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Dedicatory
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know, the more ignorant we become in the absolute
sense, for it is only through enlightenment that
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one of the most gratifying results of intellectual
evolution is the continuous opening up of new and
greater prospects.
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Abstract
�is PhD thesis focused on the application of machine learning and deep learning techniques for
the study of LTR retrotransposons, with the aim of improving the understanding at the genomic
level of plants of agro-industrial interest such as rice, maize, co�ee and sugar cane, and which
could be applied to any other plant genome or other organisms.

Recent research has demonstrated the impact of transposable elements on the phenotype of crops
of interest, such as the colour of maize kernels, the colour and �avour of oranges, the skin colour
of potatoes, the size and shape of tomatoes, and the colour and �avour of grapes, which are pro-
duced by the insertion of these elements near or into genes. Although bioinformatics techniques
and tools exist for the detection and classi�cation of transposable elements, it is not yet possible
to obtain reliable results, due to the great diversity of their structures, replication pa�erns and life
cycles. In addition, these genomic components have characteristics that make their study very
complex, such as species speci�city, high diversity at the nucleotide level (low homology between
sequences), long non-coding regions and their repetitive nature. �erefore, new techniques such
as machine learning and deep learning could improve performance in terms of both execution
time and accuracy of results.

In the development of this research project, the most well-known machine learning algorithms
were used, as well as some deep neural network architectures that have become widespread in the
scienti�c community in recent years. Feature extraction and selection methods, pre-processing
techniques, algorithms and architectures that have been successfully used on datasets similar to
transposable features were extrapolated. Also, this Ph.D. thesis will have a positive impact on the
scienti�c community in the �elds of bioinformatics, genomics and agriculture, as the so�ware
developed here and its use on other genomes could serve as a basis for future research related to
genetic improvement, understanding the evolution of species and the relationship between orga-
nisms and the environment. In addition, knowledge was generated on the use of new techniques
on genomic data (especially LTR retrotransposons), such as the in�uence of the nature of the data
on the accuracy of the results, be�er pre-processing techniques (feature selection and extraction,
dimensionality reduction, data transformation, among others), be�er hyper-parameters and me-
trics that be�er �t such elements.

Finally, this research proposal led to the creation of a functional bioinformatics so�ware that,
thanks to the selected techniques, allows the detection and classi�cation of LTR retrotranspo-
sons in plants of interest. �is so�ware is available to the scienti�c community and can be used
in the context of several massive genome sequencing and assembly projects, such as the 3, 000

rice genomes project, the sequencing of 10, 000 plant genomes or the 1.5 million eukaryotic spe-
cies sequencing project. All the codes and scripts developed during this project are available at
h�ps://github.com/simonorozcoarias/MLinTEs.

https://github.com/simonorozcoarias/MLinTEs
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1. Introduction

1.1. Background

Transposable elements (TEs) are genomic units that have the ability to replicate or move through
the chromosomes of virtually all living organisms. �ese elements make up the majority of the
nuclear DNA content of many plant genomes. �is is particularly true for large cereal genomes
such as wheat, barley and maize, for which up to 85% of the sequenced DNA is sorted into re-
peated sequences [1]. In contrast, compact genomes such as those of Arabidopsis thaliana (10%)
and the carnivorous plant Utricularia gibba (3%) have a lower content of TEs [2], suggesting that
their copy number can vary dramatically and are associated with genome size variation [3]. TEs
can be activated across a broad panel of biotic and abiotic stresses [4, 5], suggesting that they
may play a signi�cant role in environmental adaptation [6]. In addition, several investigations
have demonstrated the profound impact of TEs on their host genomes, especially in plants, such
as within-species variability [7], inactivation [8] or over-expression of genes [9], key functions
in chromosomal structures [10] and fundamental roles in species evolution [11].

Transposable elements are traditionally classi�ed according to their life cycle or structure in-
to two classes [12]: class I or retrotransposons and class II or DNA transposons. In addition,
Class I includes four orders including LTR (Long Terminal Repeats) retrotransposons, non-LTR
retrotransposons, Penelope-like elements (PLEs) and Dictyostelium intermediate repeat sequence
(DIRS); while Class II contains transposons with Terminal Inverted Repeats (TIRs) and helitrons.
�e most common TEs in plant genomes are LTR retrotransposons, which can reach up to 75%

of the maize genome [13], 67% of wheat [1], 55% of sorghum (Sorgum bicolor) [14] and 42% of
the co�ee genome [15].

Because each type of TE can cause di�erent e�ects on organisms, reliable deep-level classi�cation
(into superfamilies and lineages) is of great importance. For example, it has been shown that the
centromeres of plants such as co�ee and maize are mainly composed of a speci�c lineage of LTR
retrotransposons called Centromeric Retrotransposons [16]. In addition, each subclass of TEs has
di�erent distributions within chromosomes, thus having di�erent relationships with genes [17].
For this reason, knowing the superfamily and lineage to which a TE belongs could help to un-
derstand what e�ect it has on the organism under study.

Along the same lines, in recent years the in�uence of TEs in the variability of the phenotype of
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multiple crops has been demonstrated, as can be seen in Figure 1-1, being in�uential for example
in the di�erent skin colours of grapes [18], pigment instability in maize kernels (from completely
yellow, spo�ed kernels to completely purple), tomato shape and size [19], potato skin colour [20],
di�erent orange colours and �avours [21] and presence or absence of peach skin hairs [22]. �ese
mutations can be categorised into six mechanisms: (i) gene inactivation caused by TE insertions
in coding regions or introns, (ii) di�erential gene expression caused by TE insertions in or near re-
gulatory regions, (iii) TE-mediated genomic rearrangements resulting in gene insertion, deletion
or duplication, (iv) transduction-based regulation of gene expression, (v) transposase exaptation
responsible for modi�cation of transcription factor capacities [23], and (vi) mechanisms based on
epigenetics such as siRNA, methylation, among others [24].

In bioinformatics, a science that integrates computational methods for solving biological pro-
blems [25], some methods have been developed to annotate TEs. �is process consists of some
steps such as identi�cation and classi�cation [26]. In the identi�cation or detection step, the
main goal is to separate TEs from any other genomic components such as genes, microsatellites,
tandem repeats, among others. �is process generates the input for the classi�cation step, whe-
re using order, superfamily or lineage-speci�c characteristics, each element is assigned a grou-
ping. Annotation methods are generally classi�ed into four main categories [27, 28, 29]: de novo,
structure-based, comparative genomics-based and homology-based. However, annotation in ge-
nomes is a well-known problem in genomics. �is is due to the repetitive nature of TEs, their
high diversity at the nucleotide level even among elements of the same lineage (low sequence
homology) and their species-speci�c nature [30]. �e aforementioned a�ributes make their iden-
ti�cation and classi�cation very complex and unreliable [9], which causes problems not only for
researchers interested in repetitive sequences, but also for functional studies. �ese problems
include unassembled genome sections, altered gene annotation, inability to deeply understand
certain mechanisms of gene activation or silencing, among others.

In recent years, several datasets consisting of thousands of TEs from various species have been
created and published, such as Repbase [31], RepetDB [32], PGSB Plants DB [33] and InpactorDB
(released as part of this work) [34]. �ese datasets constitute valuable resources for improving
tasks such as TE detection and classi�cation, and have motivated the proposal and evaluation of
novel computational techniques to obtain substantial results in terms of accuracy and speed in
executing these tasks [26, 35].

Computational approaches such as supercomputing [36], arti�cial intelligence [37] and data mi-
ning [25] are currently widely used in the biological sciences, demonstrating great improvements
in both obtaining results and decreasing run times. Machine learning (ML) is de�ned as the pro-
gramming of computers to improve and optimise a performance criterion using already processed
data or past experience [38]. ML has been applied to solve many bioinformatics problems, such as
in genomics [39], in systems biology and evolution [40], and in the identi�cation and classi�ca-
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Figure 1-1.: Crop phenotype variations caused by TEs. Adapted from [18, 19, 20, 21, 22].
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tion of a speci�c order of retrotransposons [26, 37], demonstrating the bene�ts of using this type
of technology in biological �elds. Additionally, the literature reports that the use of deep neural
networks (also called deep learning, DL) in the classi�cation of TEs at the superfamily level im-
proves the result dramatically [41, 42, 43]. However, the aforementioned works have been mostly
exploratory and have not conducted in-depth studies of various key computational components
such as selection of the most informative metrics, various pre-processing techniques (di�erent
DNA encoding schemes, dataset augmentation, feature extraction and selection, among others),
hyper-parameter tuning processes, selection of di�erent ML algorithms and architectures, and
ensemble methods.

1.2. Research problem

According to the United Nations (UN) climate change is one of the biggest challenges today. �e
e�ects caused by this phenomenon include rising sea levels, stronger tropical storms, more ex-
treme droughts, more intense rainfall and even threatens to reduce agricultural production. �is
puts the food security of millions of people around the world at risk. According to the UN, the
number of people su�ering from malnutrition has been increasing since 2014, reaching 750 mi-
llion in 2019 and rising up to 840 million in 2030 [44]. �e most a�ected regions are Africa and
Latin America, where 21% and 5% of the population respectively su�er from this problem [45].
�erefore, 21.3% (144 million) of children under �ve years of age were stunted in 2019 due to
food security issues [44].

On the other hand, there has been an increase in the number of crops lost in their entirety due
to extreme environmental conditions. In 2005 and 2006, most producing countries su�ered from
conditions that greatly reduced agricultural production, decreasing for example cereal production
by 2.1% [45]. Not only do high temperatures a�ect crops, they can also accelerate the metabo-
lism, consumption and growth rate of certain types of insects that infect plants of major food
security concern. In addition, the increase in land temperature is considered a risk, as if it increa-
ses by an average of 2%, losses due to pest pressure could be 46%, 19% and 31% for wheat, rice
and maize, respectively. It is worth mentioning that these crops provide on average 42% of the
calories that are consumed by humans globally [46].

�e loss of crops due to climate change greatly a�ects the economy of producing countries. Mi-
llions of people around the world depend exclusively on agricultural production on their land for
them and their family’s livelihood, but due to global warming, they have been forced to change
practices, crop periods and duration, or even the type of crop grown. Some farmers have even
had to change the location of their crops, for example to higher regions, in order to mitigate the
e�ects of climate change [47]. According to the UN, natural disasters have increased to an ave-
rage of 205 per year, with �oods and storms being the most frequent events. However, extreme
droughts are the most damaging to crops, which can cause about 80% of total damage and losses
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in agriculture [45].

To mitigate the e�ects that climate change is causing in agriculture, the development of varieties
or species that are more resistant to severe conditions is required. For the generation of these
new varieties that adapt to global warming, a deep knowledge of the plants that are cultivated
worldwide such as rice, maize, co�ee, sugar cane, among others, is required. �is knowledge gua-
rantees higher crop productivity, greater resistance to pests, shorter times between sowing and
harvesting, and be�er adaptation to changes in the environment.

Since the discovery of the structure of DNA, it has been shown that most cell functions are enco-
ded and passed on from generation to generation. �is information has caused a major revolution
in the understanding of the biology of species and has been of great use in creating varieties that
are be�er adapted to climatic changes. One of the key events driving this revolution has been the
development and subsequent improvement of sequencing technologies, which have produced lar-
ge amounts of DNA sequences of many species of interest for subsequent in silico study. �rough
bioinformatics techniques, it has been possible to process, analyse and subsequently understand
many of the functions that are vital in organisms, through a pipeline that has become standard in
recent years. �e �rst step in this pipeline is sequencing, where through various methodologies a
biological DNA or RNA sample is obtained, cut into multiple portions and duplicated (in certain
technologies) to improve the quality, obtaining a computer �le with the genomic information
contained in the sample. Next, the assembly of the reads obtained in the previous step is carried
out; this process a�empts to group and re-form the original chromosome structures. Finally, all
features of interest such as genes and their functions, coding and non-coding portions, promoter
sequences, transposable elements, among others, are annotated. Although many plant species
have now been fully sequenced and studied at the molecular level, many of the crops of inter-
est, such as maize and sugar cane, still have many sections of their genomes that are unknown.
�ese gaps are mainly generated by repetitive sequences such as TEs and simple repeats such as
microsatellites, because most assemblers have problems with regions that are highly repetitive
and highly variable [9]. Furthermore TEs can a�ect gene annotation [48], so it is recommended
to identify and hide them before executing the annotation process.

Although the last �ve years have seen a great deal of e�ort in the development of bioinformatics
applications using the techniques described above (de novo, structure-based, homology-based
and using comparative genomics), novel techniques are required to improve the TE discovery
process and thus improve understanding at the molecular level of plants of interest.

ML o�ers the advantage of optimising tasks using previous experience. �anks to the large
amount of data that has been generated in recent years, many researchers have applied ML tech-
niques in various areas of genomics, particularly in the identi�cation and classi�cation of TEs. For
example, Loureiro et al. [35] tested various ML algorithms such as neural networks, Bayesian net-
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works, Random Forest and decision trees to improve identi�cation or classi�cation results using
as input the outputs of various bioinformatics tools. Although this work showed very good re-
sults, the researchers used simulated data, which may be impractical if taken to a real application.
Abrusan et al. [49] developed TEclass to classify transposable elements through support vector
machines (SVM), but only down to the order level. Schietgat et al. [26] proposed the TE-Learning
framework integrating traditional bioinformatics techniques for TE detection and random forest
techniques for classi�cation of LTR retrotransposon down to the superfamily level (leaving aside
lineage classi�cation), but did not implement this framework in so�ware that interested resear-
chers could use. In addition, the researchers used only the internal sections (which are coding and
therefore the most conserved) for classi�cation, which limits the framework to whole elements,
leaving out a large portion of TEs that have mutated and removing important information from
non-coding portions such as LTRs. DL has emerged as a branch of ML, where neural networks
with multiple hidden layers are used to obtain pa�erns in the training data. Several literature re-
views [50, 51, 52, 37, 53] have demonstrated the great utility that this type of algorithms can have
on complex and large data such as DNA, however its application in the �eld of TEs is still very li-
mited and in the available literature there are no algorithms and very few proposed architectures
that integrate DL to overcome the problems inherent to TEs [41, 54, 55, 56]. Nevertheless, these
architectures only perform classi�cation down to the superfamily level and do not use plant-only
data, which could lead to unreliable results on newly released plant genomes of interest.

Although complex genomes such as maize, sugar cane and co�ee have already been sequenced,
they still have large gaps, especially in regions with a high number of repeats (mainly TEs) such
as centromeres, which makes it impossible to deeply understand these species that are conside-
red of high impact in producing countries. In addition, although it has been shown that TEs are
activated under certain external or internal stimuli, the exact dynamics of these elements and the
e�ects they may cause on plants are still not known.

�e design, implementation and validation using real TE data of an ML-based architecture that
improves the identi�cation and classi�cation of TEs at superfamily and lineage levels is therefore
required, with the aim of improving knowledge about their diversity, dynamics and impacts on
plant genomes. �is will lay the foundations for the subsequent improvement of crop varieties
of global agronomic interest, such as rice, maize, sugar cane, wheat, barley or co�ee, providing
solutions to crop losses due to climate change.

1.3. Justification

Transposable elements have key roles in genome, chromosome organisation, in particular in sex
chromosomes, participation in rearrangement events [57, 17] (e.g. translocations, fusions or clea-
vages), and contribution to genome size variations [8]. Also, TEs can have great in�uence on
chromosome structure, especially centromeres, where certain lineage (centromeric retrotranspo-
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sons - CRs) of LTR retrotransposons constitute essential components for centromere recognition
by kinetochore proteins. CR retrotransposons have been found in centromeres of plants such as
rice, co�ee, species of the genus Brachypodium, wheat, maize, cereals and other grasses [16].

In addition, TEs can cause e�ects on host organism phenotypes due to interaction with gene ac-
tivity [58]. �ese impacts may include imposing intragenomic selection pressures through their
e�ects on gene expression [59], inactivation of gene coding or regulatory regions [8], mutations
that change the protein sequence, variation of the expression pa�ern or alternative splicing [30],
alteration of the expression of neighbouring genes by epigenetic e�ects [17] or through modi�-
cation of the expression of transcription factors [60], redirection of stress stimuli to contiguous
genes [61] and in�uence on the conservation, rearrangement and deletion of gene pairs [62]. �e
long-term impact of such variation involves, for example, genetic variation with important e�ects
on species evolution [11]; variation in phenotypes of agricultural interest; genomic diversi�ca-
tion and speciation [63]; and modi�cation of organismal health [64] through the production of
sense or antisense transcripts of genes [65]. Due to the impacts and importance described above,
there is a need for reliable identi�cation and classi�cation of TEs in plants of agricultural in-
terest. �is is to understand in depth the mechanisms of adaptation to the environment, species
evolution and intra-species variability. In addition, the correct annotation of TEs can improve the
accuracy of coding region annotation and also facilitate functional genetic studies [66]. �ese ad-
vances could be based on the development of di�erent identi�cation and classi�cation strategies
through machine learning, deep learning and bioinformatics algorithms.

ML techniques such as support vector machines (SVM), Random Forest, Hidden Markov Models
(HMM) and neural networks have been successful in the analysis of life science data due to their
ability to handle the randomness and uncertainty of data noise and generalisation [67]. Some
tools and frameworks have even been developed in recent years to detect and classify TEs. TE-
Class [49], TE-Learner [26] and RED [68] are some examples of tools that apply ML (SVM, Random
Forest and HMMs respectively) especially on repetitive items. However, these applications still
have limitations such as: they only cover a single task (detection, classi�cation or �ltering), some
are not easily installable and executable tools, others do not use heterogeneous architectures to
accelerate so�ware execution (they only use CPU and in some cases without parallel strategies to
use multiple cores at the same time). Also, DL architectures have been applied on genomic data
achieving be�er predictive performance over ML methods, including logistic regression, decision
trees or Random Forest [50]. Although, the application of these techniques in TEs is still very li-
mited and taking into account the high complexity of the data, its large size and divergence, DL
techniques could increase the performance of bioinformatics algorithms.

In supervised problems, the feature extraction or feature selection process is a crucial step to
improve the performance of the whole architecture. In ML, variable or feature selection proces-
ses must be carried out by a subject ma�er expert. Deep network architectures allow features
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to be extracted in a non-linear and automatic way. �e hidden layers of deep neural networks
transform these features into complex pa�erns relevant to the classi�cation problem [50]. In the
speci�c case of TEs, being DNA sequences, feature extraction is o�en a too complex process due
to the large amount of information, their unstructured form and their sequentiality. In this ca-
se, deep networks provide new features that are not possible to extract manually. For example,
convolutional neural networks have the ability to discover local pa�erns in sequential data such
as pixels in an image [52]. In DNA, these pa�erns are known as motifs and have important fun-
ctions in the genome, such as gene promoters. Motifs will be very informative if they are found in
the LTR sequences of retrotransposons, as they can be used to identify or classify TEs by taking
their locations and frequencies. Although motifs are important for DNA classi�cation problems,
it is not enough to �nd the exact pa�erns, because DNA can undergo modi�cations or mutations
and certain motifs may function the same as others even if they do not have exactly the same
nucleotides.

�is thesis allowed the application of novel ML techniques to TEs, as well as the evaluation of
di�erent metrics, data encoding forms, parameters, algorithms, databases and architectures, on
diverse data with special characteristics. On the other hand, real data (found by research available
in the literature on plant genomes and stored in databases such as PGSB [33]) were used to train
the algorithms to obtain more reliable and generalisable results.

With the development of this thesis, reliable approaches for the identi�cation and classi�cation
(also other task like library curation) of TEs were developed, which will contribute to researchers
in areas such as biology, genomics and in general in the life sciences, with the aim of improving
the understanding of the genomic structures of plants of agricultural interest. It will also contri-
bute to the understanding of the dynamics of TEs, their relationships with gene activity and their
roles within host organisms.

In addition, this doctoral research provided knowledge of the genomes of plants of agricultu-
ral interest such as rice, co�ee, maize and sugar cane; and model organisms such as Arabidopsis
thaliana, which will serve as input for genetic improvements that could be made in the future,
which could generate plants that are more resistant to climate change, could be more resistant to
pests and unfavourable conditions such as excess water or drought and could be more productive,
speeding up harvesting time or increasing food production.

In the research both annual and perennial plants were used, with di�erent genome sizes (from
small sizes, 135 Mb like A. thaliana to plants with very large and complex genomes like maize
with 2.3 Gb), di�erent TE compositions and genomes at di�erent annotation levels (A. thaliana
and rice being the best quality). Arabidopsis thaliana is a model organism and was the �rst plant
to be sequenced [69], is an annual plant and has an approximate genome size of 135 Mb, where
10% corresponds to TEs. Rice (Oryza sativa) has a genome size of 466 Mb [70], also has an an-
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nual cycle and 16% of its entire genome corresponds to TEs. In addition, robusta co�ee (Co�ea
canephora) is a perennial, diploid plant with a genome size of 710 Mb and approximately 50% TE
content [15]. Maize (Zea mays) is a globally important crop, was domesticated in Central Ame-
rica approximately 10,000 years ago and has undergone several genome duplications, reaching a
genome size of 2.3 Gb with a TE composition of 85% [13].

1.4. Research questions

Based on the above, the following research questions are formulated:

1. What are the metrics needed to measure the correct detection and classi�cation of transposable
elements from bioinformatics-based techniques and a computational architecture based on novel
techniques such as Machine Learning?

2. What are the Machine Learning techniques that allow a computational architecture to obtain
be�er results in a reasonable time in large-scale analysis in the identi�cation and classi�cation
of transposable elements using various forms of DNA representation?

3. How do Machine Learning techniques contribute to the identi�cation and classi�cation of
transposable elements in plant genomes?

4. What are the parameters (pre-processing techniques, activation functions, hyper-parameters
of each algorithm and the representation of the input data) most appropriate for the design of
a Machine Learning-based architecture for the identi�cation and classi�cation of transposable
elements in plant genomes?

1.5. Research hypothesis

�erefore, the hypothesis of the following research proposal is the following:

Computational architectures based on machine learning techniques improve the identi�cation
and classi�cation of transposable elements in plants that approximate an in silico solution for
future genetic improvement of crop varieties of agricultural interest.

1.6. Organization of this Document

A�er this chapter, the thesis document follows the following order: Chapter 2 contains the ob-
jectives of the thesis. Chapter 3 contains the state of the art about retrotransposons, its diversity,
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their impact over plants, and also about machine learning applied to TE tasks. Chapter 4 elabo-
rates on how to coding DNA sequences and how to measure ML algorithms trained with LTR re-
trotransposon data. Chapter 5 shows a reference library of LTR retrotransposons from 195 plant
species designed to be used in the training of ML algorithms, and also to be used in homology-
based tools. Chapter 6 demonstrated the utilization of k-mers as features in ML algorithms and
also shows the feasibility of doing detection and classi�cation of LTR retrotransposons as sepa-
rated and also as integrated task. Chapter 7 shows a proposed neural network to automatically
curate libraries of LTR retrotransposons from plant genomes in e�cient times. Chapter 8 pre-
sents a one-shot tool that implements four neural networks to detect, classify and also annotated
LTR retrotransposons in plant genomes as a united pipeline. Chapter 9 demonstrated how ML
based tools can be used to analyze large amount of data (like dozens of plant genomes) to answer
a biological question in relative short time, and Chapter 10 shows the discussions about all the
thesis, the conclusions, and contributions derived from this thesis work. At a general level, Chap-
ters 1 to 3 describe the entire dissertation proposal, Chapters 4 to 9 show the development and
results of the dissertation and Chapter 10 closes the dissertation with discussions, conclusions,
and contributions at a general level.



2. Thesis Objectives

2.1. General Objective

�e general objective of this doctoral research is to:

To develop a computational method based on Machine Learning techniques to identify and clas-
sify LTR retrotransposons in plant genomes of agro-industrial interest, to improve genomic and
evolutionary understanding of the species.

2.2. Specific Objectives

1. To design and to build a scalable Machine Learning-based architecture for the study of LTR
retrotransposons in plants.

2. To integrate and to implement the architecture in a Machine Learning-based bioinformatics
so�ware for the identi�cation and classi�cation of LTR-RTs.

3. To validate the architecture using genomes of plants of biotechnological and agro-industrial
interest that have already been sequenced and released (co�ee, rice, maize, and A. thaliana).



3. The State of the Art

�is chapter is composed by two published articles. �e �rst one was a narrative review submi�ed
at 21 June 2019, accepted at 2 August 2019 and published at 6 August 2019 in the International
Journal of Molecular Sciences. DOI: 10.3390/ijms20153837. �e second was a systematic review
submi�ed at 5 August 2019, accepted at 28 November 2019 and published at 18 December 2019
in the journal PeerJ. DOI: 10.7717/peerj.8311.

3.1. Context about retrotransposons and their

characteristics

Research for the last 10 year have shown the great impact that transposable elements have in-
side their host genome in many organism, but specially in plants [71, 72, 73]. �us, there are
much literature demonstrating key functions of those repeated sequences in many aspects such
as chromosomal structure and organization [74, 75], variations in phenotype [76], adaptation to
environmental changes [24, 77], among others. �erefore, an exhaustive bibliography review was
performed in the biology of transposable elements focusing in Class I or retrotransposons, be-
cause in plant genomes these types of elements are the most abundant.

�is initial review allowed to synthesize the huge amount of information trying to answer the
following questions:

1. What is the structure, diversity and function of retrotransposons in host genomes?

2. Why is it important to classify retrotransposons (into superfamilies and lineages)?

3. How to identify and classify retrotransposons?

�e TE analysis of plant genomes brings challenges due to their complex dynamics, their huge
contribution to the genome size and their specie-speci�c behaviour [78]. Also, thanks to the
advance in sequencing technologies, the problem today is not how to get data, but how to process
and analyse it in acceptable times [79].
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Abstract: Transposable elements (TEs) are genomic units able to move within the genome of
virtually all organisms. Due to their natural repetitive numbers and their high structural diversity,
the identification and classification of TEs remain a challenge in sequenced genomes. Although
TEs were initially regarded as “junk DNA”, it has been demonstrated that they play key roles
in chromosome structures, gene expression, and regulation, as well as adaptation and evolution.
A highly reliable annotation of these elements is, therefore, crucial to better understand genome
functions and their evolution. To date, much bioinformatics software has been developed to address
TE detection and classification processes, but many problematic aspects remain, such as the reliability,
precision, and speed of the analyses. Machine learning and deep learning are algorithms that can
make automatic predictions and decisions in a wide variety of scientific applications. They have been
tested in bioinformatics and, more specifically for TEs, classification with encouraging results. In this
review, we will discuss important aspects of TEs, such as their structure, importance in the evolution
and architecture of the host, and their current classifications and nomenclatures. We will also address
current methods and their limitations in identifying and classifying TEs.

Keywords: transposable elements; retrotransposons; function; structure; detection; classification;
bioinformatics; machine learning; deep learning

1. Introduction

Transposable elements (TEs) are genomic units able to move within and among the genomes
of virtually all organisms [1]. They are the main contributors to genomic diversity and genome size
variation [2], with the exception of polyploidy events. An important issue in genome sequence analyses
is to rapidly identify and reliably annotate TEs. There are major obstacles and challenges in the analysis
of these elements [3], including their repetitive nature, structural polymorphism, species specificity,
and, conversely, their conservation across genera and families, as well as their high divergence rate,
even across close relative species [4].

Among eukaryotic genomes, TEs represent the most repetitive sequences [5]. They are able to
move in the genomes, generate mutations, and obviously amplify the number of their copies [6].
Usually they are classified according to their coding regions involved in the replication of the element [7].
TEs moving via an RNA molecule called retrotransposons fall into Class I, while elements moving via
a DNA molecule, called transposons, are classified into Class II [8]. They represent the vast majority
of TEs found in plant genomes due to their mobility mechanisms. Retrotransposons can be further

Int. J. Mol. Sci. 2019, 20, 3837; doi:10.3390/ijms20153837 www.mdpi.com/journal/ijms
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3.2. Context about machine learning models in TEs

Bioinformatics methodologies to detect and classify TEs have known limitations [80, 81, 82].
Structure-based tools cannot �nd elements lacking some general features, so are less sensitive to
novel structures. On the other hand, to use homology-based approaches, it is required to build a
well curated library with elements from closely related species. �is process is complex, usually
required a lot of time and manual work. De novo, detects elements with a high number of copies,
restricting the range of TE detectable. Finally, tools based on comparative genomics required as-
semblies of high quality, which is a di�cult task specially with polyploid plants and with elevate
number of repeated sequences.

�erefore, other approaches are needed in order to accelerate the analysis and annotation of
those sequences in huge datasets, like plant genomes [83]. Machine learning models have been
applied to bioinformatics [84, 85], and also in transposable elements [86] showing promising
results. �is computational approach learns from available data how to do a task automatically
[38] and many researchers have taken advantage of this in genomics [52, 50]. Nevertheless, a
method to transform nucleotide data (represented as le�ers) must be applied in order to use ML
algorithms and it is not clear which could generate be�er results. �us, a systematic literature
review approach was applied to answer following questions:

1. What advantages ML approaches have compared to bioinformatics approaches for TE analy-
ses?

2. Which ML techniques are currently used to detect and classify TEs or other genomic data?

3. What are the best parameters and most used metrics in algorithms and architectures to
detect and classify TEs?

4. What are the most used DNA coding schemes in ML tasks?
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ABSTRACT
Background: Transposable elements (TEs) constitute the most common repeated
sequences in eukaryotic genomes. Recent studies demonstrated their deep impact on
species diversity, adaptation to the environment and diseases. Although there are
many conventional bioinformatics algorithms for detecting and classifying TEs, none
have achieved reliable results on different types of TEs. Machine learning (ML)
techniques can automatically extract hidden patterns and novel information from
labeled or non-labeled data and have been applied to solving several scientific
problems.
Methodology:We followed the Systematic Literature Review (SLR) process, applying
the six stages of the review protocol from it, but added a previous stage, which aims to
detect the need for a review. Then search equations were formulated and executed in
several literature databases. Relevant publications were scanned and used to extract
evidence to answer research questions.
Results: Several ML approaches have already been tested on other bioinformatics
problems with promising results, yet there are few algorithms and architectures
available in literature focused specifically on TEs, despite representing the majority of
the nuclear DNA of many organisms. Only 35 articles were found and categorized as
relevant in TE or related fields.
Conclusions: ML is a powerful tool that can be used to address many problems.
Although ML techniques have been used widely in other biological tasks, their
utilization in TE analyses is still limited. Following the SLR, it was possible to notice
that the use of ML for TE analyses (detection and classification) is an open problem,
and this new field of research is growing in interest.
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3.3. Conclusions and perspectives

�e two literature reviews provided relevant information on transposable elements in plant ge-
nomes such as how to classify them, their structure and their impact on host organisms. It was
observed that there is a growing number of research studies focusing on aspects such as the rela-
tionship of TEs with chromosome structure, in�uence on genome size, variability between spe-
cies and individuals, speci�c distribution by superfamilies and lineages in chromosomes, among
other topics. �is demonstrates a growing interest of the scienti�c community in these elements.
In addition, it was found that advances in sequencing technologies have created a need for tools
that can be executed in less time and produce more accurate results.

Although a large number of algorithms, approaches and tools exist to identify and classify TEs,
accurate and reliable results cannot yet be obtained. �is is because currently used strategies have
limitations and therefore the use of novel approaches such as ML is required. However, literature
reviews could not observe any tool that could detect, classify and annotate transposable elements
through machine learning in a single tool.

Nevertheless, a increasing number of works related to TEs that are analysed with ML were obser-
ved. �is provides evidence that machine learning-based methods are feasible and can overcome
the limitations of current bioinformatics strategies. Since the publication of these reviews in 2019,
some works were published focusing in the utilization of DL in DNA data and TEs. For example,
a wrapper specialized in genomics of the well know DL framework keras, named by the authors
as keras dna was reported in 2021 [87], and a framework in Python to apply DL on genomics
were also released [88]. Also, some new neural network architectures were proposed to classify
TEs, such as TERL [54], and DeepTE [55], or to detect TE insertion boundaries like Frontier [89].
Other approaches based on ML algorithms (others than neural networks) were reported since
2019 too, such as ClassifyTE [90] and TransposomeUltimate [91].

�e increase in interest and the number of papers on this subject is evident. However, the need
has not yet been met. More research on fundamental components of the application of machine
learning to the speci�c type of genomic data is lacking. �ese data present an additional challenge
for ML algorithms due to their non-categorical nature. It is for this reason that the following
chapter investigates how to transform this data and how to measure the performance of ML
algorithms.



4. DNA coding schemes and measuring

metrics

Article submi�ed at 25 April 2020, accepted at 22 May 2020 and published at 27 May 2020 in the
MDPI Processes Journal. DOI: 10.3390/pr8060638.

4.1. Context

�e genome of an organism can be represented by a computational �le, where each le�er corres-
ponds to a nucleotide. �is statement is crucial for bioinformatics, and it is thanks to this type of
computational �le that large-scale in silico analyses can be performed.

However, machine learning algorithms need numerical data to perform the training and para-
meter tuning processes. For this reason, a pre-processing step, feature extraction or conversion
through coding schemes is necessary. In the literature review [92], di�erent coding schemes and
two strategies for feature extraction were found, but no information was available on which one
might be the best for training ML algorithms.

To implement an algorithm based on machine learning, a number of fundamental steps must be
followed [93]. One of the most important steps is to select the best way to measure the perfor-
mance of the algorithms based on the general characteristics of the dataset and the problem to be
solved by the algorithm. Although several applications of machine learning and speci�cally neu-
ral networks were observed in the literature, there was no study that evidenced whether the use
of one metric or another a�ected the performance of the algorithms applied on transposable ele-
ments. In order to answer these two questions, the most commonly used metrics were compared
and an experimental test was carried out using public databases.
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Abstract: Because of the promising results obtained by machine learning (ML) approaches in several 
fields, every day is more common, the utilization of ML to solve problems in bioinformatics. In 
genomics, a current issue is to detect and classify transposable elements (TEs) because of the tedious 
tasks involved in bioinformatics methods. Thus, ML was recently evaluated for TE datasets, 
demonstrating better results than bioinformatics applications. A crucial step for ML approaches is 
the selection of metrics that measure the realistic performance of algorithms. Each metric has specific 
characteristics and measures properties that may be different from the predicted results. Although 
the most commonly used way to compare measures is by using empirical analysis, a non-result-
based methodology has been proposed, called measure invariance properties. These properties are 
calculated on the basis of whether a given measure changes its value under certain modifications in 
the confusion matrix, giving comparative parameters independent of the datasets. Measure 
invariance properties make metrics more or less informative, particularly on unbalanced, 
monomodal, or multimodal negative class datasets and for real or simulated datasets. Although 
several studies applied ML to detect and classify TEs, there are no works evaluating performance 
metrics in TE tasks. Here, we analyzed 26 different metrics utilized in binary, multiclass, and 
hierarchical classifications, through bibliographic sources, and their invariance properties. Then, we 
corroborated our findings utilizing freely available TE datasets and commonly used ML algorithms. 
Based on our analysis, the most suitable metrics for TE tasks must be stable, even using highly 
unbalanced datasets, multimodal negative class, and training datasets with errors or outliers. Based 
on these parameters, we conclude that the F1-score and the area under the precision-recall curve are 
the most informative metrics since they are calculated based on other metrics, providing insight into 
the development of an ML application. 
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4.2. Conclusions and perspectives

In order to adequately measure the performance of ML algorithms, it was important to search
the literature for metrics that are regularly used in problems involving transposable elements,
and genomic data in general. In this way it became evident that due to the unique characteristics
of TE datasets, the most informative metrics are those that are not a�ected by class imbalance.
For this reason, it was shown that using a metric such as accuracy (very commonly used in ML
problems) can lead to an over-realistic estimation because it does not take into consideration the
performance of under-sampled classes (e.g. Ikeros, Ivana or Tekay lineages). Finally, it became
evident that it is necessary to use more than one metric to demonstrate the performance of the
model in di�erent aspects, such as sensitivity, precision, false positive rate, among others.

Also, this work made it possible to establish how informative �ve coding schemes and two forms
of feature extraction were. �e aforementioned methodologies are found in the literature and
have been used mostly for genomics problems. �e k-mer frequencies proved to be the most in-
formative form for all ML models tested and in both public databases used. It is worth mentioning
that other studies [41, 55] had already used k-mer frequencies, but this work was the �rst to apply
it to lineage-level classi�cation of LTR retrotransposons and also to compare it with other coding
schemes.

�anks to the datasets that are released every day, it is now possible to think about using machi-
ne learning to automate the tasks of detecting and classifying LTR retrotransposons. However,
each dataset has its own characteristics, such as di�erent levels of curation of its sequences (from
uncurated to manually curated) and di�erent types of sequences (consensus sequences or indi-
vidual genomic sequences). �ese large di�erences between datasets open a question on how to
use them to train an ML algorithm and what would be the best way to unify this large amount of
information in order to get the most out of the existing data. To solve this question, in the follo-
wing chapter we statistically analyze the behavior of the algorithms when trained by the di�erent
public databases and some made from available genomes. In addition, a dataset designed to be
used in the training process of ML algorithms is released.



5. InpactorDB: A reference library to

train machine learning models

Article submi�ed at 30 December 2020, accepted at 22 January 2021 and published at 28 January
2021 in the MDPI genes Journal. DOI: 10.3390/genes12020190.

5.1. Context

A�er testing public databases in Chapter 4, it was found that the nature of the data a�ects the
performance of ML models. For example, using a curated database composed of consensus will
result in more representative samples and therefore be�er performance. However, these databa-
ses have far fewer sequences than non-curated ones. For this reason, three databases available in
the literature with di�erent nature of the data were used and supplemented with so�ware based
strategies to improve the reprensentability of species families.

Di�erent ML classi�ers were then used to test whether there was a signi�cant di�erence between
the databases and �nally a new library was created, classi�ed down to the lineage level and that
it was the �rst one to be designed speci�cally to train ML algorithms.

A�er obtaining promising results in ML algorithms, it was decided to use this library to train
two types of neural networks available in the literature. A fully connected network published by
Nakano et al in 2018 [41] and a convolutional network published by Yan et al in 2020 [55]. �ese
two architectures showed interesting results, even with species that had not been used to train
them.
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Abstract: Long terminal repeat (LTR) retrotransposons are mobile elements that constitute the major
fraction of most plant genomes. The identification and annotation of these elements via bioinformatics
approaches represent a major challenge in the era of massive plant genome sequencing. In addition
to their involvement in genome size variation, LTR retrotransposons are also associated with the
function and structure of different chromosomal regions and can alter the function of coding regions,
among others. Several sequence databases of plant LTR retrotransposons are available for public
access, such as PGSB and RepetDB, or restricted access such as Repbase. Although these databases
are useful to identify LTR-RTs in new genomes by similarity, the elements of these databases are not
fully classified to the lineage (also called family) level. Here, we present InpactorDB, a semi-curated
dataset composed of 130,439 elements from 195 plant genomes (belonging to 108 plant species)
classified to the lineage level. This dataset has been used to train two deep neural networks (i.e., one
fully connected and one convolutional) for the rapid classification of these elements. In lineage-level
classification approaches, we obtain up to 98% performance, indicated by the F1-score, precision and
recall scores.

Keywords: LTR retrotransposons; machine learning; deep neural networks; bioinformatics; plant
genomes; genomics; InpactorDB

1. Introduction

Transposable elements (TEs) have key roles in plant genomes. They are major contrib-
utors to genomic size [1,2], rearrangement events (such as fissions, fusions, and transloca-
tions) [3], chromosome organization and structure (e.g., centromeres) [4], and evolution
and adaptation to the environment [5]. These dynamic elements can be activated under
several biotic or abiotic stresses, such as pathogens [6,7], defense-associated stresses [8],
heat, drought and salt stresses, freezing, polyploidization and hybridization events [9,10],
UV light [11], and X-ray irradiation [12]. Transposable elements are also known to partici-
pate in reproductive isolation between genotype of the same species (reviewed in [13]) [14]
and to shape the genome architecture during the process of plant speciation [15].

TE classification is still a subject of debate, despite the fact that a standard has emerged.
TE classification is generally performed hierarchically [16], whereby TEs are first divided
into classes according to their replication cycle: Class I or retrotransposons, which follow a

Genes 2021, 12, 190. https://doi.org/10.3390/genes12020190 https://www.mdpi.com/journal/genes



22 5 InpactorDB

5.2. Conclusions and perspectives

�is work established that databases composed of consensus sequences and databases composed
of curated sequences are the best for training machine learning algorithms. However, they did
not show signi�cant di�erences between them. �is analysis showed that it is possible to create
databases with consensus sequences (which can be done automatically) that have comparable
results to those that are curated (which require much more manual work). �us, a library of LTR
retrotransposons was designed and released, which is composed of di�erent public databases, but
adding sequences from more plant species from di�erent families.

�is database of more than 100, 000 sequences in the redundant form (independent sequences)
and more than 67, 000 consensus sequences in non-redundant form demonstrated a good level
of generalisation, as it contains sequences from 195 plant species.

On the other hand, it was shown that when training neural networks available in the literature
using the non-redundant form of this library, even be�er results were obtained than when using
other ML techniques, due to the fact that the training time was reduced when using GPUs and
over��ing was reduced. �is work opened the door for the design of DL-based tools thanks to
the good quality of their data and the amount of sequences from di�erent plant families that in
deep networks is very useful for the training process.

Nevertheless, extracting k-mer frequencies (in this study it was proposed to use 1 <= k <= 6)
is computationally expensive and generates more than �ve thousand features which makes the
training process of the algorithms slower. �erefore, it is necessary to understand whether it is
necessary to use all this large amount of information or whether it is possible to reduce the k-
mer frequencies without considerably reducing the performance of the algorithms. �erefore, in
the next chapter we will delve more into how to design a machine learning based work�ow that
utilizes the features extracted from the k-mers count. Additionally, we experiment on training
algorithms to perform the detection and classi�cation tasks individually and jointly, as well as
reporting information on how important each of the k-mer frequencies are and how to use as
few as possible without lossing signi�cant performance in the training process.
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Article submi�ed at 17 February 2021, accepted at 24 April 2021 and published at 19 May 2021 in
the PeerJ Journal. DOI: 10.7717/peerj.11456.

6.1. Context

In Chapter 4, it was observed that using counts of the k-mers frequencies of LTR retrotranspo-
sons as features to train algorithms that classify these elements into lineages obtains promising
and be�er results than other types of DNA encoding. Additionally, it was found in Chapter 5 that
this form of feature extraction also obtains good generalization results (prediction on genomes
of species that were not present in the training dataset) by neural networks published in the li-
terature. However, the classi�cation problem was only a�acked at the lineage level, based on the
assumption that the elements were already identi�ed.

Using the library created in the previous section, this paper approaches three di�erent classi�ca-
tion problems for LTR retrotransposons. First, a binary classi�cation problem is proposed, where
LTR-RTs are di�erentiated from other genomic sequences (such as di�erent types of RNAs and
transposable elements of other orders). �en, the classi�cation of these elements in the di�erent
lineages is further explored. Finally, a uni�ed multiclass problem is presented that can both di�e-
rentiate other types of genomic sequences and classify LTR retrotransposons into lineages. �ese
problems were approached from the most widely used ML models, as well as using assembly clas-
si�ers.
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ABSTRACT
Every day more plant genomes are available in public databases and additional
massive sequencing projects (i.e., that aim to sequence thousands of individuals) are
formulated and released. Nevertheless, there are not enough automatic tools to
analyze this large amount of genomic information. LTR retrotransposons are the
most frequent repetitive sequences in plant genomes; however, their detection and
classification are commonly performed using semi-automatic and time-consuming
programs. Despite the availability of several bioinformatic tools that follow different
approaches to detect and classify them, none of these tools can individually
obtain accurate results. Here, we used Machine Learning algorithms based on k-mer
counts to classify LTR retrotransposons from other genomic sequences and into
lineages/families with an F1-Score of 95%, contributing to develop a free-alignment
and automatic method to analyze these sequences.

Subjects Bioinformatics, Plant Science, Computational Science, Data Mining and Machine
Learning, Data Science
Keywords Transposable elements, LTR retrotransposons, Plant genomes, Machine learning,
Classification, Free-alignment approach, k-mer based method

INTRODUCTION
The availability of large-scale biological data is changing the way researchers must analyze
and find solutions to problems in almost every area of biological sciences. Machine
Learning (ML) algorithms can use this data to automatically learn the parameters needed
to fit a model to a specific problem (Shastry & Sanjay, 2020) in order to predict known
labels. This process is called supervised learning (Zou et al., 2018). Bioinformatics, which is
an intersection between computer sciences, biological sciences, and mathematics
(Orozco-Arias et al., 2017), plays a central role in storing, analyzing, categorizing, and
labeling the huge flow of information generated, for example, by next-generation
sequencing (NGS) platforms. Advances in these sequencing technologies have provided a
new paradigm in the field of post-genomics (Rigal & Mathieu, 2011; Chen et al., 2014;
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6.2. Conclusions and perspectives

�is work con�rmed that ML algorithms succeed in classifying transposable elements into sub-
groups as had been shown in other studies (usually in super-families) [41, 94, 27, 35, 26, 25, 43,
54, 55, 90] through features based on k-mers frequencies. Performances of up to 97% F1-Score
were obtained on the multiclass classi�cation problem at the lineage level (k-nearest neighbors
algorithm). Additionally, this work pioneered the problem of distinguishing LTR retrotranspo-
sons from other genomic sequences through an ML model. For this case, yields of up to 98%

were achieved (with the Multi-layer perceptron algorithm). On the other hand, the uni�cation
of both problems was successfully achieved, designing a dataset with more than 100 thousand
sequences, where more than 34 thousand corresponded to sequences other than LTR-RTs, about
28 thousand to elements of the Copia superfamily and approximately 39 thousand to the Gypsy
superfamily. Using this dataset, up to 96% F1-Score was obtained using the ML assembly method.
However, in Chapter 5 it is shown that by using an FNN publish by Nakano [41] in the lineage
classi�cation problem, an F1-Score of 98% is obtained. Tests performed a�er the publication of
this paper show that using the same FNN can give an F1-Score of 98% in the binary classi�cation
problems and in the binary classi�cation plus multiclass classi�cation problem. In addition, the
training times of this network were shorter and predictions were made faster. For this reason, in
the following chapters we will focus on the use of deep neural networks.

Another interesting contribution of this article was the analysis of the importance of the di�erent
k-mer counts. Other studies had shown signi�cant di�erences in k-mer features by modifying the
value of k [55]. However, in this work it was found that with only 5.2% of all the characteristics
(286 of 5460) a 98% F1-Score performance and an AUC of 97% could be obtained.

�ese results present a promising alternative for the design and implementation of ML algorithms
to a�ack problems related to LTR retrotransposons and even other DNA sequences such as �l-
tering out sequences that do not meet certain criteria. In the next chapter, we will cover for the
�rst time the problem of detecting whether an LTR-RT is intact (which could be used as a refe-
rence) or whether it has nested insertions, mutations or is considered a fragment, not suitable for
a reference library through a DL approach.
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Article presented in the 15th International Conference on Practical Applications of Computatio-
nal Biology & Bioinformatics (PACBB) at 6 October 2021. Proceedings were published at 28 Au-
gust 2021 in the Lecture Notes in Networks and Systems book series (LNNS). DOI: 10.1007/978-
3-030-86258-9 9.

7.1. Context

�e conventional process for annotating transposable elements consists of a two main steps work-
�ow [83]. First, transposable elements are detected from the genome through di�erent techniques
[35] such as structure-based, de novo, homology or based on comparative genomics. Next, a cu-
ration process is performed where elements that are not considered intact and therefore do not
ful�ll the role of reference elements are removed. �e second step consists of using this curated
library to screening all the sequences of the copies and fragments of the TEs present in the li-
brary, usually using the homology strategy [95].

�e curation process is of vital importance to achieve good quality TE masking and annotation
because if element fragments (for example soloLTRs) are present in the library, which come from
intact LTR-RTs that are also in the library, the annotation could show an over-estimation of the
element contribution. Since it would take into account both the whole element and its fragments
[96]. Another possible case would be to have an LTR-RT with another element inserted inside
it and, in addition, to have the element nestedly inserted in the library. �e annotation process
would double count the nested element and overestimate its contribution to the genome. Ho-
wever, this task requires a lot of manual work and is very time consuming. For this reason, the
alternative of training an ML algorithm to automate this task and thus speed up the analysis of
large amounts of data was proposed.
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Abstract. Transposable elements are mobile sequences in all eukaryotic
genomes. LTR (Long Terminal Repeat) retrotransposons are the most abundant
elements in plant genomes where they play a fundamental role in evolution, gene
function and genetic diversity. It is therefore important to develop bioinformatic
tools to identify them in sequenced genomes and to classify them, taking into
account that over time these elements may undergo deletions, insertions or recom-
bination, generating incomplete and inactive elements, which are no longer con-
sidered a valid reference for identification and classification studies. LTR retro-
transposons play fundamental roles in evolution and genetic diversity, hence the
importance of understanding their function and studying in depth the variations
that they may present. With the increase of whole genome sequencing, it is nec-
essary to automate the analysis process and reduce the execution time, and to
develop more advanced tools. Here, we propose an automatic curator of plant
LTR retrotransposons libraries, based on Deep Learning (DL), in which a per-
centage F1-score of 91.18% was obtained for the test dataset. Generalization tests
using four different genomes were performed, obtaining the best results forOryza
granulata, with a performance of 93.6% F1-score, and with an execution time
of 22.61 seconds for the prediction by the neural network, using LTR retrotrans-
posons obtained with the LTR_STRUC software. Taking into account that the
conventional bioinformatics methods require a time of approximately six hours to
curate the same genome, we conclude that our proposed method is efficient and
can speed up the curation of libraries of LTR retrotransposons of plants genomes
published in massive sequencing projects.
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7.2. Conclusions and perspectives

�is work showed another application of machine learning in tasks related to transposable ele-
ments. In this opportunity, it was observed that by using a dataset with semi-curated elements
(such as those contained in the library presented in chapter 5) and elements that were found to
have some kind of nested insertion, an ML algorithm can learn to classify them to improve the
quality of the library.

On the other hand, it was shown that a performance of 91% is achieved and that the predic-
tion times are only a few seconds. However, the bo�leneck of feature extraction still remains.
Although Chapter 6 shows evidence that k-mer frequencies are a good source of information for
ML classi�ers, obtaining them has a high computational cost that in the case of automatic cura-
tion can take minutes, reducing the impact of this approach.

For this reason, for a tool to be able to use this �ltering method, it must contemplate the use
of some computational technique to speed up the counting of k-mer frequencies. Nevertheless,
this article continues to open the paradigm of automating bioinformatics tasks that are currently
performed manually, through arti�cial intelligence algorithms in order to create new so�ware.
In the following chapter, the complex task of integrating the di�erent ML algorithms, activities
of pre-processing and input data processing will be addressed to create a so�ware that is easy to
use and run and also requires considerably short time to analyze large amounts of genomic data.
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Article submi�ed at 28 February 2022 in the Oxford Brie�ngs in Bioinformatics Journal. Cu-
rrently, it is under review.

8.1. Context

�e work shown in the previous chapters has demonstrated the feasibility of applying a machine
learning-based approach to perform tasks with transposable elements in plant genomes. Howe-
ver, all these tasks had been developed independently.

It had been seen in the literature [92] that very few works addressed both the task of identifying
and classifying TEs through arti�cial intelligence. In addition, very few tools were found that
could be easily installed and used by life science users [37].

In this work, the option of creating a one-shot tool that integrates all the necessary activities
to detect, classify, �lter and annotate LTR-RTs in plant genomes was raised. �e goal was to
create a tool that was easy to install and use, as well as to perform analysis in short times using
heterogeneous architectures (CPUs + GPU).
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Caldas, Colombia and 5Institut de Recherche pour le Développement, CIRAD, Univ. Montpellier, 34000, Montpellier, France
∗To whom correspondence should be addressed. Email: simon.orozco.arias@gmail.com, paschoal@utfpr.edu.br,

gustavo.isaza@ucaldas.edu.co, romain.guyot@ird.fr

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

LTR-retrotransposons are the most abundant repeat sequences in plant genomes and play an important role in evolution
and biodiversity. Their characterization is of great importance to understand their dynamics. However, the identification
and classification of these elements remains a challenge today. Moreover, current software can be relatively slow (from
hours to days), sometimes involve a lot of manual work and do not reach satisfactory levels in terms of precision and
sensitivity. Here we present Inpactor2, an accurate and fast application that creates LTR-retrotransposon reference
libraries in a very short time. Inpactor2 takes an assembled genome as input and follows a hybrid approach (deep learning
and structure-based) to detect elements, filter partial sequences and finally classify intact sequences into superfamilies
and, as very few tools do, into lineages. This tool takes advantage of multi-core and GPU architectures to decrease
execution times. Using the rice genome, Inpactor2 showed a run time of five minutes (faster than other tools) and has the
best accuracy and F1-Score of the tools tested here, also having the second best accuracy and specificity only surpassed
by EDTA, but achieving 28% higher sensitivity. For large genomes, Inpactor2 is up to seven times faster than other
available bioinformatics tools.

Key words: Inpactor2, LTR retrotransposons, plant genomes, deep learning, neural networks, detection, classification

Key Messages

• The hybrid approach used by Inpactor2 allows the creation of quality LTR-retrotransposon libraries, maintaining a high

level of precision, accuracy, and sensibility and keeping a low number of false positives.

• Inpactor2 can be run using CPUs + GPUs, speeding up the execution time up to 7 times, being the fastest software in the

creation of libraries of the tested software. This allows to analyze more genomes in less time, being useful for large scale

analysis.

• Inpactor2 is the first freely available tool that integrates in a single software the detection, curation, classification and

annotation process that provides lineage-level classification in an easy-to-install and use manner, eliminating the need for

manual operations.

• Inpactor2 is the first neural network-based tool to detect LTR-retrotransposons de novo. It can be installed in an anaconda

environment and can be run in a single Python command.
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8.2. Conclusions and perspectives

�e strategy implemented in Inpactor2 proved to be e�ective in integrating the di�erent tasks
required for the annotation of LTR-RTs in plant genomes. Although in Chapter 6 it was shown
that the uni�cation of the detection and classi�cation problem could obtain good results, in an
application with real data (such as an assembly) it was found to be more complex than having a
network that predicts the class of a sequence.

�e main di�culty of this integration was due to the large variability in length of the sequences
of the di�erent families of LTR retrotransposons. �ese elements can measure from two thousand
bases to more than 20 thousand bases. For this reason, the use of non-overlapping windows of 50
thousand bases was considered as input. Finally, three neural networks trained with thousands
of sequences were used to obtain more accurate results in each of the necessary activities such
as detection, �ltering, and classi�cation of the elements.

�is work also covered the bo�leneck in k-mers frequency counting raised earlier in Chapter 5.
Inpactor2 proposes a strategy based on a convolutional neural network with untrainable layers,
to simultaneously count the 5460 k-mers frequencies necessary for the execution of the neural
networks. �is calculation is done in seconds, removing the limitation of using all of the k-mers
frequencies.

Finally, thanks to the use of Python libraries such as Keras and tensor�ow, this tool can be execu-
ted both on CPU and CPU + GPU, to accelerate the analysis times, being up to seven times faster
than other reference so�ware (with the two Gb genome of Zea mays). �is tool proves to be
e�ective in running complete analyses of LTR-RTs in minutes, which is especially important in
large-scale genomic analyses, as a study at the level of a plant genus. In the next chapter, the high
speed of Inpactor2 was used to analyze the correlation between the proportion of LTR-RTs and
genome size variability in Co�ea genus species.
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9.1. Abstract

Transposable elements are DNA sequences that can move from one chromosomal position to
another and are widely found in virtually all organisms. �ese elements are activated under cer-
tain biotic and abiotic stresses and play important roles within the genome. In plants, LTR re-
trotransposons are the most abundant and are associated with evolutionary mechanisms and, in
particular, with variability in genome size. New applications based on machine learning allow
large-scale analysis of these elements in search of answers to evolutionary questions in the area
of, for example, a species order. A�er developing Inpactor2 and comparing it against other so�-
ware, the possibility of using this so�ware to answer a biological question involving the analysis
of a large amount of data was raised. In this study, 46 species of the genus Co�ea were used to
understand the relationship of LTR retrotransposons in the genome size variation shown in this
group. Our results demonstrate a high correlation between the Gypsy superfamily and especially
the Tekay/Del lineage with genome size within the genus.

9.2. Introduction

Transposable elements (TEs) are short segments of DNA that are found in abundance within plant
genomes [97]. �ese elements can move from one chromosome location to another, causing va-
rious rearrangements such as translocations, inversions and duplications [98]. TEs can produce
genetic variations that, in the plants evolutionary �eld, are related with the contribution to the
development of skills for the adaptation to their environment [99], thus it has been found that the
TEs activation is generally given by stress conditions [100] dispersing through the genome the
regulatory sequences found there, managing to increase the network of genes related to stress
[101]. �us, although the number of coding genes is not highly variable in plants [102], genome
size does vary drastically, even in species within orders or families. �ese variations are mainly
due to the repetitive regions and especially to TEs [103], due to the ability of some species to con-
trol the activity of these elements and to the mechanisms of them to escape regulation in some



9.2 Introduction 33

other organisms [104, 105].

According to the transposition mechanism, TEs can be classi�ed into Class I or retrotransposons”,
which transposed via a RNA intermediary, through a process called çopy-and-paste”, generating
a decrease in the number of copies of TEs; and Class II or ”transposons”, that moves directly using
a DNA intermediary through the çut-and-paste”strategy [12]. LTR retrotransposons (LTR-RTs),
belonging to Class I, are the most common in plants [81], contributing up to 80% of the genome
size [106], together with polyploidization, which is the principal mechanism for the increase in
genome size and evolution in plants [107]. �e LTR-RTs are �anked by two long terminal repeats
(LTRs) at the ends. Between these regions are the structural coding domains and the enzymatic
proteins, gag and pol, which are crucial in the transposition process [61, 106]. �ese TEs present
a similar structure to retroviruses, nevertheless, these lack funcional env gene, which is respon-
sible for the formation of infectious particles that can leave the cell and infect other cells [108].
�e LTR-RTs are divided into two superfamilies, Ty1-Copia and Ty3-Gypsy, depending on the
order of their internal domains [12, 61, 106].

Due to the rise of sequencing data, some methods have been described for the identi�cation and
classi�cation of these elements [108, 35, 26], such as those based in structure, homology, de novo
and by comparative genomics. However, the identi�cation of these elements presents some di�-
culties since TEs do not have a universal structure, some families present a speci�c composition,
and some of them acquire mutations over time, which generates fragmented or nested copies
[26]. Recent studies have shown that Machine Learning (ML) can be used to propose automatic
tools for the detection and classi�cation of TEs [37], based on model training using TEs detected
by conventional so�ware [26]. Transfer learning, one of �elds of ML, is a process in which the
model is �rst trained with an initial dataset and later, the learned characteristics are transferred
to another model to perform the training with the dataset of interest, increasing generalizability
[109]. Nonetheless, research on the use of ML for the identi�cation and classi�cation of transpo-
sable elements remains scarce.

�e genus Co�ea belongs to the Rubiaceae family, the fourth largest family of Angiosperm. It
comprises 124 identi�ed species originating from tropical Africa, Madagascar, Mascarene islands
extending to Southern and Southeast Asia and Australasia [110, 111]. Co�ea canephora and Co�ea
arabica are two important cultivated species to its socio-economic impact in the tropical regions
of the world [112]. All species in this genus are diploid, with the notable exception of C. arabi-
ca (allotetraploid), due to a recent hybridization between C. eugenoides and C. canephora [113].
Since the publication of the �rst sequenced genome of Co�ea, C. canephora, in 2014 [15] and
thanks to the Next Generation Sequencing (NGS) other sequencing data has been published such
as genotyping-by-sequencing data with which gave the �rst resolved phylogeny of the genus
Co�ea [114], the identi�cation of co�ee species that are naturally deca�einated such as Co�ea
humblotiana [115] and the construction of the evolutionary history of 52 wild co�ee species
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[116]. Following these sequencing data, it has become possible to identify more complex geno-
mic structures such as transposable elements and their impact on various characteristics of the
genus Co�ea, as seen in [111] from the partial sequencing (454 technology) of 16 co�ee genomes.
In that study, it was possible to identify the transposable element composition and its variation
in relation with the biogeographic groups of the species [111]. Now, the emergence of new bioin-
formatic tools and the availability of Co�ea species sequences allows us to answer new questions
about the diversity of the TEs in the genus and their contribution to the genome size variation
[115, 117, 118]. In this study, we investigated the relation between the diversity and quantity of
LTR-RT elements, their lineage classi�cation and genome sizes in the frame of the phylogene-
tic relationships of the Co�ea species and frame of the following phylogeographic groups [116]:
West and Central Africa (WCA), North-Eastern Africa (NEA), Asia (ASIA), East Central East Afri-
ca (E-CEA), East Africa (EA), Mauritius (MUS) and Madagascar & Comoro (MDG-COM). We used
data from analysis of 46 Co�ea species showing a genome size ranging from 469 Mb for C. mau-
ritiana Lam to 899 Mb for C. humilis. �e LTR-RT identi�cation and classi�cation in the level of
the lineages were performed using a DL-based tool named Inpactor2, and �nally statistical tests
were carried out.

9.3. Materials and methods

9.3.1. Co�ea sequencing resources available

Illumina read datasets from 41 species of the Co�ea genus were used in this study (Table 9.3.1)
and 10 from species of the Psilanthus genus (Table 9.3.1). Additionally, seven co�ee species (C.
canephora Pierre ex A.Froehner - DH200-94, C. eugenioides S.Moore - BUA, C. heterocalyx Sto�.,
C. homollei J.-F.Leroy. C. humblotiana Baill., C. pseudozanguebariae Bridson, and P. ebracteolatus
Hiern) and one of Rubiaceae family (Kraussia �oribunda Harv.) were sequenced with PacBio,
and those assemblies were used to construct the LTR-RT library (see section 9.3.3). �e illumina
reads were assembled using MaSuRCA [119], genomic size information was obtained via �ow
cytometry, and completeness was calculated from BUSCO [120]. Complete information can be
consulted in Appendix A.

9.3.2. Creation of co�ee dataset for re-training Inpactor2

Once Inpactor2 was trained using the InpactorDB dataset [34], we proceeded to do a transfer
learning process with the aim of creating a specialized version of the tool for Co�ea data. For this
reason, we selected the most representative species: Co�ea arabica, Co�ea eugenioides, Co�ea ho-
mollei, Co�ea pseudozanguebariae and Co�ea ebracteolata (ex Psilanthus ebracteolatus) because of
the availability of near complete genome assembly. Later, we identi�ed LTR-RT elements using
LTR STRUC [121], and classi�ed them at the lineage level using Inpactor (V.1) [78]. For the dataset
of negative instances, we performed the same process of [122]: we collected other genomic struc-
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Species name Country of origin Genome size
(Mbp)

N50 Illumina
Assembly (bp)

Complete BUSCO
%

Co�ea
C. arabica Ethiopia 1264.1 12530 92.6

C. boiviniana (Baill.) Drake Madagascar 489 4437 62.6
C. brevipes Hiern. Cameroon 743.28 4925 71.7

C. canephora Pierre ex A.Froehner Democratic Republic
of Congo 762.84 14559 92

C. canephora Pierre ex A.Froehner Uganda 762.84 10617 90.3
C. canephora Pierre ex A.Froehner Ivory Coast 762.84 9776 86.3
C. canephora Pierre ex A.Froehner Ivory Coast 762.84 10248 71.6
C. canephora Pierre ex A.Froehner Brazil 762.84 15981 93.3

C. charrieriana Cameroon 699 25231 94.8
C. congensis A.Froehner NA 753.06 14144 78.6
C. congensis A.Froehner Republique of Congo 753.06 7192 85.1

C. dewevrei De Wild. & T.Durand Central African Republic 704.16 20547 93.9
C. dolichophylla J.-F.Leroy Madagascar 669 7888 87.3
C. eugenioides S.Moore Kenya 723.72 10099 78.4
C. eugenioides S.Moore Uganda 723.72 14110 91.3
C. heterocalyx Sto�. Cameroon 889.98 15722 93.1
C. homollei J.-F.Leroy Madagascar 596.58 14554 84.6
C. homollei J.-F.Leroy Madagascar 596.58 4613 69.7
C. humblotiana Baill. Comoros 479.22 19876 92.9
C. humilis A.Chev. Ivory Coast 899.76 6398 88.9

C. kapakata (A.Chev.) Bridson Angola 645.48 4127 26.8
C. liberica W.Bull. ex Hiern Ivory Coast 743.28 5378 37.8

C. macrocarpa A.Rich. Mauritius 577.02 20136 93
C. mauritiana Lam Mauritius 469.44 34342 94.2

C. mayombensis A.Chev. Cameroon ND 2969 62
C. mu�ndiensis Hutch. ex Bridson Tanzania ND 6784 84

C. myrtifolia (A.Rich. ex DC.) J.-F.Leroy Mauritius 528.12 7020 75.5
C. myrtifolia (A.Rich. ex DC.) J.-F.Leroy Mauritius 528.12 99851 96.7

C. sp. â€˜nkolbisoniiâ€™ Cameroon ND 4482 76.5
C. perrieri Drake ex Jum. & H.Perrier Madagascar 625.92 9180 87.8

C. pervilleana Drake Madagascar 547.68 4246 75.6
C. pseudozanguebariae Bridson Kenya 557.46 15425 89.2

C. racemosa Lour. Mozambique 508.56 16275 91.3
C. rhamnifolia (Chiov.) Bridson Somalia ND 42001 94.9
C. salvatrix Swynn. & Philipson ND 596.58 22411 80.5

C. sessiliflora Bridson Tanzania 537.9 32437 89.8
C. sessiliflora Bridson Tanzania 537.9 4119 76.2

C. sp 3 Cameroon ND 8072 87.9
C. sp. Congo Congo 665 6010 88.3

C. stenophylla G.Don. Ivory Coast 625 13676 92
C. tetragona Jum. & H.Perrier Madagascar 528 16591 92.3

Table 9-1.: Co�ea species used in this study. ND means data is not available. �e complete infor-
mation can be found in Appendix A
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Species name Country of origin Genome size
(Mbp)

N50 Illumina
Assembly (bp)

Complete BUSCO
%

ex. Psilanthus
P. benghalensis var. bababudanii
(Sivar., Biju & P.Mathew) A.P.Davis

India 709 17218 91.4

P. benghalensis (Heyne ex J.A.Schult.) J.-F. Leroy India 709 15991 91.6
P. brassii (J.-F.Leroy) A.P.Davis Australia ND 1173 6.4

P. ebracteolatus Hiern Ivory Coast 586 10655 90.6 %
P. hors�eldianus (Miq.) J.-F.Leroy Indonesia ND 9059 77.6

P. leroyi Bridson Sudan ND 45234 92.3
P. mannii Hook.f. Cameroon ND 7320 89.2

P. melanocarpus (Welw. ex Hiern) J.-F.Leroy Angola ND 6687 88.5
P. travancorensis (Wight & Arn.) J.-F.Leroy India 636 3682 54.1

P. wightianus (Wall. ex Wight & Arn.) J.-F.Leroy India 631 40952 95.2

Table 9-2.: Psilanthus Species used in this study. ND means data is not available. �e complete
information can be found in Appendix A

tures such as CDS, RNAs and other types of TEs already mentioned. �en, the Inpactor2 Detect
and Inpactor2 Class networks were retrained using both positive (LTR-RT elements) and nega-
tive (other genomic features than LTR-RTs) instances. �e selection of the best models of both
networks was performed following the loss and F1-score for each epoch, selecting the one that
presented less loss and higher F1-score. Finally, the best retrained models of both NNs were kept
and used for the execution of Inpactor2 in the rest of the analysis of this study.

9.3.3. Library of LTR-RTs in Co�ea genus and its annotation

For the construction of the Co�ea library, we used eight available assemblies of the species C. ca-
nephora Pierre ex A.Froehner, C. eugenioides S.Moore, C. heterocalyx Sto�., C. homollei J.-F.Leroy,
C. humblotiana Baill., C. pseudozanguebariae Bridson, C. ebracteolata Hiern and Kraussia �oribun-
da Harv (Rubiaceae species, outside the co�ea genus), since these came from sequencing reads
using the PacBio technology. �en, Inpactor2 (using the retrained models for Inpactor2 Detect
and Inpactor2 Class) was executed to detect and classify until the lineage level the LTR-RTs. Fi-
nally, all the libraries created by Inpactor2 of each species were concatenated to create a unique
library used to annotate genomic sequences using RepeatMasker [123].

In this study, we selected 46 assemblies of the species of Co�ea (including ex Psilanthus) genus
(Table 9.3.1), belonging to seven geographic groups as follow [116]: West and Central Africa
(WCA), North-Eastern Africa (NEA), Asia (ASIA), East Central East Africa (E-CEA), East Africa
(EA), Mauritius (MUS) and Madagascar & Comoro (MDG-COM). �e annotation of the LTR-
RTs was carried out with RepeatMasker, using the -lib parameter to append previously created
libraries as a reference. Also, to obtain a complete summary of the annotation for each LTR-RTs
lineages, we used the script ”buildSummary.pl”which is part of RepeatMasker.
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9.3.4. Data analysis and visualization

To test whether there is a relationship between the size of species genomes and the proportion
of annotated LTR-RTs, R [124] is used to perform a correlation analysis. In the �rst instance, a
pairwise plot of the proportion of LTR-RTs and assembled size is performed. Subsequently, a mo-
del ��ing is performed to obtain more information about the relationship of the variables with
respect to the genomic size. Finally, we checked the assumptions for a regression model, among
them: residual analysis, multicollinearity and correlation.

In order to visualize the results more interactively, iTOL [125] was used to annotate the phy-
logenetic tree of the 46 species of the genus Co�ea, following the tree constructed in [114]. In
the same way, through lea�etR library (h�p://cran.r-project.org/package=lea�etR), a geographi-
cal map was constructed in order to locate the species in their respective biogeographical groups
and to detail other physiological aspects of these, such as the approximate genome size taken
from �ow cytometry, ca�eine ratio, as well as the ratio of LTR-RTs Copia and Gypsy and of some
important lineages such as Athila, TAT and Tekay/DEL.

9.3.5. Raw Illumina reads mapping results

Raw Illumina reads were mapped against their respective library constructed in section 9.3.3 to
estimate their redundancy and compare it with the estimate from assemblies. We used Bowtie2
[126] following the following parameters: bowtie2 –time –local –very-sensitive-local, and taking
into account only forward reads.

9.4. Results

9.4.1. Re-training of the model for the Co�ea genus

During the re-training process, �ve species of the aforementioned Co�ea genus were used, which
were selected due to their diversity in terms of their biogeographic group of origin. A quick test
was performed to observe the performance of the model with the species Co�ea humblotiana (see
Table 9.4.1), and adequate accuracy was observed a�er retraining.

9.4.2. Construction of a LTR-RT library for the Co�ea genus

A library of 34, 063 sequences of intact LTR-RTs extracted from eight high quality genomes inclu-
ding seven species from Co�ea and a closely related species from the Kraussia genus was obtained
(see Table 9.4.2), of which 9, 205 fall into Copia and 24, 858 into Gypsy superfamilies. Figure 9-1
shows the copy numbers for each of the lineages belonging to the mentioned superfamilies.
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Initial model
No. of errors Error percentage Precision percentage

145 11.2928 % 88.7072 %
Retrained model

No. of errors Error percentage Precision percentage
65 5,0663 % 94,9337 %

Table 9-3.: Performance test results for initial and re-trained model

BA

Figure 9-1.: LTR retrotransposon length distribution among the library. A) Elements that correspond
to Copia superfamily, while B) belonging to Gypsy superfamily.

Species name PacBio Assembly size (Mbp) N50 (Mbp) Total LTR-RTs
C. canephora Pierre ex A.Froehner - DH200-94 672.38 50.12 6,155

C. eugenioides S.Moore - BUA 645.42 54.74 4,731
C. heterocalyx Sto�. 760.30 5.25 5,933

C. homollei J.-F.Leroy 585.00 41.51 4,337
C. humblotiana Baill. 420.72 29.63 1,932

C. pseudozanguebariae Bridson 618.15 41.95 4,426
P. ebracteolatus Hiern 786.80 1.93 1,090

Kraussia �oribunda Harv. 212.98 2.69 5,459

Table 9-4.: Species used for the construction of the Co�ea library
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9.4.3. Utilization of a Co�ea LTR-RT library for the annotation of

assemblies in the Co�ea genus

Forty-six Co�ea assembled genomes from di�erent biogeographic groups (see Table 9.3.1 and Ap-
pendix A) were used for the annotation of LTR-RT by RepeatMasker. Using the previously created
library as a reference, we obtained 23, 730, 563 LTR-RTs, classi�ed into superfamilies and linea-
ges (Figure 9-2). Figure 9-3 shows the nuclear phylogenetic tree corresponding to the species
used in this study obtained by [114], and a comparison between the proportion of lineages belon-
ging to Copia and Gypsy found with RepeatMasker in assemblies, according to the assembly size.
In addition, the proportion of the superfamilies and lineages are also obtained using a mapping
strategy of the raw reads against the LTR-RT library of the species. Our result showed Gypsy
and more particularly Del and TAT lineages to be widespread and the most predominant LTR-RT
elements in Co�ea, whatever the genome size and the method to count their proportions. Be-
side these elements, CRM (Gypsy) and Tork and Sire (Copia) showed signi�cant proportions in
the assemblies. It should be noted that the two highest genome sizes present in this study (C.
heterocalyx and C. humilis) showed high abundance of Del and TAT lineages compared to small
genome sizes of Co�ea, suggesting that these lineages might be involved in the genome size of
these species. C. heterocalyx (890 Mb) is closely related to C. eugenioides, a medium genome size
species (723 Mb). �e di�erence between these species is clearly on the proportion of Del and
TAT lineages (highest for C. heterocalyx), suggesting rapid evolutionary changes such as drama-
tic accumulation of LTR-RT copies. �e same observation can be done between C. humilis (900
Mb) and C. dewevrei (704 Mb). Interestingly the distributions of SIRE appear discontinuous ac-
cording to phylogeographic groups, with a presence in WCA, ECA groups, low proportion in EA
groups and almost absent in Madagascar (MDG-COM) and mascarene (MUS) groups (Figure 9-3).
Altogether, our annotation of LTR-RT and their proportion of diverse Co�ea species, suggest that
some lineages might be correlated with the variation of the genome sizes.
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Figure 9-4.: Pairwise plot of the proportion (in percentages) of LTR-RTs of the Copia and Gypsy
superfamilies and the genome assembly size (in Mbp). �is graph is used to visualize
the trend of the variables.

9.4.4. Relationship between the LTR-RT proportion and the genome

size assembly

Relationships between Copia and Gypsy superfamilies and the assembly size.

To understand the relationships between the amount of LTR-RT and the size of the genome as-
semblies, we conducted di�erent statistical analyses. Firstly, a pairwise plot was performed to
observe the behavior of the proportions of LTR-RTs of Copia and Gypsy and the size of the geno-
me assembly (Figure 9-4). Finally, based on the plots, we conducted a multiple linear regression
model using the 46 assemblies (Table 9.3.1), obtaining an Adjusted R square of approximately
90% (Appendix B).

By checking the assumptions of the proposed regression model, it was found a variance in�atio-
nary factor (VIF) for both covariates (proportions of Copia and Gypsy) of 1.74187 and 1.74187

respectively, indicating that there is no problem of multicollinearity. On the other hand, Figure
9-5 shows diagnostics plots for the analysis of residuals and normality of the model (for more
information see Appendix B), observing the ful�llment of the assumptions generated for this mo-
del in the residuals, being normality and homoscedasticity, thus concluding that the contribution
of the proportion of LTR-RTs from both superfamilies is signi�cant in the size of the assemblies.
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Figure 9-5.: Residual analysis of the model proposed for the proportion of LTR-RTs for the Copia
and Gypsy superfamilies and the size of the assemblies.

Relation between Gypsy lineages and assembly size.

As it was done for the superfamilies, a pairwise plot of the six lineages belonging to the Gypsy
superfamily was carried out (Figure 9-6). �erea�er, a variable selection analysis is performed in
order to discard the variables that do not have a signi�cant relationship, this is carried out through
an information criterion, particularly, the Bayesian information criterion (BIC). �e multiple li-
near regression model is selected with the Tekay/DEL and Galadriel lineages, since these are the
variables with the lowest AIC (116.4), obtaining an Adjusted-R square of approximately 90%

(See Appendix B).

Relation between genome size and proportion of LTR-RTs.

To study the correlation, we carried out a simple linear regression model between the genome
size of eight Co�ea species used to construct the library (Table 9.4.2), and the total proportion of
LTR-RTs found in section 9.4.2 (See Figure 9-7). We can observe that there is a tendency towards
linearity despite the R square is not too high (0.76), and this could suggest that the behavior of
the LTR-RTs copies in the genome can explain the increase in genome sizes.

9.5. Discussion

�e objective of this study was to understand the relationships of the amount of LTR-RTs on
the genome sizes of Co�ea species. In previous studies, using partial sequencing, a contribution
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Figure 9-6.: Pairwise plot of the proportion (in percentages) of Gypsy lineages and genome as-
sembly size (in Mbp).

Figure 9-7.: Correlation between LTR-RTs proportions and Genome sizes. �is analysis was per-
formed using the genomes of C. canephora Pierre ex A.Froehner - DH200-94, C. eu-
genioides S.Moore - BUA, C. heterocalyx Sto�., C. homollei J.-F.Leroy. C. humblotiana
Baill., C. pseudozanguebariae Bridson, P. ebracteolatus Hiern, and Kraussia �oribunda
Harv.
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of these elements to the size of various co�ee genomes was observed, with a potential increase
in lineages such as DEL and Sire [111]. Here using complete sequenced genomes, it was found
that, there is a signi�cant contribution of LTR-RTs to up to 50% of the genome assembly length,
with a higher contribution of elements belonging to the Gypsy superfamily, ranging from 30%

to 40%. �e results obtained from the statistical analysis of signi�cant relationships con�rm the
correlation between Assembly length and the Gypsy superfamily, with an Adjusted-R of around
90% and normality in the data. Similarly, it is suggested that the DEL lineage contributes to a
greater extent to the size of the genomes with a proportion ranging from 11% to 23%, and an
Adjusted-R of approximately 90% according to the relationship analysis. Surprisingly, TAT li-
neage did not show statistical correlation with genome size.

Co�ee genome sizes vary according to geographic location, with the smallest genomes found in
East Africa, Comoros and Indian Ocean Islands, while the largest genomes come from West Afri-
ca and Southeast Madagascar, suggesting a gradient in genome size, with growth from East to
West in Africa and North to Southeast in Madagascar [127]. �is is consistent with the proportion
of LTR-RTs, where a higher amount of transposable elements is found in biogeographic groups
such as WCA ( 48%) and a decrease in this proportion in groups such as NEA ( 38%) and MUS
( 39%) (Figure 9-4). An interesting behavior is the change between the contribution of LTR-RTs,
which varies between closely related species, an example of this is between C. deweveri (40%)
and C. congenesis (54%), presenting a di�erence of up to more than 10%. �is is possibly due
to either genome-purging mechanisms, via intra-element recombinations and deletions [128] or
recent ampli�cation of some LTR-RTs families.

We tested the robustness of our methodology obtained by RepeatMasker on genome assembly,
with a methodology based on raw read mapping on a LTR-RT sequence library. We observed
that there is a higher proportion found by mapping, due probably to information that may be
lost during the assembly process. �e loss of information during assembly can be estimated with
assembly metrics (e.g. N50) or BUSCO values (see Appendix A). However, It can be noticed that
the trends on the composition of LTR-RTs in the genomes are very similar whatever the method
used. Together these data allow us to address a �rst model of the evolution of the co�ee geno-
me sizes linked to LTR-RT contents. �e amount of LTR-RTs increases from East Africa to West
Africa and remains low in Madagascar and the Mascarene Islands. Considering that it has been
established that LTR-RTs are activated via environmental stresses (biotic and abiotic), we will ha-
ve to investigate the type of stresses that might be involved. One of the future investigations will
be the impact of arid and non-arid climates on genome size and TE activation, as demonstrated
in palms [129].
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9.6. Conclusion

In conclusion, the results obtained here give a clear idea of the contribution of LTR-RTs to the
size of the genomes of Co�ea species, and the distribution of these elements following their bio-
geographical origins. In the same way, it can be observed that the use of tools built from machine
learning algorithms allows obtaining results more e�ciently and quickly, unlike other conven-
tional algorithms. �is study generates a fundamental resource for research on the proportion
of LTR-RTs and their possible implications in evolutionary and genetic processes, however, it is
still planned to study whether the distributions of transposable elements in the genus Co�ea are
related to proliferation due to stress events or in response to changes in their environment.



Appendices



A. Appendix A

List of species of the Co�ea genus and Psilanthus used in this study. �e table includes detailed
information on country of origin, % BUSCO (for completeness of the assembly), estimated genome
size, size of the assembly, among other values.
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B. Appendix B

Statistical analysis using the R programming language. �ese analyses demonstrate in more detail
the correlation between the Gypsy lineage and, in particular, the Tekay/Del lineage.



Supplementary material 2: Correlation analysis between LTR-RTs

proportion and assembly size

1 Correlation between Copia and Gypsy superfamilies and Assem-
bly size

1.1 Exploratory data analysis

First, install and load the corresponding libraries.

1 install.packages('car')
2 library(car)

Then, load the data.

1 dataset1=read.csv('GypsyCopia_AssemblySize.csv ',header = T) #Gypsy -copia -Assembly size
2 head(dataset1)

1 Copia_MbpMasked Gypsy_MbpMasked Assembly_size
2 1 20 .42517 93 .13979 497 .8163
3 2 25 .43117 199 .76897 752 .7466
4 3 16 .69567 91 .05151 437 .9793
5 4 17 .80556 117 .93845 518 .8235
6 5 20 .22993 92 .85315 433 .8472
7 6 20 .67914 94 .37619 431 .4707

1 pairs(dataset1 , panel=panel.smooth)

1
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Figure 1: Pairwise plot of Gypsy superfamily, Copia superfamily, and Assembly size

As we can see from the pairwise plot, all regressors, seems to be statistically significant with respect to the
assembly size (the response variable), besides this, we can also notice that there is a linear increasing pattern
from both regressors with the response. According to this, we propose a multiple linear regresion model, to see
whether or not this information is statistically accurate.

1.2 Model fitting

1 #Multiple linear regression model
2 Y=dataset1$Assembly_size
3 X_1=dataset1$Copia_MbpMasked
4 X_2=dataset1$Gypsy_MbpMasked
5 model <-lm(Y∼X_1+X_2 , data=dataset1)
6 summary(model)

1 Call:
2 lm(formula = Y ∼ X_1 + X_2 , data = dataset1)
3

4 Residuals:
5 Min 1Q Median 3Q Max
6 -79.025 -19.110 -2.735 20.105 83.316
7

8 Coefficients:
9 Estimate Std. Error t value Pr(>|t|)

10 (Intercept) 121 .2830 20 .2641 5.985 3.84e -07 ***
11 X_1 2.1124 1.1847 1.783 0.0816 .
12 X_2 3.1129 0.2333 13.343 < 2e-16 ***
13 ---
14 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
15

16 Residual standard error: 33.15 on 43 degrees of freedom
17 Multiple R-squared: 0.8958 , Adjusted R-squared: 0.891
18 F-statistic: 184.9 on 2 and 43 DF , p-value: < 2.2e -16

By fitting a multiple linear regression model, we observed that both regressors, X1 and X2 are statistically
significant with the response, and the Adjusted R squared is almost 90%, meaning the model is as well statis-
tically significant. Now we check some of the assumptions of the multiple linear regression models.

1.3 Assumptions and multicollinearity analysis

2



1 #Multicoline
2 vif(model)

1 X_1 X_2
2 1.74187 1.74187

1 #Correlation. (There is no correlation between the regressors)
2 with(dataset1 , cor(X_1 ,X_2))

1 [1] 0.6526135

1 #Residual analysis
2 par(mfrow=c(2,2))
3 plot(model)
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Figure 2: Residual plot

1 marginalModelPlots(model)
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Figure 3: Marginal Model

Firstly, we conduct two initial analysis, to check whether or not our model suffers from multicollinearity
and auto-correlation among covariates, for this purpose, we compute the variance inflationary factor (VIF) and
correlation respectively. From the VIF we see that in our model we don’t have problem with multicollinearity
as V IF < 10, on the other hand, the correlation for both regressors is of 65%, which is relatively high, however,
we ignore this effect into our model analysis.

Secondly, we generate some plots diagnostics for our model that allow us to assume normality and homo-
cedasticity of residuals.

From this analysis and from the marginal model plot, we can conclude that both covariates are significant
with respect to the response variable and therefore, there is a relationship between LTR-Retrotransposons and
the Assembly size.

2 Analysis for Gypsy and its Lineages

Now that we know that there is a statistically significant relationship between the Gypsy family and the assembly
size, in this analysis our goal is to determine whether there is a relationship between the Assembly size and
some of the lineages within Gypsy family. To this purpose, we start again with a exploratory data analysis, as
follows:

1 dataset2=read.csv('LineagesGypsyMbpMasked.csv ',header=T)
2 head(dataset2)

1 Athila_MbpMasked CRM_MbpMasked Galadriel_MbpMasked Reina_MbpMasked TAT_MbpMasked
2 1 17 .56890 14 .91923 0.243854 5.954702 47 .24123
3 2 26 .72453 27 .75716 0.296558 7.500795 100 .74147
4 3 15 .62218 14 .96645 0.231496 5.421237 38 .90838
5 4 12 .98660 24 .15055 0.184256 5.058590 44 .23099
6 5 18 .74120 17 .09529 0.240447 6.871339 40 .10906
7 6 18 .53197 17 .18694 0.257677 7.085702 38 .36968
8 DEL_MbpMasked Assembly_size
9 1 75 .57089 497 .8163

10 2 173 .04444 752 .7466
11 3 75 .42933 437 .9793
12 4 104 .95185 518 .8235
13 5 74 .11195 433 .8472
14 6 75 .84422 431 .4707
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1 pairs(dataset2 , panel=panel.smooth)
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Figure 4: Pairwise plot of Gypsy lineages and Assembly size.

From the pairwise plot, we observed that some of the covariates seems to have an increasing pattern with
the response variable, for instance, the covariates W1, W3, and W6 seems to have a stronger relationship with
the response, now let’s conduct an multiple linear regression model, to see whether this information is accurate.

1 W_1=dataset2$Athila_MbpMasked
2 W_2=dataset2$CRM_MbpMasked
3 W_3=dataset2$Galadriel_MbpMasked
4 W_4=dataset2$Reina_MbpMasked
5 W_5=dataset2$TAT_MbpMasked
6 W_6=dataset2$DEL_MbpMasked
7 W=dataset2$Assembly_size
8 model2=lm(W∼W_1+W_2+W_3+W_4+W_5+W_6 ,data=dataset2)
9 summary(model2)

1 Call:
2 lm(formula = W ∼ W_1 + W_2 + W_3 + W_4 + W_5 + W_6 , data = dataset2)
3

4 Residuals:
5 Min 1Q Median 3Q Max
6 -74.569 -18.140 -0.259 20.885 61.940
7

8 Coefficients:
9 Estimate Std. Error t value Pr(>|t|)

10 (Intercept) 136 .0976 22 .5802 6.027 4.75e -07 ***
11 W_1 3.7259 2.9195 1.276 0.20943
12 W_2 1.9174 2.4899 0.770 0.44589
13 W_3 127 .3444 73.3976 1.735 0.09064 .
14 W_4 -3.3962 7.6662 -0.443 0.66021
15 W_5 0.4419 0.6533 0.676 0.50281
16 W_6 2.4610 0.6693 3.677 0.00071 ***
17 ---
18 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
19

20 Residual standard error: 32.48 on 39 degrees of freedom
21 Multiple R-squared: 0.9093 , Adjusted R-squared: 0.8953
22 F-statistic: 65.14 on 6 and 39 DF , p-value: < 2.2e -16
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From the multiple linear regression analysis, we observed that just the covariate W6 is significant to the
response, and the adjusted r-squared is around 90%, however, since the covariates are not significant,it’s im-
portant to perform a variable selection analysis. To this purpose, we propose using the Bayes information
criterion.

1 #Since the covariates W_1 to W_5 are not significant , let 's perform a variable selection method.
2 install.packages ("MASS")
3

4 library(MASS)
5 # BIC criterion for variable selection. Bayes Information Criterion.
6 mod.BIC=stepAIC(model2 , direction ="both", scope =(∼.+W_1+W_2+W_3+W_4+W_5+W_6), k=log(length(W)))

1 Start: AIC =339 .43
2 W ∼ W_1 + W_2 + W_3 + W_4 + W_5 + W_6
3

4 Df Sum of Sq RSS AIC
5 - W_4 1 207.1 41352 335 .83
6 - W_5 1 482.6 41628 336 .13
7 - W_2 1 625.6 41771 336 .29
8 - W_1 1 1718.3 42863 337.48
9 - W_3 1 3175.8 44321 339.02

10 <none > 41145 339 .43
11 - W_6 1 14263.2 55408 349.29
12

13 Step: AIC =335 .83
14 W ∼ W_1 + W_2 + W_3 + W_5 + W_6
15

16 Df Sum of Sq RSS AIC
17 - W_5 1 354.2 41706 332 .39
18 - W_2 1 419.9 41772 332 .46
19 - W_1 1 1925.9 43278 334.09
20 <none > 41352 335 .83
21 - W_3 1 3652.2 45004 335.89
22 + W_4 1 207.1 41145 339.43
23 - W_6 1 22422.1 63774 351.93
24

25 Step: AIC =332 .39
26 W ∼ W_1 + W_2 + W_3 + W_6
27

28 Df Sum of Sq RSS AIC
29 - W_2 1 187 41893 328.77
30 - W_1 1 2891 44597 331 .65
31 - W_3 1 3506 45212 332 .28
32 <none > 41706 332 .39
33 + W_5 1 354 41352 335 .83
34 + W_4 1 79 41628 336.13
35 - W_6 1 50145 91852 364 .88
36

37 Step: AIC =328 .77
38 W ∼ W_1 + W_3 + W_6
39

40 Df Sum of Sq RSS AIC
41 - W_1 1 2857 44750 327.98
42 <none > 41893 328.77
43 - W_3 1 4980 46873 330.11
44 + W_2 1 187 41706 332.39
45 + W_5 1 121 41772 332.46
46 + W_4 1 0 41893 332.60
47 - W_6 1 82139 124032 374 .87
48

49 Step: AIC =327 .98
50 W ∼ W_3 + W_6
51

52 Df Sum of Sq RSS AIC
53 <none > 44750 327.98
54 + W_1 1 2857 41893 328.77
55 + W_4 1 1292 43458 330.46
56 + W_5 1 773 43976 331.00
57 + W_2 1 153 44597 331.65
58 - W_3 1 21225 65975 342.00
59 - W_6 1 184898 229648 399.38

From the BIC analysis we can conclude that just the covariates W3 and W6 are statistically significant to
the response.

1 model3=lm(W∼W_3+W_6 ,data=dataset2)
2 marginalModelPlots(model3)
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Figure 5: Marginal Model

1 summary(model3)

1 Call:
2 lm(formula = W ∼ W_3 + W_6 , data = dataset2)
3

4 Residuals:
5 Min 1Q Median 3Q Max
6 -80.657 -19.742 -3.528 23.542 59.996
7

8 Coefficients:
9 Estimate Std. Error t value Pr(>|t|)

10 (Intercept) 136 .0330 18 .2519 7.453 2.86e -09 ***
11 W_3 216 .3516 47.9066 4.516 4.85e -05 ***
12 W_6 3.3101 0.2483 13.329 < 2e-16 ***
13 ---
14 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
15

16 Residual standard error: 32.26 on 43 degrees of freedom
17 Multiple R-squared: 0.9013 , Adjusted R-squared: 0.8967
18 F-statistic: 196.4 on 2 and 43 DF , p-value: < 2.2e -16

After conducting the last model just with the covariates W3 and W6, we can conclude that these two Gypsy
lineages are statistically significant with the Assembly size.
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10. Discussions, conclusions, and

contributions

In the development of the present thesis it was evidenced that the use of ML for automation in the
analysis �ow of LTR retrotransposons is not only feasible, but it was also demonstrated to be bet-
ter in di�erent aspects such as execution speed, metrics (such as F1-score) and accuracy thanks to
the ability of the models to identify complex pa�erns in large datasets [130]. However, the appli-
cation of ML presents signi�cant challenges especially for processing unstructured information
such as DNA because algorithms such as CNNs and RNNs were proposed for other types of data
[131]. �is chapter will discuss these challenges, how they were solved or how future work could
consider them for be�er results.

10.1. Discussions

10.1.1. DNA coding schemes and available datasets

�e �rst step in virtually all ML-based work�ows focuses on the data available to train the algo-
rithms. Unlike image processing and like natural language processing, genomic datasets contain
categorical information. �erefore, the �rst challenge corresponds to performing a transforma-
tion of these data to a numerical representation or to do a feature extraction. One of the most
basic and intuitive representations is to replace each nucleotide by an integer value, called the
DAX coding scheme [132]. However, this simple form of representation could generate biases in
ML algorithms, because ML could learn that the nucleotide with the highest number (being C=0,
T=1, A=2 and G=3) would have more importance than the others. In addition, it does not take
into consideration any biological property taking away from the algorithm a lot of information
to improve its performance. �ere are other ways where the base complementary [133], or cer-
tain dinucleotide properties [134, 135] could also be considered important. However these coding
schemes present important di�culties like the generation of thousands of features that the model
must use for the learning process, considering that the input is thousands (even tens of thousands)
of considerably long DNA sequences (e.g. transposable elements of between �ve thousand and
20 thousand bases). �is considerably huge load can make the training times very long and the
models need to learn many more parameters, which generates models that are too complex, very
di�cult to train and that do not obtain good results in terms of accuracy, precision, among others.
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Another possibility is a two-dimensional representation called a one-hot vector. In this approach,
each nucleotide is converted into a vector of four bits where one will have the value of 1, and the
rest of 0 depending on the nucleotide to be represented [136]. If the sequence is of n length, then
its one-hot representation would be 4 x n. �is encoding scheme has been frequently used es-
pecially for convolutional neural networks [54, 136], and even in other applications in genomics
other than on transposable elements [137, 138, 139, 140]. �is form of representation overcomes
the bias due to the numerical value given to each nucleotide presented by other approaches, ho-
wever, it worsens the size growth problem by multiplying each sequence in the dataset by four
times. Nevertheless, it has presented good results thanks to the fact that convolutional �lters
can �nd pa�erns within local sections of the sequence (e.g. certain motifs of a few bases such as
TSDs or PPTs) and generate feature maps that can then be processed by other convolutional �l-
ters, �nding increasingly higher level pa�erns (e.g. full LTRs, enzymatic domains, among others).

�e extraction of certain features could also be considered, in order to provide as much informa-
tion as possible to the algorithm to perform the task of interest autonomously. Some structural
properties such as sequence length, GC (guanine-cytosine) content, presence or absence of mo-
tifs, among others are extractable from the sequences without further computational complexity.
However, these features alone are not su�cient for the algorithm to learn. For example, to clas-
sify LTR retrotransposons into lineages/families, it is not su�cient to use only the length of the
sequence and the length of the LTR domains because di�erent elements of the same lineage can
have important variations in these characteristics. Even elements from di�erent lineages may
have similar lengths. For this reason, it is necessary to obtain other types of features such as the
frequencies of DNA sub-sequences of di�erent lengths k called k-mers. �ese sub-sequences are
widely used in many areas of bioinformatics such as sequence quality control [141], metageno-
mics [142], de novo assembly of genomes and transcriptomes [143, 144], genome size estimation
[145], and de novo detection of transposable elements [146]. In addition, k-mers have been used
in ML applications in the classi�cation of TEs [41, 55, 147, 49, 148] and in other genomics tasks
[149, 150]. In Chapters 4, 5 and 6 of the present document it was shown that using di�erent
public databases and one designed in this work, to train di�erent ML algorithms and di�erent
encoding schemes, the best results are obtained using k-mers. However, k-mers have the restric-
tion of losing positional information within the sequence and of being a one-way transformation
(k-mers frequencies can be obtained from DNA but not vice versa). Keeping positional positions
of k-mer on DNA should be an interesting way of research in the future. In addition, it should be
considered that calculating these features requires a large computational cost, although there are
methods in the literature to overcome this bo�leneck [151, 152, 153]. In Chapter 8, a novel way
to compute these counts from convolution operations was presented, accelerating the obtaining
of more than �ve thousand k-mers frequencies using a CNN with untrainable �lters and running
on GPUs.

On the other hand, currently available datasets present their own challenges. For an ML-based
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tool to be useful, it must exhibit outstanding performance on real-world cases and not just on data
used for training. �is desirable feature is called generalization [154, 155]. However, LTR-RTs are
species-speci�c [68] and have high diversity at their nucleotide level [81]. �is characteristic of
LTR-RTs makes it necessary to have a su�ciently representative training dataset for the model
to generalize adequately. However, the available data do not have TEs from all plant families or
all species, which would generate limitations in the predictions made by the tool in genomes of
distant species from those used for training. For this reason, Chapter 5 of this thesis presents
the design and release of a dataset that integrates three public databases (Repbase, RepetDB and
PGSB) and enriches them with sequences of species and plant families that were not found in
these, in order to have a greater representativeness and thus improve the generalization of the
models. However, this new dataset, called InpactorDB, cannot yet correctly represent all fami-
lies and orders of the kingdom plantae because they have not yet been sequenced and released.
�anks to massive sequencing projects (10K plants, Earth BioGenome, among others) and new
large-scale TE analysis [156], this limitation in the algorithms will be reduced in the future th-
rough periodic retraining using these newly released data.

Another challenge presented by the use of the available databases is the heterogeneity of the
strategies used to detect, classify and �lter LTR retrotransposons. �is is because there is no
standardized method for the analysis of these elements and each researcher proposes di�erent
methodologies to identify TEs within the genome, to classify it into orders, superfamilies and ra-
rely into lineages/families and to consider whether or not it constitutes a reference. According to
these decisions, each dataset has its own characteristics, such as di�erent sequence length distri-
butions for each superfamily or lineage (Figure 10-1), di�erent levels and curation strategies, and
their sequences may correspond to consensus or individual genomic sequences. One of the con-
tributions of this thesis was to statistically analyze that training ML algorithms with databases
that have the mentioned di�erences produces signi�cant changes in performance, especially in
the F1-Score (Chapter 5). In this way, it was evidenced that using curated data and with consensus
sequences produced the best results in the models without signi�cant di�erences between them.
�is �nding is due to the fact that curing the data eliminates a large amount of false positives,
which are frequently encountered by structure-based or de novo algorithms [157, 158, 159]. On
the other hand, consensus sequences are a representation of the ancestral sequence state of those
that were clustered and aligned to create the consensus [160]. For this reason, both curated and
consensus sequences correspond to a good reference for an ML algorithm to learn to recognize
and classify them. However, sequence curation requires a great deal of work usually done ma-
nually by experts. On the other hand, consensuses can be computed automatically, in much less
time and it is for this reason that such a database was also designed and used in this work.
Due to the intrinsic dynamics of LTR-RTs, some lineages are found to a much greater extent
than others. For example, in the co�ee genus it was found that the Tekay/DEL and TAT linea-
ges are much more frequent contributing on average 17% and 7% of the genome respectively,
than Angela and Galadriel elements that correspond to less than 0.05% (Chapter 9). �ese dy-
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A B

Figure 10-1.: LTR retrotransposon length distribution among databases. A) Elements that corres-
pond to Copia superfamily, while B) belonging to Gypsy superfamily.

namics generate very unbalanced datasets, where certain lineages have thousands of sequences
while others have only a few records. Even some lineages such as Bryco, Gymco and Lyco [161]
are almost non-existent in the available databases, due to low representation of non Angiosperm
species in available complete genome sequences. �is class imbalance presents an additional cha-
llenge for ML models, which achieve be�er performance on classes with more samples than those
with fewer (Chapter 4). Additionally, generating synthetic data from classes with fewer samples
is more challenging. Unlike other data types such as images, where more data can be generated
with simple operations such as rotations and zooming, DNA sequences are much more complex
to generate randomly if it is desirable to retain their biological properties and thus not a�ect ML
models. Although methods exist for balancing underrepresented classes such as SMOTE [162]
and ADASYN [163], these would deprecate a great deal of information from the most represen-
ted classes, which is necessary for good model performance and generalization. For this reason, a
possible line of future work would be the generation of algorithms for data augmentation in ge-
nomic datasets, for example through autoencoders or GANs (Generative adversarial networks),
but implementing loss functions and metrics adapted to the biological properties of LTR retro-
transposons such as total sequence lengths, presence of LTR domains at the beginning and at
the end of the element, presence of enzymatic domains, presence of PBS and PPT, among others
characteristics.

10.1.2. The detection problem

To implement ML-based so�ware following the approach of this thesis, two essential problems
must be considered, the direct detection of full length LTR-RTs from the genome and the classi�-
cation of these elements into superfamilies and lineages/families. Both problems can be viewed as
classi�cation tasks for an ML model. �e �rst one is considered a binary classi�cation, where LTR-
RTs are the positive instances and all other genomic sequences are the negative instances. For its
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part, the distinction into lineages is taken as a multiclass classi�cation, with each lineage/family
being a di�erent class (Chapter 6). Although lineage/family classi�cation is multiclass, it is mo-
re trivial than detection. �is is because if the premise that the sequences of interest are LTR
retrotransposons is met, then it is su�cient to extract numerical features (in this case k-mers fre-
quencies), perform some pre-processing steps such as data scaling and dimensionality reduction
with PCA (principal component analysis) and train a model to predict to which lineage/family
each sequence corresponds. Currently available databases, such as InpactorDB (Chapter 5), can
be used for this task.

In contrast, detection requires other considerations. In this task, the input should be genomic se-
quences assembled as contigs, sca�olds and in the best cases whole chromosomes (called pseudo-
chromosomes). �erefore one must split these long length sequences into shorter sections so that
an ML model (which must receive inputs of the same length) predicts which segments correspond
to LTR-RTs and which do not. However, this approach presents additional challenges. Consider
dividing an input sequence of length n, into segments of length m, with an overlap of l nucleoti-
des. �e task of the model would then be to predict which segments are considered to be LTR-RTs.
But it cannot be guaranteed that the entire segment corresponds to one element and even, it can-
not be considered to be a complete LTR-RT. �e only claim that could be made is that the segment
contains nucleotides that correspond to an element. �is di�culty is due to the fact that LTR re-
trotransposons have lengths ranging from 4 thousand bases (Ikeros lineage) to 21 thousand bases
(TAT lineage) (GyDB; h�ps://gydb.org/). �erefore, if the segment length m > 4, 000, then pre-
dicted segments containing an element (e.g. from the Ikeros lineage) of length less than m could
contain other genomic components in addition to the LTR-RT. Conversely elements of lengths
greater than m (e.g. from the TAT lineage) would be split into several segments.

A possible solution to this challenge could be se�ing a segment length m small enough to detect
the shortest LTR-RTs and in the end unify the predicted segments as the longest length lineages.
Under this perspective, the classi�cation problem for the ML model would be modi�ed to the
following: Given a DNA segment of length m, predict whether this corresponds to a fragment
of an LTR-RT or not. However, this approach poses more challenges than solutions. First, the
ML model would be trained with segments of LTR-RTs (of length m) and not with the whole
sequences, taking away from the model the possibility to use important structural features such
as LTRs at the beginning and at the end, which are deterministic. In addition, di�erent regions
of the elements have important di�erences. For example, LTRs are non-coding sections that are
extremely variable between LTR-RTs of di�erent lineages/families and between plant species,
but particularly rich in AT contents. �e internal regions, on the other hand, encode enzymatic
domains and are much more conserved (Chapter 3). �erefore, using such a diverse dataset could
confound the model and not yield good results. An example case would be for the model to predict
a segment containing an enzymatic domain as a negative instance (gene) or vice versa. Another
problem is the accuracy with which the start and end position of the element within the genome
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is detected. �e goal of a model that detects elements is that the predicted start and end positions
are as close as possible to the actual ones. However, this accuracy depends on the overlapping
length l, the smaller it is, the more accurate the predictions will be. Suppose l = 10. �e algorithm
would then give predictions in the range of 10 nucleotides. Naturally, the desired accuracy would
be given with l = 1. However, such a small value would accommodate the following challenge:
the amount of information that must be repeatedly analyzed by the model. Consider that the
number of subsequences t that can be extracted from a sequence of length n, each of length m,
and with an overlapping of l, is given by the equation 10-1

t =
n−m

l
(10-1)

�erefore, by de�ning a l = 1, n −m sequences would be analyzed. If the input is a chromoso-
me of about 40 million bases, and m = 4, 000 then more than 39 million sequences would have
to be analyzed, which would make the algorithm too slow and require too many computational
resources.

To overcome the challenges presented by the LTR-RTs detection problem, a hybrid approach is
proposed in this thesis. First, the input sequences are divided into 50 thousand base segments
without overlapping. �en, these sequences are fed into a convolutional neural network called
Inpactor2 Detect (Chapter 8), which predicts whether or not the segment contains LTR-RTs and
are stored for further analysis. �e remaining segments are discarded to reduce the amount of
memory required. �en, a structure-based algorithm (LTR Finder [164]) is run to detect the con-
tained elements and predict their start and end positions. Finally, these positions are used to
extract the elements predicted by the hybrid approach of container segments. �is hybrid ap-
proach is more e�cient than analyzing each segment by the model. It also allows us to �lter
out the segments that are not of interest through a neural network (which takes seconds) and
focus the rest of the study on the segments that contain the elements. Because LTR Finder runs
sequentially, this approach uses a parallelization strategy similar to [165], where the tool is run
multiple times, once for each available core, on di�erent segments. At the end, all the results
are integrated, storing only the sequences of the predicted elements, in order to free up memory
space. Another bene�t of this approach is that the use of di�erent approaches contributes to im-
proving the reliability of the results compared to using only one [81]. Although this approach
overcomes most of the challenges, there is a problem with dividing the sequences into segments,
because some elements could be split and thus the structure-based approach would not be able to
detect them. However, in [165] it is proposed that most of these undetected LTR-RTs are repre-
sented by complete copies identi�ed in other segments, with a loss of less than 1%. Additionally,
in order to reduce this problem as much as possible, the approach proposed in this thesis can
be executed in di�erent cycles (from 1 to 5), where each cycle divides di�erently the input se-
quences in order to predict the elements that remain split in any of the partitions. At the end,
the result of all the cycles are uni�ed, eliminating those elements detected in more than one cycle.
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Despite the progress shown in the task of detecting LTR retrotransposon, this challenge is still
open, especially because of the computational time required. A possible solution could come
from a similar problem, but applied on completely di�erent data. In computer vision, the object
detection problem is quite common [166, 167]. �is problem is based on extracting features from
images in order to identify a region of interest [168] and even to predict what it corresponds
to. One of the most widely used neural networks in these tasks are CNNs and especially an
architecture called YOLO [169]. �e principle of this network is to make a single analysis of
the entire image and thus accelerate the detection of objects within it. Following this approach,
one could propose the problem of detecting LTR retrotransposons within genomes as an object
detection task as follows: consider a sca�old/chromosome as the equivalent of an image and the
LTR-RTs within the sequence as the objects of interest. �erefore, the predictions of the neural
network would be the starting position, length and lineage/family of the LTR-RTs within the
sca�old/chromosome. Applying the principle proposed by YOLO, in a single analysis cycle, both
detection and classi�cation of all the LTR retrotransposons contained within the input sequences
could be done, unifying both problems and speeding up execution times, possibly reaching the
order of seconds (using GPUs). Although this proposal sounds promising, a great deal of work is
required to realize it. First, DNA data di�er too much from images, even in the two-dimensional
representations used in this work (e.g. one-hot). For this reason, the use of transfer learning
would not be possible and a dataset specially designed for this network should be generated
that is su�ciently representative to reach a good level of generalization. �is dataset should be
constructed from genomes with a good level of TE annotation, since it should consider both the
elements of interest (LTR-RTs in this case) and all other portions of the genome, which leads to
analyzing large amounts of data. Finally, a completely new neural network should be constructed
that �ts this problem well, because it would not be feasible to use the same one published in the
YOLO work. �is task brings with it some challenges in terms of hyper-parameter tuning, the size
of the training dataset and even the hardware needed to train and tune this network. However,
thanks to advances in GPUs, with more and more dedicated memory and more CUDA cores,
the availability of large-scale analysis of TEs on hundreds of genomes, and the availability of
specialized DL frameworks in genomics, this task is now feasible and would be a line of future
work that is likely to get very good results.

10.1.3. Integration of ML models in a one-shot tool

Most existing tools to detect LTR-RTs use as input data assemblies (EDTA [82], LTR �nder [164],
LTRharvest [170], LTRdetector [171], LTR annotator [159], LTR retriever [157], DARTS [172]).
However, it is well known that assembly tools have many problems with highly repetitive sec-
tions of genomes [173, 174, 175], especially using short sequencing reads, causing most LTR-RTs
not to be assembled [176], as well as generating misorderings, deletions, collapsed repeats and
other assembly errors [177]. For this reason, it is common for detection so�ware to deal with
highly fragmented assemblies and large regions of Ns (unknown nucleotides). �is situation po-
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ses a challenge for all so�ware based on any methodology, including those based on ML, such
as the one proposed in this thesis (Inpactor2, Chapter 8). If the input assembly to the algorithm
has an N501 < 10 or 20 kb, for example, it is possible that very few complete LTR-RTs will be
detected due assembly fractionation and to the lengths of these elements (ranging from 4 thou-
sand to 21 thousand). �e problem lies in the fact that if this library is used to annotate TEs
(e.g. using RepeatMasker), there will be an underestimation of these elements to the genome size.
Other issues include the impossibility to map the insertions of LTR-RTs into chromosomes, li�le
information on interaction of the elements with genes, impossibility or unrealistic estimates of
insertion times, false estimates on the diversity of LTR-RT lineages/families, among others. A
di�erent approach could be considered to eliminate the bias produced by assemblers using se-
quencing reads directly to assemble LTR-RTs and not detecting them from fragmented assemblies
due to these same sequences. In the literature there are repetitive sequence assemblers such as
NGSReper [178], TEdna [179], REPdenovo [180], and an assembler based on De Bruijn Graphs
[181]. However, the con�dentiality of the results obtained by these algorithms is still unclear,
especially in LTR retrotransposon, because the methodologies on which they are based are not
su�ciently robust, the sequencing technologies may present high levels of noise, and there is no
clear benchmarking method to compare the results of the di�erent tools [176]. To overcome this
challenge, it would be interesting to benchmark di�erent assembly tools using a methodology
similar to [82], and include the best tool found as an additional module of the LTR-RTs detection
so�ware. However, long read sequencing technologies such as PacBio or Nanopore could o�er a
more straightforward solution. Considering that these technologies can generate sequences bet-
ween 10 to 100 kb, and even generate ultra-long-reads (> 100 kb, up to 2 Mbp) [182, 183, 184], a
complete LTR-RT element could be contained in a single read. �erefore, one could run detection
tools directly on these reads, especially those with lengths close to or greater than 40 - 50 kb,
without the need to use an assembler beforehand. Or even using automatic assemblers in order
to have sequences of even greater length. �is is because some tools analyze segments of a few
thousand base pairs at a time (e.g. Inpactor2 uses 50 kb sections or LTR Finder Parallel uses 1Mb
segments [165]. For this reason, long read sequencing technologies are expected to in�uence a
new revolution in the �eld of transposable elements [185].

Another interesting challenge arises when comparing an ML-based tool for detection and classi-
�cation of transposable elements. Due to the assembler problems discussed above, very few fully
assembled and annotated genomes currently exist. In plants, one of the best genomes is that of
rice (Oryza sativa) [82] and for this reason it was used as a reference for comparisons in Chapter
8. �e di�culties in using incomplete or low quality annotation is that one does not have enough
information to consider whether a prediction made by a tool and not found in the annotation
is a false positive. �e same is true for those elements that were not found by the tool and are
not found in the annotation, they could not be considered true negatives. �erefore, until more
and be�er assemblies and annotations are obtained, one should consider using another type of

1N50 is de�ned as the sequence length of the shortest contig at 50 % of the total genome length
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approaches based on two di�erent results: the libraries created by the programs and the anno-
tations made with these libraries. In the �rst approach (based on the libraries), one could see
which elements are found by all programs and which are speci�c to a group of tools. However,
this approach requires a great deal of manual work to check whether these elements are false
positives or not, for example by checking the element structure, as well as con�rming whether it
contains enzymatic domains and whether it has nested insertions from other TEs, making large-
scale analyses unfeasible. In addition, this approach has the problem that it would not provide
information on how representative the LTR-RTs contained in the library are, which could be ob-
tained using the annotations. In the second case (based on the annotations), one could compare
the percentage contribution of the LTR-RTs in the original annotations and in those made th-
rough the tools under review. Another challenge in comparing results is that currently only a
few programs classify LTR retrotransposons at the lineage/family level (Inpactor V1 [78], Inpac-
tor2 8, TEsorter [186]) and thus only a few genomes have annotations with elements classi�ed
at this level. �is makes it di�cult to obtain the performance of a new program that classi�es
LTR-RTs into lineages/families.

Another factor to consider when implementing ML-based so�ware is whether to split the dif-
ferent tasks into multiple models or to pursue a single-model approach. �ese tasks could be:
receiving the input data and transforming them accordingly, detecting LTR-RTs, �ltering out
those that do not correspond to a good reference, classifying them and �nally annotating them.
On the other hand, the goal of any tool should be to be easy to install and use, so that a user with
li�le computational knowledge should be able to execute all these tasks and obtain the results
without further interaction. �us, one consideration could be to use a single model (e.g. a neural
network) that is designed, trained and integrated into the so�ware to perform all the tasks in a
uni�ed way. �is case would be ideal because predictions could be generated much faster, errors
would not propagate through the other models, and maintenance or retraining would be much
simpler. However, this approach is much more complex to achieve (see Section 10.1.2). �e other
way would be to train an independent model to perform a speci�c task (such as the one shown in
Chapter 6). For example, Chapter 7 presents a neural network, called Inpactor2 Filter, which was
designed, tuned and trained with the sole objective of �ltering sequences that do not correspond
to good references. On the other hand, three other neural networks are presented in Chapter 8
to detect, count k-mers and classify elements. �is approach, although it tends to be a bit more
complex, improves the performances of each model separately, because each task has di�erent
speci�cities requiring di�erent datasets that, in some cases, require di�erent coding schemes.

10.2. Conclusions

�e research presented in this paper has the following conclusions:

In the design of an ML-based application to study LTR retrotransposons, it is crucial to use
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an encoding or feature extraction scheme that provides as much information as possible to
the model. �e performance of the model in terms of precision, accuracy, sensitivity, among
others, depends largely on this process. In this sense, for the three tasks presented in the
approach proposed by this thesis (detection, �ltering and classi�cation), the information
provided by the k-mers frequencies (with 1 <= k <= 6) are su�cient to train a model and
obtain promising results.

ML models trained with currently available LTR retrotransposon datasets that di�er from
each other in their properties (such as curation levels and sequence types, consensus or in-
dividual genomic sequences) have signi�cant di�erences in performance, especially for the
F1-Score metric. Curated datasets and those containing consensus sequences are the best.
For this reason, it is possible to unify available datasets by creating consensus sequences
from those containing individual genomic sequences. �is technique increases the amount
of usable data in the design and construction of an ML-based tool.

�e best algorithms for the detection problem (treated as a binary problem) were MLP, SVC,
and LR with performances between 95 and 97% on F1-Score. In the lineage classi�cation
task (multiclass problem) the best were KNN, LDA, and SVC with F1-Score between 96

to 97%. In a mixed problem (detection + classi�cation) the best results were obtained by
KNN and LDA with F1-Score scores of 94 to 95%. On the other hand, using fully connected
neural networks, higher F1-Scores were obtained in each of the problems treated (98% in
all three cases) with shorter training times and predictions in less time.

Inpactor2 obtained the highest accuracy and F1-Score of the so�ware compared in this
work, with 96.1% and 91.9%. It also obtained the second best values in speci�city, preci-
sion and FDR, second only to EDTA. However, Inpactor2 obtained 28% more sensitivity
than EDTA.

Inpactor2 is up to seven times faster than EDTA. �is is especially true for larger genomes
(Zea mays). In addition, Inpactor2 can be run in minutes on genomes up to 1.2 Gb (the
Co�ea arabica genome was run in 26 minutes). Finally, Inpactor2 can be installed in an
anaconda environment and run using only one command line. �ese results demonstrate a
proper integration and implementation of ML models for analyzing LTR-RTs into a usable
tool for researchers interested in this topic of study.

�e use of Inpactor2 has made it possible to analyze LTR-RTs in large-scale studies. In
particular, it was applied to the study of 46 wild species of the genus co�ea in order to
answer the question of whether these elements in�uence genome size diversity within the
genus. Using this tool, it was possible to obtain the results in less time and in an automatic
way, demonstrating that LTR-RTs have in�uenced the evolution of genomes in the genus
co�ea. In particular, it was shown that they in�uence the variability in genome size of the
di�erent phylogeographic groups, especially those of the Tekay/Del lineage/family.



10.3 Contributions 69

10.3. Contributions

During the execution of this doctoral thesis, new knowledge products such as scienti�c articles,
conference proceedings, papers and scienti�c so�ware were produced. �ese products are listed
in table 10-1.

Title Product type Year Category Journal Link
Retrotransposons in plant genomes: structure,
identi�cation, and classi�cation through
bioinformatics and machine learning

Review article 2019 Q1 IJMS Link

A systematic review of the application of machine
learning in the detection and classi�cation of
transposable elements

Review article 2019 Q1 PeerJ Link

Measuring performance metrics of machine
learning algorithms for detecting and classifying
transposable elements

Research article 2020 Q2 Processes Link

InpactorDB: a classi�ed lineage-level plant LTR
retrotransposon reference library for free-alignment
methods based on machine learning

Research article 2021 Q1 Genes Link

K-mer-based machine learning method to classify
LTR retrotransposons in plant genomes Research article 2021 Q1 PeerJ Link

Inpactor2: A so�ware based on deep learning to
identify and classify LTR retrotransposons in plant
genomes

Research article 2022 Q1 BIB -

Automatic curation of LTR retrotransposon
libraries from plant genomes through machine learning
genomes

Research article 2022 Q2 JIB -

Deep Neural Network to Curate LTR Retrotransposon
Libraries from Plant Genomes Proceedings 2021 - LNNS Link

SENMAP: A Convolutional Neural Network
Architecture for Curation of LTR-RT Libraries
from Plant Genomes

Proceedings 2021 - IEEE Xplore Link

Inpactor2 So�ware 2022 - - Link

Table 10-1.: Articles, proceedings, and so�ware generated during the doctoral thesis. Articles
without link are currently under review.

In addition, the results obtained in this work were divulged in di�erent scienti�c events (Table
10-2).

https://www.mdpi.com/1422-0067/20/15/3837/htm
https://peerj.com/articles/8311/
https://www.mdpi.com/2227-9717/8/6/638
https://www.mdpi.com/2073-4425/12/2/190
https://peerj.com/articles/11456/
https://link.springer.com/chapter/10.1007/978-3-030-86258-9_9
https://ieeexplore.ieee.org/abstract/document/9626130
https://github.com/simonorozcoarias/Inpactor2
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Title Year Event Link
Identi�cation and Annotation of LTR retrotransposons:
A challenge to understand the plant genome structure
and evolution

2019 V CCBCOL.
Ibagué, Colombia -

Machine Learning en Identi�cación y clasi�cación
de retrotransposones en genomas de plantas. 2020

XVIII Jornadas de Ingenierı́a
Universidad de Caldas.
Manizales, Colombia

-

A Machine Learning-based approach to identify
and classify LTR retrotransposons in plant genomes. 2021

GDR 3546 French meeting
of Transposable Elements.

Paris, France
-

Deep Neural Network to Curate LTR
Retrotransposon Libraries from Plant Genomes 2021 15th PACBB.

Salamanca, Spain Link

Analysis in silico of transposable elements:
towards tools based on machine learning. 2021 ALAG 2021.

Valdivia, Chile Link

Inpactor2: A Neural Network-based approach
to identify and classify LTR retrotransposons
in plant genomes.

2021
1st FLA Workshop

on Omics and Bioinformatics
Santiago de Chile, Chile

Link

Table 10-2.: Oral presentations that were done during the doctoral thesis.

https://www.pacbb.net/
https://alagenet.org/alag2021/
https://www.telearning.org/workshop
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[40] P. Larrañaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. A. Lozano, R. Armañan-
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[50] G. Eraslan, Ž. Avsec, J. Gagneur, and F. J. �eis, “Deep learning: new computational mode-
lling techniques for genomics,” Nature Reviews Genetics, vol. 20, no. 7, pp. 389–403, 2019.

[51] T. Yue and H. Wang, “Deep learning for genomics: A concise overview,” arXiv preprint
arXiv:1802.00810, 2018.

[52] J. Zou, M. Huss, A. Abid, P. Mohammadi, A. Torkamani, and A. Telenti, “A primer on deep
learning in genomics,” Nature Genetics, vol. 51, no. 1, pp. 12–18, 2019.

[53] L. Koumakis, “Deep learning models in genomics; are we there yet?,” Computational and
Structural Biotechnology Journal, vol. 18, pp. 1466–1473, 2020.

[54] M. H. P. da Cruz, D. S. Domingues, P. T. M. Saito, A. R. Paschoal, and P. H. Buga�i, “TERL:
classi�cation of transposable elements by convolutional neural networks,” Brie�ngs in Bio-
informatics, vol. 22, may 2021.

[55] H. Yan, A. Bombarely, and S. Li, “DeepTE: a computational method for de novo classi�cation
of transposons with convolutional neural network.,” Bioinformatics (Oxford, England), 2020.

[56] S. Orozco-Arias, M. S. Candamil-Cortes, P. A. Jaimes, E. Valencia-Castrillon, R. Tabares-
Soto, R. Guyot, and G. Isaza, “Deep neural network to curate ltr retrotransposon libraries
from plant genomes,” in International Conference on Practical Applications of Computational
Biology & Bioinformatics, pp. 85–94, Springer, 2021.

[57] N.-S. Kim, “�e genomes and transposable elements in plants: are they friends or foes?,”
GENES & GENOMICS, vol. 39, pp. 359–370, apr 2017.

[58] G. Usai, F. Mascagni, L. Natali, T. Giordani, and A. Cavallini, “Comparative genome-wide
analysis of repetitive DNA in the genus Populus L.,” Tree Genetics & Genomes, vol. 13, p. 96,
oct 2017.

[59] C. R. L. Huang, K. H. Burns, and J. D. Boeke, “Active transposition in genomes.,” Annual
review of genetics, vol. 46, pp. 651–75, dec 2012.

[60] A. Testori, L. Caizzi, S. Cutrupi, O. Friard, M. De Bortoli, D. Cora, and M. Caselle, “�e role
of transposable elements in shaping the combinatorial interaction of transcription factors,”
BMC genomics, vol. 13, no. 1, pp. 1–16, 2012.

[61] M.-A. A. Grandbastien, “LTR retrotransposons, handy hitchhikers of plant regulation and
stress response,” Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, vol. 1849,
pp. 403–416, apr 2015.

[62] N. Krom and W. Ramakrishna, “Retrotransposon insertions in rice gene pairs associated
with reduced conservation of gene pairs in grass genomes.,” Genomics, vol. 99, pp. 308–14,
may 2012.



Bibliography 77

[63] J. Lee, N. E. Waminal, H.-I. Choi, S. Perumal, S.-C. Lee, V. B. Nguyen, W. Jang, N.-H. Kim,
L.-Z. Gao, and T.-J. Yang, “Rapid ampli�cation of four retrotransposon families promoted
speciation and genome size expansion in the genus Panax.,” Scienti�c reports, vol. 7, p. 9045,
aug 2017.

[64] M. Elbaidouri and O. Panaud, “Genome-Wide Analysis of Transposition Using Next Ge-
neration Sequencing Technologies,” in Plant Transposable Elements, pp. 59–70, Springer,
2012.

[65] L. Wang, Y. He, H. Qiu, J. Guo, M. Han, J. Zhou, Q. Sun, and J. Sun, “Mdoryco1-1, a bidi-
rectionally transcriptional Ty1-copia retrotransposon from Malus x domestica,” SCIENTIA
HORTICULTURAE, vol. 220, pp. 283–290, jun 2017.

[66] R. C. Paz, M. E. Kozaczek, H. G. Rosli, N. P. Andino, and M. V. Sanchez-Puerta, “Diversity,
distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum
lycopersicum.,” Genetica, vol. 145, pp. 417–430, oct 2017.

[67] M. Iquebal, S. Jaiswal, C. Mukhopadhyay, C. Sarkar, A. Rai, and D. Kumar, “Applications of
bioinformatics in plant and agriculture,” in PlantOmics: �e Omics of Plant Science, pp. 755–
789, Springer, 2015.

[68] H. Z. Girgis, “Red: An intelligent, rapid, accurate tool for detecting repeats de-novo on the
genomic scale,” BMC Bioinformatics, vol. 16, no. 1, pp. 1–19, 2015.

[69] G. I. Arabidopsis, S. Kaul, H. L. Koo, J. Jenkins, M. Rizzo, T. Rooney, L. J. Tallon, T. Feldblyum,
W. Nierman, M. I. Benito, X. Lin, and Others, “Analysis of the genome sequence of the
�owering plant Arabidopsis thaliana,” Nature, vol. 408, no. December, pp. 796–815, 2000.

[70] J. Yu, S. Hu, J. Wang, G. K. Wong, S. Li, B. Liu, Y. Deng, L. Dai, Y. Zhou, X. Zhang, M. Cao,
J. Liu, J. Sun, J. Tang, Y. Chen, X. Huang, W. Lin, C. Ye, W. Tong, L. Cong, J. Geng, Y. Han,
L. Li, W. Li, G. Hu, J. Li, Z. Liu, Q. Qi, T. Li, X. Wang, H. Lu, T. Wu, M. Zhu, P. Ni, H. Han,
W. Dong, X. Ren, X. Feng, P. Cui, X. Li, H. Wang, X. Xu, W. Zhai, Z. Xu, J. Zhang, S. He,
J. Xu, K. Zhang, X. Zheng, J. Dong, W. Zeng, L. Tao, J. Ye, J. Tan, X. Chen, J. He, D. Liu,
W. Tian, C. Tian, H. Xia, Q. Bao, G. Li, H. Gao, T. Cao, W. Zhao, P. Li, W. Chen, Y. Zhang,
J. Hu, S. Liu, J. Yang, G. Zhang, Y. Xiong, Z. Li, L. Mao, C. Zhou, Z. Zhu, R. Chen, B. Hao,
W. Zheng, S. Chen, W. Guo, M. Tao, L. Zhu, L. Yuan, and H. Yang, “A dra� sequence of the
rice genome (Oryza sativa L. ssp. indica),” Science, vol. 296, no. 5565, pp. 79–92, 2002.

[71] R. Akakpo, M.-C. Carpentier, Y. Ie Hsing, and O. Panaud, “�e impact of transposable
elements on the structure, evolution and function of the rice genome,” New Phytologist,
vol. 226, no. 1, pp. 44–49, 2020.



78 Bibliography

[72] M. Domı́nguez, E. Dugas, M. Benchouaia, B. Leduque, J. M. Jiménez-Gómez, V. Colot, and
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