ecuatoriana. 4th Congreso Ecuatoriano de Geología, Minas y Petróleo, Quito, Ecuador: 31-48.
- Romero, C., Vallejo, C. & Cerón, G. 2017. La Formación Hollín en la Cordillera del Cóndor: Estudio de la transición Fluvio-Marina, en la transgresión del Albiano. Datos Preliminares. VIII Jornadas en Ciencias de la Tierra: 1-5.
- Romero, C., Gramal, A., Carranco, F. & Toainga, S. 2019. Asociación de facies: la clave para la identificación de la Formación Hollín en la región Sur Oriental del Ecuador. GEO Latitud 2(1): 9-23.

- Royo, J. 1939. Informe provisional sobre los yacimientos fosilíferos de Bogotá-Villavicencio. Servicio Geológico Nacional 306: 1-19.
- Sarmiento-Rojas, L.F., van Wess, J. & Cloetingh, S. 2006. Mesozoic transtensional basin history of the Eastern Cordillera. Journal of South American Earth Sciences 21(4): 383-411.
- Sarmiento-Rojas, L.F. 2019. Cretaceous Stratigraphy and Paleo-Facies Maps of Northwestern South America. In Cediel, F., Shaw, R.P. (Eds.) Geology and Tectonics of Northwestern South America. Springer Nature, Switzerland: 673-747.
- Saylor, J.E., Horton, B.K., Stockli, D.F., Mora, A. & Corredor, J. 2012. Structural and thermochronological evidence for Paleogene basement-involved shortening in the axial Eastern Cordillera, Colombia. Journal of South American Earth Sciences 39: 202-215.
- Schlanger, S.O. & Jenkyns, H.C. 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw 55(3-4): 179-184.
- Schlanger, S.O., Arthur, M.A., Jenkyns, H.C. & Scholle, P.A. 1987. The Cenomanian Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbonrich beds and the marine δ13C excursion. In Brooks, J., Fleet, A. J. (Eds.) Marine Petroleum Source Rocks. Geological Society of London, Special Publication 26, England: 371-399.
- Schouten, S., Hopmans, E.C., Forster, A., van Breugel, Y., Kuypers, M.M.M. & Damsté, J.S.S. 2003. Extremely high sea-surface temperatures at low latitudes during the middle cretaceous as revealed by archaeal membrane lipids. Geology 31: 1069-1072.
- Schrank, E. 1990. Palynology of the clastic Cretaceous sediments between Dongola and Wadi Muqaddam, Northern Sudan. Berliner Geowissenschaftliche Abhandlungen A :149-168.
- Schrank, E. 1992. Nonmarine Cretaceous correlations in Egypt and northern Sudan -Palynological and paleobotanical evidence. Cretaceous Research 13: 351-368.

- Schrank E. & Ibrahim M.I.A. 1995. Cretaceous (Aptian-Maastrichtian) palynology of foraminifera-dated wells (KRM-1, AG-18) in north-western, Egypt. Berliner Geowissenschaftliche Abhandlungen Reihe A 177: 1-44.
- Scotese, C.R., Boucot, A.J. & McKerrow, W.S. 1999. Gondwanan palaeogeography and paleoclimatology. Journal of African Earth Sciences 28: 99-114.
- Seyfullah, L.J., Roberts, E.A., Schmidt, A.R., Ragazzi, E., Anderson, K.B., do Nascimiento, D.R., da Silva-Filho, W.F. & Kunzmann, L. 2020. Revealing the diversity of amber source plants from the Early Cretaceous Crato Formation, Brazil. Evolutionary Biology 20: 1-22.
- Shi, C., Wang, S., Cai, H., Zhang, H., Long, X., Tihelka, E., Song, W., Feng, Q., Jiang, R., Cai, C., Lombard, N., Li, X., Yuan, J., Zhu, J., Yang, H., Liu, X., Xiang, Q., Zhao, Z., Long, C., Schneider, H., Zhang, X., Peng, H., Li, D., Fan, Y., Engel, M.S., Wang, Y. & Spicer R.A. 2022. Fire-prone Rhamnaceae with South African affinities in Cretaceous Myanmar amber. Nature Plants 8: 125–135.
- Silvestro, D., Bacon, C.D., Ding, W., Zhang, Q., Donoghue, P.C.J., Antonelli, A. & Xing, Y.
 2021. Fossil data support a pre-Cretaceous origin of flowering plants. Nature Ecology
 & Evolution 5: 449-457.
- Spalletti, L.A., Franzese, J.R., Mac Donald, D. & Gomez Perez, I. 1999. Palaeogeographic evolution of southern South America during the Cretaceous. 5° Simposio sobre o Cretáceo do Brasil y 1° Simposio sobre el Cretácico de America del Sur (Serra Negra), Boletim: 87-95.
- Suarez, M.B., Gonzalez, L.A. & Ludvigson, G.A. 2010. Estimating the oxygen isotopic composition of equatorial precipitation during the mid-Cretaceous. Journal of Sedimentary Research 80: 480-491.
- Sun, G., Dilcher, D.L., Zheng, S. & Zhou, Z. 1998. In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. Science 282: 1692-1695.
- Takashima, R., Nishi, H., Huber, B.T. & Leckie, M. 2006. Greenhouse World and the Mesozoic Ocean. Oceanography 19: 82-92.

- Thusu, B. & van der Eem, G.L.A. 1985. Early Cretaceous (Neocomian-Cenomanian) Palynomorphs. Journal of Micropalaeontology 4(1): 131-149.
- Thusu, B., van der Eem, J.G.L., El-Mehdawi, A., Bu-Argoub, F. 1988. Jurassic Early Cretaceous palinostratigraphy in northeast Libya. In El-Arnauti A., Owens B., Thusu
 B. (Eds.) Subsurface palynostratigraphy of Northeast Libya. Garyounis University Publications, Benghazi, Libya: 171-213.
- Toner, M. & Keddy, P. 1997. River hydrology and riparian wetlands: a predictive model for ecological assembly. Ecological Applications 71: 236-246.
- Traverse, A. 1988. Paleopalynology. Unwin Hyman, Boston, USA. 600 p.
- Traverse, A. 2007. Paleopalynology: Second Edition. Springer, Dordrecht, The Netherlands. 813 p.
- Tschopp, H. 1953. Oil Explorations in the Oriente of Ecuador. AAPG Bulletin, Vol 37, N°. 10: 2303-2407.
- Ufnar, D.F., Gonzalez, L.A., Ludvigson, G.A., Brenner, R.L. & Witzke, B.J. 2004. Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming. Geology 32: 1049-1052.
- Ulloa, C. & Rodríguez, E. 1976. Geología de las planchas 171 Duitama, 191 Tunja, 211 Tauramena y 230 Monterrey. Escala: 1:100.000. Boletín geológico 24(2): 1-48.
- Ulloa, C. & Rodríguez, E. 1979. Geología del cuadrángulo K-12, Guateque. Boletín Geológico 22(1): 1-84.
- Ulloa, C., Arias, A. & Solano, F. 2000. Caracterización de unidades geológicas y geomorfológicas de Colombia: Formación Fómeque. Ingeominas, Bogotá, Colombia. 57 p.
- Ulloa, C., Rodríguez, E., Fuquen, J. & Acosta, J. 2001 Geología de la plancha 192 Laguna de Tota. Memoria explicativa. INGEOMINAS. Bogotá, Colombia. 50 p.
- Vallejo, C., Hochuli, P.A., Winkler, W. & von Salis, K. 2002. Palynological and sequence stratigraphic analysis of the Napo Group in the Pungarayacu 30 well, Sub-Andean Zone, Ecuador. Cretaceous Research 23: 845-859.
- van Helmond, N., Sluijs, A., Reichart, G.J., Sinninghe-Damsté, J.S., Slomp, C.P. & Brinkhuis, H. 2013. A perturbed hydrological cycle during Oceanic Anoxic Event 2. Geology 42(2): 123-126.
- Villamil, T. & Arango, C. 1998. Integrated stratigraphy of latest Cenomanian and Early Turonian facies of Colombia. Society for Sedimentary Geology (SEPM):129-159.
- Villamil, T. 1998. Chronology Relative Sea Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia. Society for Sedimentary Geology (SEPM): 161-216.
- Wagstaff, B.E., Gallagher, S.J. & Jessica K.T. 2012. A new subdivision of the Albian sporepollen zonation of Australia. Review of Palaeobotany and Palynology 171: 57-72.
- Wang, Y., Huang, C., Sun, B., Quan, C., Wu, J. & Lin, Z. 2014. Paleo-CO₂ variation trends and the Cretaceous greenhouse climate. Earth-Science Reviews 129: 136-147.
- White, H.J., Skopec, R., Ramirez, F., Rodas, J. & Bonilla, G. 1995. Reservoir characterization of the Hollin and Napo formations, western Oriente basin, Ecuador. In Tankard, A.J., Suarez-Soruco, R., Welsink, H.J. (Eds.) Petroleum Basins of South America. AAPG Memoir 62: 573-596.
- Wing, S.L., Hickey, L.J. & Swisher, C.C. 1993. Implications of an exceptional fossil flora for Late Cretaceous vegetation. Nature 363: 342-344.
- Zavala, C., Arcuri, M., de Freitas, M. & Mesa, A. 2009. Modelo Depositacional Para La Formación Une (Albiano – Cenomaniano), Cordillera Oriental, Colombia. Actas del X Simposio Bolivariano-Exploración Petrolera en las Cuencas Subandinas, Cartagena de Indias: 135-139.
- Zhou, Z., Barrett, P.M. & Hilton, J. 2003. An exceptionally preserved Lower Cretaceous ecosystem. Nature 421: 807-814.

- Ziegler, A.M., Raymond, A.L., Gierlowski, T.C., Horrell, M.A., Rowley, D.B. & Lottes, A.L. 1987. Coal, climate, and terrestrial productivity: the present and Early Cretaceous compared. Geological Society of America Special Paper 32: 25-49.
- Zobaa, M.K., Beialy S.Y., El-Sheikh, H.A. & El-Beshtawy, M.K. 2013. Jurassic-Cretaceous palynomorphs, palynofacies, and petroleum potential of the Sharib-1X and Ghoroud-1X wells, north Western Desert, Egypt. Journal of African Earth Sciences 78: 51-65.

Supplementary material

Supplementary material 1. List of taxa analyzed in this study with their respective coordinates in England Finder. 1 = if taxon is present.

		England	Samplas	Geological formation		
Taxa Name	Pollen Code	Finder coordinate	(STRI-ID)	Hollin	Napo	Une
Aequitriradites cf. verrucosus	Spore	U44	47731	1		
aff. <i>Ephedripites</i> sp. A (Azema & Boltenhagen, 1974)	Gnetales	V12-4	44661	1		
aff. Staplinisporites sp.	Spore	C9-2	47733	1		
Afropollis jardinus	Angiosperm	T8-2; T19-4; B7-3	47728; 46427; 44661	1		1
Apiculatasporites sp.	Spore	V40-4	44663	1		
<i>Apiculatisporites</i> aff. <i>levis</i>	Spore	F37-3	44663	1		
Appendicisporites erdtmanii	Spore	Q28-1	44889	1		
Araucariacites australis	Conifers_other gymnosperms	G2-1; M30-3; E18-1 P2-3 E4	44663; 46427; 44661	1		1
Arecipites aff. perfectus	Angiosperm	F17-4	47723	1		
Baculamonocolpites sp.	Angiosperm	D8-3	47732	1		
Baculatisporites sp.	Spore	D44; U6-4	44661; 47732	1		
Balmeisporites sp.	Spore	M20-2	46873	1		
Brenneripollis sp.	Angiosperm	V9-1	44662	1		
Callialasporites dampieri	Conifers_other gymnosperms	J21	44663	1		1
Callialasporites infirmus	Conifers_other gymnosperms	K40-4; W11- 1	47733; 44889	1		
Callialasporites sp.	Conifers_other gymnosperms	R50-3	47734	1		
Callialasporites trilobatus	Conifers_other gymnosperms	J10	44663	1		
Camarozonosporites ambigens	Spore	W16-1	44892	1	1	
Camarozonosporites sp.	Spore	H8-2; F29	47735; 47720	1		
Camarozonosporites vermiculaesporites	Spore	O44-1	44662	1		
Ceratosporites equalis	Spore	R17-1	44883	1		
Chomotriletes minor	Spore	O6-4; H18-3 H47	44662; 44663	1		1
<i>Cicatricosisporites</i> aff. <i>venustus</i>	Spore	F4	47735	1		
Cicatricosisporites avnimelechi	Spore	O10-2	44661	1		

Taxa Name	Pollen Code	England Finder coordinate	Samples (STRI-ID)	Hollin	Napo	Une
Cicatricosisporites hallei	Spore	V30	44661	1		
Cicatricosisporites hughesii	Spore	V14-1	44661	1		
Cicatricosisporites kedvesii	Spore	E22-1; P15-1	44662; 44661	1		
Cicatricosisporites sinuosus	Spore	F4-2	47727	1		
Cicatricosisporites sp.	Spore	L10; G3-2; K40; O33-2	44661; 47726; 47724; 47734	1		1
Classopollis brasiliensis	Conifers_other gymnosperms	S9	44883	1		
Classopollis classoides	Conifers_other gymnosperms	U3-4; T5 T39; U41-1	44884; 47726; 44882	1		
Classopollis meyeriana	Conifers_other gymnosperms	M7-2; N14-1	47730; 47726	1		
Classopollis sp.	Conifers_other gymnosperms	K41; T34	44662; 44884	1		
Clavamonocolpites sp.	Angiosperm	K35	44661	1		1
Clavatipollenites hughesii	Angiosperm	F26-1	47725	1		
<i>Clavatisporites</i> aff. <i>clarus</i>	Spore	P45	47724	1		
Clavatisporites clarus	Spore	T16; K7-1	44892; 47725	1	1	
Clavatisporites sp.	Spore	Q18-3; G7-2 P2; N45	44892; 47721; 47733	1	1	
Collarisporites fuscus	Spore	K33-3	44884	1		
Concavissimisporites aff. kyrtomatus	Spore	H49	47735	1		
<i>Concavissimisporites</i> aff. <i>punctatus</i>	Spore	B30	44892		1	
Concavissimisporites globosus	Spore	H32	44663	1		
Concavissimisporites punctatus	Spore	E48-4	47725	1		
Cornetipollis perforatus	Angiosperm	P37-1	47725	1		
Coronifera? sp.	Marine	J43-3	47748		1	
Cretacaeiporites sp.	Angiosperm	T14	47723	1		
Crybelosporites pannuceus	Spore	J15-4; U46-2; T7-4	44661; 44884; 44890	1		
Crybelosporites sp.	Spore	P24	47721	1		
Cycadopites cf. glottus	Conifers_other gymnosperms	J18	46874	1		
Cyclusphaera aff. psilata	Conifers_other gymnosperms	Р39-2	47735-1	1		
Dejaxpollenites sp.	Angiosperm	C46-1	47733	1		
Deltoidospora minor	Spore	Y16-4	47728	1		
Densoisporites perinatus	Spore	F40-2	44889	1		
Dictyophyllidites excellensus	Spore	W35	44661	1		

Taxa Name	Pollen Code	England Finder coordinate	Samples (STRI-ID)	Hollin	Napo	Une
Distaltriangulisporites aff. irregularis	Spore	O50-4	47731	1		
Echimonocolpites aff. tersus	Angiosperm	R32	47730	1		
Echimonocolpites sp.	Angiosperm	U22	47725	1		
Echinatisporis aff. circularis	Spore	N23-1	44889	1		
Echinatisporis sp.	Spore	Q29	47720	1		
Echitriletes aff. minispinosus	Spore	02	44661	1		
Echitriletes sp.	Spore	M18-2; V45	44661; 44886	1	1	
Elaterosporites klaszii	Gnetales	X16	44892		1	
Elaterosporites sp.	Gnetales	037-3	47734	1		
<i>Elaterosporites</i> <i>verrucatus</i>	Gnetales	J42-4	44892		1	
Ephedripites aff. regularis	Gnetales	K45-3	47731	1		
Ephedripites ambonoides	Gnetales	Q19	47748		1	
Ephedripites barghoornii	Gnetales	N45	44889	1		
<i>Ephedripites</i> cf. <i>procerus</i>	Gnetales	E17-4	46872-1	1		
<i>Ephedripites</i> <i>multicostatus</i>	Gnetales	X9-1	44891	1		
Ephedripites sp.	Gnetales	W7-1; F36-3; P43; M5-4	44661; 44663; 46872; 47724	1		
Equisetosporites aff. minuticostatus	Gnetales	W17-4	47729	1		
<i>Equisetosporites</i> aff. <i>subcircularis</i>	Gnetales	X43-3	46872	1		
Equisetosporites ambiguus	Gnetales	P30-4	47733	1		
Equisetosporites dudarensis	Gnetales	K6-3; E11-3	44661; 44886	1	1	
Equisetosporites fragilis	Gnetales	N38	47734	1		
Equisetosporites laticostatus	Gnetales	F36-4	47733	1		
Foveomonocolpites cf. "brevicolpatus"	Angiosperm	W42	44661	1		
Foveotricolpites "subgigantoreticulatus"	Angiosperm	N8	46874	1		
Foveotricolpites sp.	Angiosperm	R11-1	46873	1		1
Foveotriletes aff. margaritae	Spore	K16	44662	1		
Foveotriletes aff. ornatus	Spore	U37-4	47726	1		
Foveotriletes sp.	Spore	Q12-3; U33- 2; G22-2	44884; 44889; 44887	1	1	
Gabonisporis vigourouxii	Spore	D41	44884	1		
Gemmamonocolpites sp.	Angiosperm	H22-3	46872-1	1		
Gemmatriletes sp.	Spore	C5-3	44889	1		

Taxa Name	Pollen Code	England Finder coordinate	Samples (STRI-ID)	Hollin	Napo	Une
<i>Gleicheniidites</i> aff. <i>apilobatus</i>	Spore	N3-3	44889	1		
Gleicheniidites senonicus	Spore	M34-1 F34-2 N46-3; H12-2	44662; 47724	1		
Gleicheniidites sp.	Spore	K37-1; M2	44662; 44891	1		
Gnetaceaepollenites aff. concisus	Gnetales	M4	44884	1		
Gnetaceaepollenites aff. undulatus	Gnetales	S5	47730	1		
Gnetaceaepollenites barghoornii	Gnetales	L47-4	44883	1		
Gnetaceaepollenites jansonii	Gnetales	V46-2; J11	47735-1; 47735	1		
Gnetaceaepollenites retangularis	Gnetales	P8-4	44889	1		
Granulatisporites sp.	Spore	S2	44884	1		
Hamulatisporis cf. caperatus	Spore	U30-4	44883	1		
Hamulatisporis insignis	Spore	P17; U20-2; S15	44661; 46427; 46872-1	1		1
Hystrichosphaeridium aff. tubiferum	Marine	F4-4	44892		1	
Inaperturopollenites sp.	Conifers_other gymnosperms	O2-2	44889	1		
Indeterminate acritarch	Marine	R30	44892		1	
Ischyosporites aff. badagriensis	Spore	R13	47727	1		
Ischyosporites variegatus	Spore	O41; K49-2; D31-3	46426; 46427; 47725	1		1
Januasporites sp.	Spore	K25-4	47733	1		
Ladakhipollenites? "pseudosyncolpatus"	Angiosperm	U7-2	44886		1	
Laevigatosporites aff. gracilis	Spore	E48-1	46427			1
Leptolepidites macroverrucosus	Spore	E19	44884	1		
Leptolepidites sp.	Spore	F21-3	47721	1		
Leptolepidites verrucatus	Spore	T31	47720	1		
Liliacidites cf. dividuus	Angiosperm	N14-3	47730	1		
Liliacidites sp.	Angiosperm	G15	47731	1		
Microfoveolatosporis skottsbergii	Spore	U12-4	47725	1		
<i>Microfoveotriporites</i> aff. <i>cretaceous</i>	Angiosperm	E50	47746		1	
Monoporopollenites sp.	Angiosperm	J29-1	44662	1	1	
Muerrigerisporis sp.	Spore	S15	47725	1		
Obtusisporis cf. undulus	Spore	J37-3	44661	1		
Oligosphaeridium aff. totum	Marine	R30	44892		1	

Taxa Name	Pollen Code	England Finder coordinate	Samples (STRI-ID)	Hollin	Napo	Une
Osmundacidites sp.	Spore	S33	44883	1		
Osmundacidites wellmanii	Spore	U5-1; J9-3	46427; 47722	1		1
Pennipollis cf. "echinatus"	Angiosperm	R24-4	47720	1		
Pennipollis peroreticulatus	Angiosperm	D3-4	47728	1		
Perfotricolpites sp.	Angiosperm	F23-1	47735-1	1		
Periretisyncolpites sp.	Angiosperm	J8-3	47728	1		
Perotriletes sp.	Spore	G21	46426			1
Pilosisporites parvispinosus	Spore	H18-1	44889	1		
Podocarpidites? sp.	Conifers_other gymnosperms	E13-2 P40-3; P41-3	46487; 47734	1		1
Polyadopollenites aff. microreticulatus	Angiosperm	N22-1	47725	1		
Polyadopollenites cf. mariae	Angiosperm	K28-1	46487			1
<i>Polypodiaceoisporites</i> cf. <i>reticulatus</i>	Spore	Q22-1	46874	1		
Polypodiisporites sp.	Spore	N43	44663	1		
<i>Proxapertites</i> cf. <i>verrucatus</i>	Angiosperm	H13-3	47734	1		
<i>Psilabrevitricolporites</i> sp.	Angiosperm	M8-1	44886		1	
Psilamonocolpites sp.	Angiosperm	U7; V4-2; G8-3	44892; 47728; 47733	1	1	1
Psilatricolpites sp.	Angiosperm	NA	NA			1
Psilatricolporites sp.	Angiosperm	G15-4 P22	46487			1
Psilatriletes sp.	Spore	NA	NA			1
Pterospermella aureolata	Marine	Y11-3	44892		1	
<i>Retiacolpites</i> aff. <i>columellatus</i>	Angiosperm	K36-2	46426			1
Retibrevitricolpites sp.	Angiosperm	P9; L23	44886; 47720	1	1	
Retimonocolpites sp.	Angiosperm	S9-4 V40-1; T7 T6-4; L23-1	44662; 46873; 47748	1	1	
<i>Retimonoporites</i> cf. <i>operculatus</i>	Angiosperm	O6-2	47733	1		
Retimonoporites cf. orteguensis	Angiosperm	H43	47731	1		
Retimonoporites sp.	Angiosperm	Q12-3 W29-3	44662	1		
Retipollenites aff. confusus	Angiosperm	H19-4	46875	1		
Retipollenites sp.	Angiosperm	V5-4; K6	44662; 47748	1	1	
Retistephanocolpites sp.	Angiosperm	J34-4	47723	1		
Retitrescolpites baculatus	Angiosperm	S45	47732	1		
Retitrescolpites sp.	Angiosperm	T32-2	44892		1	

Taxa Name	Pollen Code	England Finder coordinate	Samples (STRI-ID)	Hollin	Napo	Une
Retitricolpites "reticuloghazalatensis"	Angiosperm	U39-2	46872	1		
Retitricolpites operculatus	Angiosperm	P17	47720	1		
Retitricolpites sp.	Angiosperm	U47-3; R20-1 W5-2	46427; 46872-1	1		1
Retitriletes aff. eminulus	Spore	K11	47734	1		
Retitriletes aff. tenuis	Spore	G6	47730	1		
Retitriletes douglasii	Spore	P10-3	47727	1		
<i>Retitriletes</i> sp.	Spore	R23; Q40; D10-1; V26-2	47720; 44662; 44889; 47735-1	1		
Reyrea aff. polymorphus	Angiosperm	K17-2 M20	47731	1		
Rousea aff. miculipollis	Angiosperm	H11	47734	1		
Ruffordiaspora sp.	Spore	P39	44663	1		
Rugulatisporites sp.	Spore	R4-2	44884	1		
Scabraperiporites sp.	Angiosperm	F48	47720	1		
Scabratricolpites sp.	Angiosperm	M33: F23	46875; 47726	1		
Scabratriletes sp.	Spore	F48	46875	1		
Senectotetradites aff. varireticulatus	Angiosperm	H11-1	47733	1		
Sergipea aff. variverrucata	Gnetales	Q6-2	47748		1	
Sestrosporites pseudoalveolatus	Spore	L41-1	44883	1		
Singhia multicostata	Gnetales	F40	47727	1		
Steevesipollenites cupuliformis	Gnetales	W12-4	47731	1		
Steevesipollenites cf. multilineatus	Gnetales	\$33-4	47720	1		
Steevesipollenites pygmeus	Gnetales	R4	44889	1		
Stellatopollis aff. largissimus	Angiosperm	H15-4	44889	1		
Stellatopollis barghoornii	Angiosperm	J36-4; P7; R41-3	47728; 44882; 47735-1	1		
Stellatopollis densiornatus	Angiosperm	V7-3 Y16-2	46872-1	1		
Stellatopollis dubius	Angiosperm	Q30-1	44889	1		
Stellatopollis sp.	Angiosperm	U14-3	44889	1		
Stoverisporites aff. lunaris	Spore	K15-4	47720	1		
Striatopollis sp.	Angiosperm	U3-2	44889	1		
Striatriletes sp.	Spore	R24-2	47723	1		
Taxacites aff. sahariensis	Conifers_other gymnosperms	D11	47733	1		
Tricolpites cf. synstriatus	Angiosperm	P39-3	47731	1		
Tricolpites sp.	Angiosperm	S37-2	44661	1		
1 1						

Taxa Name	Pollen Code	England Finder coordinate	Samples (STRI-ID)	Hollin	Napo	Une
Tuberositriletes sp.	Spore	H12	46428			1
Tucanopollis aff. crisopolensis	Angiosperm	Т8	47733	1		
Verrucatotriletes aff. tortus	Spore	N17-1	47720	1		
Verrucatotriletes sp.	Spore	J44-3; E2-4	46427; 44889	1		1
Verrucosisporites rotundus	Spore	U13-3	46872-1	1		
Verrucosisporites sp.	Spore	X28-1; V50-3	44663; 47735	1		
Verruperiporites sp.	Angiosperm	Q3-3	47729	1		
Verrutriletes sp.	Spore	R15; U12; R20	46426; 46427; 47726	1		1
Verrutriletes virueloides	Spore	U40-1	44889	1		
Zlivisporis sp.	Spore	O33-4; R30-2	44663; 44661	1		