INTRODUCCIÓN

El municipio de Villamaría está ubicado sobre el flanco occidental de la cordillera central Colombiana al sur del departamento de Caldas, limitando al norte con el municipio de Manizales, al sur con el departamento de Risaralda, al este con el departamento del Tolima y al oeste con el municipio de Chinchiná (Caldas).

Geológicamente el territorio de Villamaría yace sobre rocas sedimentarias y esquistos y depósitos fluvio-volcánicos con edades desde el cretácico inferior hasta el cuaternario reciente, generadas en diferentes eventos de tectonismo, plutonismo y sedimentación, que sufren denudación (erosión y movimientos en masa) por la acción de las fuentes de agua superficial, muy abundantes en el territorio municipal.

La zona de estudio comprende las laderas por donde recorren las tuberías de aducción del acueducto de Villamaría, desde la bocatoma, ubicadas en las quebradas Chupaderos y La Albania, hasta la planta de tratamiento del acueducto municipal.

Dada la importancia social y económica del agua, transportada por estas tuberías, se pretende caracterizar y establecer las zonas de mayor inestabilidad en todo su recorrido, brindando información que permita, reubicar y mejorar las condiciones actuales. El agua, como recurso vital debe poseer unas características adecuadas para el consumo, tanto en lo relacionado con las condiciones físicas y químicas, como en su suministro.

El crecimiento de las ciudades lleva a las administraciones municipales a planear y mejorar los servicios básicos de la comunidad, con el fin de brindar una mejor calidad de vida a los habitantes.

Es innegable la necesidad que posee el municipio de Villamaría con respecto a normalizar el suministro de agua potable, que se ve interrumpido por los constantes procesos denudativos como la reactivación de antiguos procesos y la generación de nuevos, que afectan la adecuada conducción del agua, desde la bocatoma hasta los hogares.

Con la caracterización y la zonificación planteada en esta propuesta se da un primer paso para encontrar las áreas críticas en lo relacionado con las líneas de conducción de agua, con el fin de tomar las medidas del caso y generar un mejoramiento del servicio de acueducto, aunque esto conlleva una serie de inversiones significativas, que dada la importancia de este servicio público se deben realizar lo antes posible.
1. GENERALIDADES

1.1 OBJETIVOS

1.1.1 Objetivo General

Caracterizar los materiales y zonificar la susceptibilidad del terreno a los movimientos en masa, a través de las líneas de conducción de agua del municipio de Villamaría, desde la bocatoma hasta la planta de tratamiento (escala 1:10000).

1.1.2 Objetivos específicos

- Cartografiar a través de mapas temáticos los parámetros relacionados con las unidades geológicas, los usos del terreno, la geomorfología y las pendientes.

- Determinar en un mapa la susceptibilidad del terreno a los procesos denudativos (erosión y movimientos en masa), determinando los sitios inestables que pueden afectar las tuberías del acueducto.

- Caracterizar los estados de actividad, materiales y las causas de los diferentes tipos y subtipos de movimientos en masa.

- Recomendar obras de estabilización para los lugares que presentan problemas.

1.2 METODOLOGÍA

1.2.1 Recopilación y revisión de la literatura existente.

Se revisaran los diferentes trabajos realizados en el área de interés, al igual que las diversas metodologías empleadas por los autores para el desarrollo de sus trabajos.
1.2.2 Revisión de fotografías y análisis foto-geológico.

Se reconocerán diferentes características de la zona como litología y la relación entre las unidades, fallas, uniformidad entre pendientes, los movimientos en masa, las geoformas y la densidad de drenajes, así como los usos del terreno y se complementara con la información obtenida en la fase de campo.

1.2.3 Trabajo de campo

Se realizarán recorridos del terreno, recolectando la información necesaria para verificar la obtenida en las dos fases anteriores y para la elaboración de los mapas. Se definirán unidades geológicas y geomorfológicas, se observará el uso actual del terreno, las pendientes de las laderas y los procesos denudativos (erosión y movimientos en masa). Este trabajo de campo actualizará la evolución histórica del terreno, dado que no hay plancha topográfica y fotografías aéreas recientes del sector.

1.2.4 Análisis y zonificación de la susceptibilidad

El mapa de susceptibilidad se obtuvo utilizando métodos heurísticos basados en el conocimiento del terreno, la recopilación y evaluación de información secundaria y levantamientos del terreno, superponiendo los mapas geológico-estructural, usos del terreno, hidrológico y pendientes con el mapa de procesos denudativos (erosión y movimientos en masa).

1.3 LOCALIZACIÓN Y VÍAS DE ACCESO

El municipio de Villamaría se ubica al sur del departamento de Caldas, dista 2km en línea recta y 8km por carretera, del centro de Manizales, la capital del departamento, con una altura de 1920msnm, un régimen de precipitación entre 2000mm/año y 2200mm/año, una temperatura promedio de 18 °C y una extensión de 457,8km².

La zona de estudio (figura 1) comprende el área de influencia de la línea de conducción del acueducto del municipio de Villamaría, desde la bocatoma, ubicadas en las quebradas Chupaderos y La Albania, hasta la planta de tratamiento; con un área aproximada de 21.2km² en el sector Florida.
Para llegar a la zona desde Villamaría se puede hacer por Lusitania en la vía Panamericana hasta la finca Albania ubicada en el sector del Argel, desde este lugar se llega hasta la bocatoma; otra vía de acceso es por el sector del Pindo hasta la finca Delicona.

La zona se encuentra localizada entre las coordenadas planas:

X: 1°074.000 Y: 848.000
X: 1°043.000 Y: 842.000

Tomadas de la plancha topográfica 206-III-D del Instituto Geográfico Agustín Codazzi (IGAC), a escala 1:25000.
Figura 1. Localización de la zona de estudio
2. MARCO GEOLÓGICO Y ESTRUCTURAL

2.1 GEOLOGÍA REGIONAL

En la región de Villamaría y Manizales afloran las rocas metasedimentarias del Complejo Quebradagrande (Valanginiano - Albián) (Gómez y otros, 1995), sobre el cual se depusitaron discordantemente la formación Manizales, la formación Casabianca que también se deposita sobre la formación Manizales y por último los depósitos aluviales y de caída piroclástica que representan las últimas etapas eruptivas del complejo volcánico Ruiz-Tolima (Naranjo y Ríos, 1989; Figura 2).

2.1.1 Complejo Quebradagrande.

Es un conjunto de rocas volcánicas y meta-sedimentarias de afinidad oceánica, en una franja alargada con disposición principal N-S, que está limitada al W por la falla Silvia Pijao, que lo separa del Complejo Arquía y limitado al E por la falla San Jerónimo que lo separa del Complejo Cajamarca (Nivia y otros, 1996). Está compuesto por lodoítas negras, chert, arenitas, conglomerados, brechas, rocas piroclásticas, basaltos, andesitas y en ocasiones ultra-máficas, gabros y algunas rocas metamorfoseadas regionalmente.

Moreno y Pardo (2003), lo dividen en dos grandes sectores con marcadas diferencias petrográficas y facies características. El sector oriental formado de lodoítas negras, chert, conglomerados cuarzosos y arenitas cuarzosas y el sector occidental formado de lodoítas negras, chert y arcillolitas silíceas, con areniscas feldespáticas y conglomerados ricos en líticos volcánicos intercalados con tobas básicas, andesitas y basaltos.

Para este Complejo ha sido reportada una edad Valanginiano-Albiano por datación de fauna que incluye amonites, lamelibranquios, gasterópodos, radiolarios, restos de plantas y braquiópodos (Gómez y otros, 1995). Restrepo y Toussaint (1978), por su parte reportan datación sobre basaltos, con edad de 105+-10ma por el método K-Ar en roca total, que es coherente con la edad representada en los fósiles.

En cuanto a su ambiente de formación, Restrepo y Toussaint (1975), por su abundancia en piroclastos, proponen un arco insular más que una corteza oceánica. Nivia (1996), propone una cuenca continental intracratónica. Moreno y Pardo (2003), plantean una pila remanente de arco volcánico y porciones de la placa proto-caribe, que fueron acribroncadas y obducidas al borde oeste de Colombia durante el Cretácico tardío. Así el lado Oeste del Complejo Quebradagrande se formó en un arco de Islas asociado a una zona de subducción con sedimentación volcánica y clástica adyacente y el sector Este se formó en un ambiente marino a lo largo de una margen continental pasiva; con depósitos pelágicos y hemi-pelágicos predominando en la zona central de esta cuenca.

2.1.2 Formación Manizales.

Se le da el nombre de Formación Manizales a un grupo de rocas sedimentarias volcanogénicas, provenientes del complejo volcánico Ruiz-Tolima, que afloran en la carretera Manizales-Arauca, en el río Chinchiná y en el municipio de Chinchiná (Naranjo y Ríos, 1989).
Esta unidad reposa de manera discordante sobre el Complejo Quebradagrande y está suprayacida en contacto concordante y discordante por la formación Casabianca (Herrera y otros, 2003). Está compuesta de conglomerados, con matriz arcillosa de limo, arena y grava y sin material volcánico. Estos conglomerados pasan en contacto erosivo a una secuencia de rocas volcániclasicas que corresponden a conglomerados tobáceos y areniscas tobáceas (Naranjo y Ríos, 1989). La edad de esta formación es Mioceno superior- Plioceno temprano (Herrera y otros, 2003).

2.1.3 Formación Casabianca.

Se denomina como formación Casabianca a un grupo de sedimentos volcanogénicos gruesos y en menor proporción ignimbritas, tobas y sedimentos volcánicos retrabajados de grano fino (Naranjo y Ríos, 1989). De acuerdo a Herrera y otros (2003) suprayacen la formación Manizales en contacto concordante. El origen de estos depósitos comprende un periodo de gradación sin-eruptiva, con la depositación de una espesa sucesión de flujos fluvio-volcánicos (lahares y flujos de corriente) y piroclásticos (Herrera y otros, 2003).

2.1.4 Stock de Manizales

Es un cuerpo ígneo intrusivo, de textura fanerítica, con cristales finos a medios de biotita, cuarzo, plagioclase Y feldespato potásico. Gonzáles (1990), lo describe como un cuerpo de forma irregular y composición tonalítica, cubierto en gran parte por depósitos piroclásticos del complejo volcánico Ruiz-Tolima, que intruye las rocas metamórficas del Complejo Cajamarca.

2.1.5 Depósitos de Flujo de Lodo en el Río Chinchiná.

Se ubican a ambas orillas del Río Chinchiná, desde el barrio Enea hasta la parte baja del municipio de Villamaría, donde se acumulo al estrecharse el cauce del río Chinchiná (Naranjo y Ríos, 1989). Se encuentra de manera discordante sobre las rocas del Complejo Quebradagrande y su depositación es de edad Cuaternaria. Están conformados por clastos principalmente de pórfidos andesíticos, lavas y granodioritas (Echavarría y otros, 1991).
2.1.6 Depósitos de Caída Piroclástica.

Estos afloran en una extensa región cubriendo las litologías de mayor antigüedad; está conformada por ceniza (tamaño arena) y Lapilli, los cuales suavizan la topografía (Castaño y otros, 2003).

Representan las últimas etapas eruptivas del complejo volcánico Ruiz-Tolima (Naranjo y Ríos, 1989). Depositados durante un intervalo de tiempo del 39.000 años al presente hasta menos de 5.000 años al presente (Herrera y otros, 2003).

Estos depósitos son correlacionables con el segundo período la Sultana-Arrow o set II, tomando como referencia a Aguirre y Dunoyer (1997), los cuales abarcan un rango de tiempo entre 5000 y 31170 ± 980 años. Estas cenizas se caracterizan por su grado de alteración y variaciones litológicas, se puede dividir en dos subperíodos: El subperíodo superior la Sultana-Arrow o set IIa que consiste en una serie de capas de cenizas medianas y finas de color pardo, masivas con pómez esparcida esporádicamente, interestratificadas con capas de cenizas gruesa color gris, las cuales constituyen horizontes guías para correlación.

El subperíodo inferior la Sultana-la Francia o set IIb se identifica por la misma intercalación pero difiere por la presencia de capas delgadas de lapilli hacia la parte inferior del subperíodo y remoción en algunas de las capas de ceniza gruesa, además de un grado de alteración mayor.

2.1.7 Depósitos de origen aluvial.

Los depósitos de origen aluvial se presentan principalmente en las orillas del río Chinchiná y de las quebradas Manizales, Chupaderos y Albania.

Son de espesores variables y contactos erosivos con las unidades infrayacentes. Están constituidos por bloques de composición variable, mal seleccionados, angulares y embebidos en una matriz arenolosos (Echavarría, 1991, en Gutiérrez y otros, 2004).

2.2 GEOLOGIA LOCAL

2.2.1 Complejo Quebradagrande (Kqg)

El Complejo Quebradagrande forma el basamento de la zona, esta suprayacido de manera discordante por depósitos de caída piroclástica. Este Complejo aflora
generalmente sobre el cauce de las quebradas y los lugares donde se presenta una alta disección por procesos erosivos y movimientos en masa, como en los sectores de La quebrada Albania, finca La Siberia (vía Villamaría - El Pindo), Vía barrió Lusitania - Argel y por San Antonio.

Este esta compuesto por una secuencia de rocas sedimentarias levemente afectadas por eventos tectónicos y metamórficos, evidenciados por fallas locales como Villamaría -Termales y La Albania, por discontinuidades y por una leve esquistosidad; esta secuencia en general esta representada por arcillolitas y lodolitas siliceas (Figura 3).

Las arcillolitas están en paquetes de arcillolitas siliceas grises de muy alta dureza y muy competentes debido a la re-cristalización; paquetes de arcillolitas arcillosas incompetentes, blancas y saturadas y por paquetes de arcillolitas grafitosas, oscuras a negras, con alta concentración de materia orgánica (Figura 4). Estos paquetes presentan una estratificación plana paralela, con tendencia estructural N80E/22SE y con discontinuidades N20E/62SE y N85E/80NW (Tabla 1).

Figura 3. Afloramientos del Complejo Quebradagrande como arcillolitas en paquetes expuestas en predios de la finca La Siberia (a) y lodolitas (Kgg) en la quebrada Albania (b)
Figura 4. Columna estratigráfica perteneciente a las arcillolitas en paquetes.

Tabla 1. Datos estructurales tomados para el Complejo Quebradagrande en la zona de estudio

<table>
<thead>
<tr>
<th>Dato</th>
<th>Rumbo</th>
<th>Buzamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estratificación</td>
<td>N80E</td>
<td>22SE</td>
</tr>
<tr>
<td>Discontinuidad</td>
<td>N20E</td>
<td>62SE</td>
</tr>
<tr>
<td>Discontinuidad</td>
<td>N85E</td>
<td>80NW</td>
</tr>
</tbody>
</table>

Las lodolitas son silíceas, amarillas cremas, dispuestas en capas con laminación plana paralela de orientación N33W/15NE leve estructura esquistosa, como se puede observar en la vía que conduce del barrio Lusitania en Manizales hacia el sector del Argel y sobre el cauce de la quebrada Albania.
2.2.2 Depósitos de Caída Piroclástica (Qcp)

La mayor parte de la zona se encuentra cubierta por depósitos de caída piroclástica de las últimas etapas de actividad explosiva del Complejo volcánico Ruiz-Tolima. Estos depósitos cubren de manera discordante las rocas del Complejo Quebradagrande y están compuestos, de techo a base, por capas de ceniza fina, lapilli interstratificadas y en la base ceniza tamaño media a gruesa con contactos netos y espesores métricos a decimétricos de acuerdo al lugar donde afloran (Figura 5).

Las capas de ceniza fina (Qcpf) son de color pardo oscuro de consistencia adherente, plástica y muy friable, de tamaño de grano fino hasta medio y composición de vidrio, cuarzo, plagioclasa, hornblenda, pómez y óxidos. En esta capa algunas veces se observan lentes de lapilli.

Figura 5. Deposito de caída piroclástica, se observa la división de los niveles de ceniza
Los niveles de lapilli (Qcp) presentan color amarillo pardo, de tamaño grueso a grava, de baja esfericidad, de sub-redondeados a sub-angulares y algunos se presentan de alta esfericidad de angulares a muy angulares, compuestos de fragmentos rotos, pómez y escorias.

Los niveles de ceniza media (Qcpm) son de color gris no consolidados, de tamaño de grano de medio a grueso y composición de vidrio, cuarzo, pómez, biotita, plagioclasa, horblenda y líticos.

2.2.3 Depósitos aluviales (Qal)

Los depósitos de origen aluvial están asociados a las quebradas Chupaderos y Albania, corresponden a conglomerados clastossoportados polimicticos moderadamente consolidados mal seleccionados, de fábrica aleatoria, depositados discordantemente sobre el Complejo Quebradagrande (Figura 6).

Los clastos varían de subangulares a subredondeados de baja esfericidad con tamaño de grano que va de bloques a clastos tamaño guijo, con composición de chert, cuarzo y fragmentos de rocas del Complejo Quebradagrande; la matriz es de tamaño arena fina a media, color gris oscuro y con la misma composición de los clastos, localmente se presenta imbricación.

Figura 6. Afloramiento de depósito aluvial de la quebrada La Albania
2.3 GEOLOGIA ESTRUCTURAL

Estructuralmente La mayor parte de estas unidades geológicas se encuentran afectadas tectónicamente por los sistemas de fallas Cauca-Romeral representadas en las fallas San Jerónimo con dirección predominante N-E, Santa Rosa con una tendencia S-E, Villamaría-Termales con dirección N-W, Albania N14E y El Perro con una tenencia N-W.

2.3.1 Falla San Jerónimo

Cruza las cuchillas Santa Clara y San Narciso al Norte del Río Chinchiná con dirección N14E y continua hasta truncarse con la falla El Perro cerca de Manizales, pertenece al sistema de fallas Romeral y pone en contacto rocas metamórficas del Complejo Cajamarca al Este con rocas sedimentarias del Complejo Quebradagrande al Oeste (Betancourt y otros, 1998).

2.3.2 Falla Santa Rosa

Se localiza al SE de la cuenca del Río Chinchiná, involucra la parte Norte del Nevado del Ruiz y continua hasta donde se cruza con la falla Palestina, ejerce control estructural sobre los cauces de Río Molinos y Río Claro (Betancourt y otros, 1998).

2.3.3 Falla Villamaría-Termales

Esta falla afectas rocas del Complejo Quebradagrande, Complejo Cajamarca, Stock de Manizales y lavas de antiguas erupciones del Complejo Volcánico Ruiz-Tolima (Naranjo y Ríos, 1989). Posee una dirección aproximada N60W y su expresión en superficie semeja un sistemas de fallas de carácter normal, segmentadas por barreras con dirección predominante NNW y NS; delimitada al W por la falla Romeral y al E por la falla San Jerónimo (Gonzáles y Jaramillo, 2002).

Naranjo y Ríos (1989) denominaron esta estructura como falla Villamaria-Manizales, que corresponde a un fallamiento rumbodeslizante distensivo, desplazado por el sistema de fallas compresivas N-S.
En la zona de estudio se presenta evidencias del trazo de esta falla con tendencia NW, con características morfotectónicas como facetas triangulares, hombreras, silletas, control y deflexión de cauces, como sucede en la quebrada Chupaderos.

2.3.4 Falla La Albania

Pertenece al sistema de fallas Romeral y tiene una dirección aproximada de N14E, su trazo se corta con la falla El Perro cerca de la ciudad de Manizales, con una longitud total de 23km de los cuales 18km se encuentran en el departamento de Caldas.

Esta falla se evidencia en la zona de estudio con una dirección predominante N-S con características morfotectónicas asociadas como deflexiones de cauces de orden menor, facetas triangulares, silletas, hombreras y principalmente cambios altimétricos.

2.3.5 Falla El Perro

Definida por Naranjo y Ríos (1989) como falla El Perro ya que controla el cauce de la quebrada que lleva el mismo nombre, correspondiendo al primer sistema de la falla San Jerónimo con una dirección N-S.

Atraviesa al Este de Manizales y toda la cuenca del Río Chinchiná en dirección N15E, presentando continuidad tanto al Norte como al Sur (Betancourt y otros, 1998).

Controla tectónicamente las quebradas El Perro, Minitas y Chupaderos. Más hacia el sur toma una dirección N25W. Morfotectónicamente controla el cauce de la quebrada Chupaderos generando silletas, cambios altimétricos de cuchillas, hombreras, colinas deflectadas y facetas triangulares (Henao y otros, 2003).
3. GEOMORFOLOGÍA

Las geoformas que configuran el paisaje actual de Villamaría, combinan sistemas montañosos de pendientes suaves y fuertes, sometidos en los últimos 50.000 años a fenómenos de erosión y movimientos en masa como a procesos de depositación, que enmascaran los procesos tectónicos y volcánicos y que son transformados por los usos antrópicos. En términos generales la región de Villamaría constituye un sistema cordillerano estructurado y denudacional en contacto con un sistema volcánico, que se han transformado por procesos denudativos.

Se debe aclarar que en el mapa de procesos denudativos, los procesos de erosión y especialmente los movimientos en masa se han ampliado en su escala para detallarlos y ubicarlos.

3.1 GEOFORMAS

Para las Quebradas Chupaderos y Albania (Figura 7), se define un valle intramontano abierto en forma de “V”, con una cuchilla sub-redondeada de vertientes moderadas y laderas convexas y complejas, denominada cuchilla de Albania.

Las rocas del Complejo Quebradagrande han dado lugar a la formación de colinas alargadas de pendientes escarpadas, con laderas cóncavas y convexas, constituyendo una topografía montañosa ondulada con disección y densidad de drenaje moderados.

Figura 7, Cuchilla de la Albania vista desde la carretera que conduce hacia la finca La Sibería. Observe sus vertientes moderadas (Vm), las laderas convexas y complejas (Lc), al igual que el nacimiento de la quebrada La Albania (Nq)
Las colinas y montañas alargadas de pendientes moderadas, que cubren la mayor parte del área de estudio se encuentran asociados a los depósitos de cenizas volcánicas que cubren el Complejo Quebradagrande; generando una topografía ondulada de morfología suave y redondeada, con laderas cóncavo-convexas, con disección y densidad de drenaje moderado.

Para el sector de Florida, cambia el relieve montañoso, debido a la intervención del hombre, con la realización de cortes y explanación, para el desarrollo de infraestructura urbana.

3.2 PROCESOS DENUDÁTIVOS

3.2.1 Erosión

La erosión es el conjunto de procesos físicos de arranque, transporte y depositación de materiales en la superficie, a causa de la acción de diversos agentes como la gravedad, el agua, el viento y los organismos vivos, modificando el paisaje. Actualmente la mayor parte de estos procesos erosivos son causados por diferentes actividades humanas no controladas como el mal uso del terreno y el manejo inadecuado o insuficiente de las aguas lluvias (escorrentía e infiltración).

3.2.1.1 Erosión Laminar por Escorrentía Superficial

Este fenómeno es muy común cuando el material superficial es arcilloso y no permite la infiltración, en especial en sectores sin cobertura vegetal, donde la exposición del suelo es continua y permite la escorrentía superficial, deteriorando las unidades superficiales para la posterior formación de surcos y cárcavas. Es de especial importancia en los cuerpos de movimientos en masa tipo deslizamientos y flujos.

3.2.1.2 Erosión en Surcos

Suceede cuando el agua de escorrentía se canaliza y su flujo se toma turbulento, formando pequeños canales serpenteanes (Figura 8) y relativamente paralelos, que siguen la dirección de menor pendiente. Al aumentar la velocidad incrementa el poder erosivo generando incisiones mas profundas que si no son controladas pueden generar cajones o cárcavas. Por lo general este proceso se encuentra asociado al terracería.
3.2.1.3 Terraceo

Este es el fenómeno erosivo más frecuente (ocho procesos), debido al uso ganadero de las laderas sembradas con pasto, que destruyó la cobertura vegetal y favorece la infiltración de las aguas lluvias. Este proceso se observo en los terrenos destinados al pastoreo ubicados en los predios de las fincas la Albania, hacienda de los Blandon (Ver figura 8) y La Siberia.

En la Siberia, ubicada por el sector del Pindo, se encuentra el nacimiento de la quebrada la Albania y aunque por este lugar no pasa la tubería de aducción, el terraceo de la zona ha ayudado a generar algunos movimientos en masa tipo planar y compuestos, cuyos materiales generan saturación de la quebrada afectando en la parte baja de la microcuenca la bocatoma de chupaderitos que también suministra agua para el municipio apoyando el acueducto de Chupaderos.

Por la finca La Albania y hacienda de los Blandon pasa la tubería de aducción cuya bocatoma se encuentra en la quebrada Chupaderos en los predios de La Albania y se dirige en sentido norte hacia la planta pasando por el sector de la hacienda de los Blandon. Estos dos lugares están siendo afectados por el terraceo en zona de ladera, aunque en el sector de la Albania no se encuentra tan marcado como en el predio de los Blandon que ya presenta exposición de tubería en superficie (aproximadamente 90cm de largo) y con tendencia a aumentar por el sobrepastoreo en el lugar.
3.2.1.4 Erosión en Cárcavas

En la zona existen dos problemas de cárcavas activas, de profunda disección ubicadas en el sector de la planta de tratamiento y en predios de la hacienda de los Blandon. Las cárcavas son canales mas amplios y profundos que los surcos, donde circula el agua durante y después de las lluvias y aguaceros; con el tiempo se profundizan y se ensanchan alargándose progresivamente, generando erosión remontante, que puede hacer retroceder una ladera de 10m a 15m por año. Por lo general generan deslizamientos, en época de lluvias principalmente.

En el sector de la quebrada de la Florida unos 5m mas arriba siguiendo la línea de conducción, en la zona donde se ubica la planta de tratamiento de Aquamaná, se establece una cárcava activa, de moderada disección y poca extensión áreal, pero que causo daños importantes como el colapso de la tubería de conducción el 16 de Diciembre del 2007.

Los materiales afectados de base a techo son la lodolita de la formación Quebradagrande; una capa gruesa de ceniza (toba de 1m de espesor) muy permeable, con alto contenido de humedad y en la parte superficial una capa de material orgánico. Este proceso genera en el sector una morfología cóncavo-convexa, con acumulación de aguas en la parte alta de la ladera por recarga de aguas lluvias, que humedecen y saturan en el material, generando perdida de su cohesión y que el fenómeno de cárcavamiento persista en el tiempo.

En predios de la hacienda de los Blandon ubicados al lado derecho del camino que conduce de la quebrada Chupaderos hacia el sector de la finca la Albania se encuentra la segunda cárcava que presenta mayor extensión (amplitud máxima de 30m) y disección profunda con un drenaje permanente que ayuda a generar erosión lateral superficial y arrastre de material hasta la quebrada Chupaderos y cuyos efectos influyen sobre la tubería de aducción que pasa por este lugar (Figura 9).

Para este sector se observa las cenizas cubriendo un depósito conglomeratico cuaternario tipo coluvión más antiguo, compuesto por una matriz tobácea y clastos de lodolita con algo de meteorización, con relictos de dos estructuras de dirección N40W/70W y N80E/45NW que se encuentran sobre el Complejo Quebradagrande.
Figura 9. Cárcava ubicada en predios de la hacienda de los Blandon, se observa en la parte baja como afecta la tubería de aducción (T)

3.2.2 Movimientos en Masa

Son procesos naturales donde hay desplazamiento del terreno sobre superficies de corte visibles o inferidas, con extensión y profundidad variable.

3.2.2.1 Deslizamientos Traslacionales o Planares

Este tipo de movimiento se da a lo largo de superficies más o menos planas o ligeramente onduladas, de capas delgadas de material generalmente arcilloso perteneciente al Complejo Quebradagrande sobre pendientes relativamente suaves.

Generalmente en este tipo de deslizamiento el Depósito de Caída Piroclástica (ceniza) contiene la grieta de tensión y la superficie de falla es en el contacto con la Iodolita del Complejo Quebradagrande; el movimiento de la ceniza se genera por la saturación de aguas durante la época de lluvias y es favorecido por el terracéo y por la socavación lateral.

Este último caso es el más común presentándose en La Siberia, cerca al nacimiento de la quebrada La Albania (Figura 10); por el sector de la quebrada Mantilla, en el margen de uno de los drenajes que alimenta la quebrada Chupaderos; por el sector de la hacienda de los Blandon, a un lado de la carretera que conduce hacia la Albania; en márgenes de la parte baja de la quebrada La Albania y en la quebrada de la Florida. Cabe anotar que estos deslizamientos en
su mayoría son movimientos pequeños y por tanto su escala se magnifica para detallarlos en el mapa de procesos denudativos, pero esto no indica que deje de ser importante un tratamiento para estabilizarlos.

Figura 10. Deslizamiento planar en el sector de la finca la Siberia. Se resalta la corona de dos procesos en el nacimiento de la quebrada La Albania

3.2.1.2 Deslizamiento Compuesto

Se presentan como movimientos en masa tipo deslizamiento con superficies de falla de tipo traslacional y rotacional, se generan por acción del agua y de la fuerza gravitacional.

Estos deslizamientos se encuentran localizados sobre cenizas y rocas del Complejo Quebradagrande, generalmente son favorecidos por el uso antrópico (sobre pastoreo) y por la pendiente del terreno. Hay dos procesos muy importantes ubicados en La Siberia, de gran extensión areal cerca al nacimiento de la quebrada La Albania (Figura 11). En uno de estos existe un problema de aguas permanentes que provienen de unos tanques de abastecimiento.
3.2.1.3 Cicatrices de deslizamientos compuestos.

Son las evidencias de antiguos movimientos en masa y de procesos antrópicos, no son considerados como fenómeno denudativo pero representan zonas donde se dieron estos procesos y que probablemente se puedan repetir. En la zona existen algunos lugares con este tipo de cicatrices, pero se observan estables. Un ejemplo de ello se encuentra en el sector de La Siberia donde se presenta la cicatriz de un antiguo deslizamiento cerca del nacimiento de la quebrada la Albania y uno de los deslizamientos compuestos que están activos actualmente (Figura 12).

Figura 12. Deslizamiento compuesto inactivo visto de frente, se puede observar la recuperación de la vegetación en la zona.
3.2.1.4 Reptación

Es la deformación que sufre la masa de suelo o roca muy a moderadamente meteorizada, como consecuencia de movimientos muy lentos por la acción de la gravedad en terrenos saturados y con infiltración del agua. Se suele manifestar por la irregularidad o rugosidad del terreno, inclinación de los árboles, el tensionamiento de las raíces de los árboles, el corrimiento de carreteras y la aparición de grietas. Aunque es muy imperceptible en el sector de la planta de tratamiento se está generando este tipo de problema, indicador de inestabilidad del terreno.

3.3 PROCESOS FLUVIALES

Se asocia a los lechos de cauces fluviales de las quebradas, generalmente Chupaderos (Figura 13) y Albania, se caracterizan por tener canales amplios de pendientes moderadas a bajas, con trazo meandriforme y disección moderada, con zonas de socavación de orillas y acumulación de sedimentos en algunas barreras.

Las unidades de origen aluvial son de poca extensión, depositadas en las márgenes de estas quebradas como terrazas de pendiente plana y alargadas subparalelamente a la dirección de los cauces, representan conglomerados polimétricos.

La socavación de cauce lateral presente en la quebrada Chupaderos genera en algunas laderas, pertenecientes a los predios de La Albania y hacienda de los Blandon, inestabilidad a lo largo de la quebrada, que afecta la tubería de aducción del acueducto localizada en su margen izquierda. Aunque estos movimientos son pequeños, es necesario hacer tratamiento de estabilización para que no evolucionen y generen problemas mayores.

La erosión fluvial también se presenta en la quebrada de la Florida, donde el socavamiento, genera la profundización de cauce, al afectar material moderado a altamente meteorizado de las rocas sedimentarias (lodoíta) de la formación Quebradagrande, generando inestabilidad en las márgenes de la quebrada y problemas de desplazamiento y rompimiento de la tubería localizada en este sector, debido a los movimientos en masa (deslizamientos planares) y al mismo material que transporta la corriente de agua de esta quebrada.

En la conducción de agua se realizó un tratamiento con trinchos de cemento y madera en uno de los deslizamientos planares, que está mitigando el problema, pero es insuficiente, ya que no se han controlado las aguas de escorrentía en
especial las de un drenaje permanente en el lugar de la obra que no ha sido canalizado y puede llegar al deterioro total de esta obra; además en la parte superior de la ladera se presenta otro tipo de problema como la erosión en cárcava y sobrecarga por acumulación de aguas, que también influye en el deterioro de la obra y en la generación del deslizamiento.

Figura 13. Geoformas actuales asociadas a procesos fluviales y a la geología del sector de la quebrada Chupaderos. Se observa laderas cóncavas y convexas (Lc), drenajes de disección moderada (Dm) y el canal amplio con trazo meandriforme de la quebrada Chupaderos con socavación de orillas (So), también es posible observar el deslizamiento planar ubicado cerca de la hacienda de los Blandon.
4. USOS DEL TERRENO

Los cambios en la cobertura vegetal debidos al uso dado al terreno montañoso, son directamente proporcionales al aumento o disminución de los procesos denudativos en las laderas del terreno. Así cuando se regulan la infiltración y/o la escorrentía desde la superficie, se protegen los materiales de los fenómenos erosivos y los movimientos en masa; por el contrario cuando se despoja el terreno de los bosques y sus estructuras de amarre (sistemas radicales de los árboles) se incrementan estos procesos de erosión y movimientos en masa.

La clasificación de los usos del terreno aplicada en este trabajo, corresponde a la tabla de Uso y Cobertura Vegetal elaborada (Corpocaldas, 2002), con modificaciones para las características encontradas en la zona de análisis (Tabla 2).

<table>
<thead>
<tr>
<th>NIVEL EXPLORATORIO</th>
<th>NIVEL RECONOCIMIENTO</th>
<th>NIVEL SEMIDETALLE</th>
<th>COBERTURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTRUCCIONES</td>
<td>URBANO</td>
<td>Residencial</td>
<td>CRU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recreativo</td>
<td>CUC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Institucional</td>
<td>CUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Industrial</td>
<td></td>
</tr>
<tr>
<td>AGRICOLA</td>
<td>PERENNES O SEMIPERENNES</td>
<td>Frutales Plátano</td>
<td>APF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Otros</td>
<td>APP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>APO</td>
</tr>
<tr>
<td>PASTOS</td>
<td>POTREROS</td>
<td>Herbáceo Potrero</td>
<td>PPH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arbusto-Arbóreo</td>
<td>PPA</td>
</tr>
<tr>
<td>BOSQUES</td>
<td>NATURALES</td>
<td>Bosque Primario</td>
<td>BNP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bosque Galería</td>
<td>BNG</td>
</tr>
<tr>
<td></td>
<td>PLANTADOS</td>
<td>Bosque Industrial</td>
<td>BPI</td>
</tr>
</tbody>
</table>
4.2 CONSTRUCCIONES

Se dividen en rural y urbano y se subdividen en detalle como residencial, recreativo, institucional e industrial, entre otros.

En la zona se encuentran construcciones urbanas y rurales, pero ocupan tan solo el 3.72% (0.7896km²) del área (ver figura 14), se determinaron como áreas estables, pero algunas pueden presentar amenazas por inundación ya que están muy cerca de las quebradas, como por ejemplo en el barrio Lusitania.

4.3 AGRÍCOLA

El uso agrícola ocupa el 4.31% (0.9138km²) de la zona (ver figura 14), corresponde a cultivos de frutas, plátano y hortalizas, que hacen parte de la económica de la región. Las drásticas practicas de desyerbe utilizadas en estos cultivos, por la utilización de azadón y herbicidas, dejan el terreno desprotegido y vulnerable a la erosión.

4.4 PASTOS

Este uso esta ampliamente distribuido y ocupa mas de la mitad del área con unos 12.4441km² (58.69% de la zona, ver figura 14), corresponde a pastos cultivados con fines ganaderos. Este uso acelera los procesos erosivos y los movimientos en
masa (inestabilidad de las laderas), dado que los pastos dan poca protección a los materiales superficiales del terreno, porque su sistema radicular es poco profundo; además el continuo transitar del ganado, genera terracetas que hacen el terreno más vulnerable a los efectos de las intensas lluvias tan comunes en el sector (Figura 15).

Figura 15. Finca La Siberia, donde se observa el uso de Pasto (PP) y Bosques de Galería (BG)

4.5 BOSQUES

Este uso incluye los bosques primarios con especies heterogéneas, los bosques plantados o industriales con una o dos especies e intervenidos por el hombre y los bosques de galería sobre los cauces y orillas de los drenajes. Se localizan en laderas y orillas de los cauces. De los diferentes tipos de cobertura vegetal, la cobertura boscosa es la que ofrece mayor protección de los materiales que constituyen el terreno, frente a los efectos directos de la escorrentía e infiltración generada por las aguas lluvias y de las quebradas con corrientes torrenciales.

4.5.1 Bosque de Galería

Con un área de 1.151km² (5.43% del área total; ver figura 14), bordean los cauces de las quebradas y sus tributarios, cumplen un papel fundamental en la protección, conservación y regulación del sistema hídrico. Son de gran importancia para el control y protección de las márgenes y laderas contra la erosión por socavación lateral de orillas y de fondo del cauce de los drenajes (ver figura 15).
4.5.2 Bosque Primario

Son áreas con poca o nula intervención humana, debido a la accidentalidad del terreno, la falta de infraestructura (vías de acceso) o falta de recursos de los propietarios. Se caracterizan por la heterogeneidad de las especies y ocupan el 6.49% (1.377km²) del área de estudio (ver figura 14).

4.5.3 Bosque Industrial

Este uso ocupa el 21.34% (4.5245km²) del área (ver figura 14), se caracteriza por la homogeneidad de las especies, como coníferas de pinos y eucaliptos, plantados para fines comerciales en la industria del papel y la construcción.

Aunque son bosques ofrecen regular protección a los materiales del terreno, debido a su explotación económica por propietarios de fincas o compañías como “Maderas y Celulosas” (Figura 16) que es la principal propietaria en esta región.

Figura 16. Zona de Bosque Industrial (BI), de la compañía “Maderas y Celulosas”
5. ANÁLISIS DE SUSCEPTIBILIDAD DEL TERRENO A LOS PROCESOS DE EROSIÓN Y MOVIMIENTOS EN MASA.

Debido a los pocos procesos de erosión y de movimientos en masa encontrados en el trabajo, se describe cada sector del terreno en la línea de conducción de aguas del acueducto de Villamaría afectado por estos procesos denudátivos. Esta descripción involucra el análisis de las características, causas (elementos detonantes) y efectos de cada proceso, así como algunas recomendaciones y obras para el control y mejoramiento de la estabilidad de las laderas de este terreno montañoso.

5.1 SECTOR PLANTA DE TRATAMIENTO

En este sector se presentan problemas de erosión importantes, como cárcavas y socavación de fondo, que afectan sectores de ladera que involucran la tubería de conducción de agua en cercanías a la planta de tratamiento y a la cabecera municipal de Villamaría. Los materiales presentes en la zona, se observan en la figura 17.

Figura 17. Perfil con los materiales presentes en el sector de la planta de tratamiento (Qcp: Depósitos de Caída Piroclástica, Kqq: Complejo Quebradagrande).
La erosión fluvial presente en la quebrada de la Florida, genera inestabilidad en las márgenes de la quebrada y complicaciones para la tubería localizada en este sector debido a los movimientos tipo deslizamiento planar y al mismo material que transporta la corriente de agua de esta quebrada. Otros de los elementos detonantes que ayuda a esta inestabilidad en las márgenes se presenta en la parte superior de la ladera donde se da un problema de cárcava y sobrecarga por acumulación de aguas, que también influye en el deterioro de una obra de mitigación con trinches en uno de los deslizamientos por donde pasa la tubería de conducción, ya que no hay ningún control sobre un drenaje permanente en este lugar (Figura 18).

Esta cárcava ubicada el sector de la quebrada de la Florida unos 5m mas arriba siguiendo la línea de conducción es de disección moderada y poca extensión areal, pero su actividad causo colapso de la tubería el 16 de diciembre del 2007, por lo cual se suspendió el servicio de agua en el municipio durante tres días según reporte de Aquamana. Este proceso genera en el sector una morfología cóncavo-convexa, con acumulación de aguas en la parte alta de la ladera por recarga de aguas lluvias, que humedecen y saturan en el material, generando perdida de su cohesión, presencia de una grieta de tensión (Figura 18) y que el fenómeno de cárcavamiento persista en el tiempo.

Figura 18. Obra de mitigación sin control de drenaje (a) y grieta de tensión, en línea punteada, en la parte alta de la ladera (b)

Como estrategia de control se recomienda (Figura 19):

Captar todas las aguas en diferentes sitios de las laderas especialmente en la parte alta donde hay una sobrecarga, y conducirlas mediante un sistema de drenaje en espina de pescado (filtros vivos) a lugares bien seguros y protegidos,
con el fin de estabilizar todo el terreno. Este sistema se diseñará con base en la topografía del terreno.

En la quebrada de La Florida a donde posiblemente se conduzcan las aguas, es recomendable el establecimiento de estructuras vivas escalonadas (trinchos), que obren como disipadoras de las aguas de escorrentía y permitan frenar el proceso de socavamiento de fondo, al igual que el establecimiento de la vegetación que proteja las márgenes de la quebrada y establece los pequeños deslizamientos que se dan en esta zona y proteja la tubería que pasa por este sector.

Sellar grietas existentes y construir una serie de estructuras vivas escalonadas (trinchos) para estabilizar el proceso de carcavamiento.

Figura 19. Obras recomendadas como estrategia de control en el sector de la planta de tratamiento

5.2 SECTOR HACIENDA DE LOS BLONDON Y FINCA DE LA ALBANIA

Los fenómenos presentes en este sector se asocian directamente a los procesos fluviales generados por la quebrada Chupaderos y a la erosión en cárcavas y terraceo. En la figura 20 se puede observar los materiales que se encuentran en este sector.
Figura 20. Perfil con los materiales presentes en el sector de la Hacienda de Los Blandon (Qcp: Depósitos de Caida Piróclástica, Kqg: Complejo Quebrada Grande)

Para la quebrada Chupaderos se presentan dos fenómenos que generan algunos problemas en la tubería de aducción y en la bocatoma debido a la socavación de cauce lateral presente en la quebrada generando en algunas laderas, pertenecientes a los predios de la hacienda de los Blandon, inestabilidad a lo largo de esta, que afecta la tubería de aducción del acueducto localizada en su margen izquierda, aunque estos movimientos son pequeños.

El otro fenómeno se origina en la parte alta de la cuenca especialmente en épocas de lluvias donde se da un incremento de caudal aumentando el aporte de sedimentos y generando en algunas ocasiones daños en la infraestructura de la bocatoma ubicada en predios de la finca La Albania como sucedió el 30 de diciembre del 2007.

La hacienda de los Blandon es uno de los sectores más afectados por los problemas de erosión en surcos y terraseo en zona de ladera, generados por el sobrepastoreo y en el cual ya se presenta expuesto aproximadamente 90 cm de la tubería, aunque aún no se presenta algún daño en esta (Figura 21).
Figura 21. Tubería expuesta por problemas de erosión en surco y terraco.

Unos de los mayores efectos de estos dos procesos es el carcajamiento que se presenta en este mismo sector, el cual ocupa una gran extensión con una amplitud de 30m y longitud de 15m aproximadamente, de disección profunda con un drenaje permanente que ayuda a generar erosión lateral y arrastre de material hasta la quebrada Chupaderos y afecta la tubería de aducción que pasa por este lugar.

Las obras recomendadas para este sector son (Figura 22):

Dividir la zona en parcelas y revegetalizar con estacas vivas perpendicular a la pendiente para recortarla y empradizado, esta división también facilita la rotación ganadera ayudando a proteger y evitar la erosión en surcos y el terraco.

Aislar el área de carcajamiento para evitar la influencia del ganado sobre el terreno, canalizar el drenaje mediante un filtro vivo acompañado de un sistema de estructuras vivas escalonadas (trinchos) para disipar la energía del agua y estabilizar todo el terreno, se hace sellamiento de grietas con el fin de evitar infiltración de aguas lluvias y revegetalización para protección y conservación del terreno.

En los sectores de socavación de cauce lateral sembrar árboles y arbustos de la región con sistemas de raíces profundas que puedan ayudar a sostener el suelo y permitir la regeneración natural de la vegetación nativa preexistente y en los sectores donde los deslizamientos tengan más pendiente se puede combinar con obras disipadoras de energía.
5.3 SECTOR DE LA SIBERIA

Los principales procesos en la Siberia, ubicada por el sector del Pindo, se presentan cerca al nacimiento de la quebrada La Albania y aunque por este lugar no pasa la tubería de aducción, estos procesos generan materiales que producen saturación de la quebrada La Albania que afecta la bocatoma de Chupaderitos en la parte baja de la microcuenca que apoya el acueducto de Chupaderos. El perfil de los materiales que se presentan en esta zona se observan en la figura 23.
Figura 23. Perfil con los materiales presentes en el sector de la finca La Siberia (Qcp: Depósitos de Caída Piroclástica, Kqg: Complejo Quebradagrande).

El deslizamiento traslacional se encuentra ubicado en la margen de uno los drenajes que alimentan el nacimiento de la quebrada la Albania su superficie de falla se encuentra entre el Depósito de Caída Piroclástica (ceniza) y la Iodolita del Complejo Quebradagrande, este proceso se genera por la saturación de aguas durante la época de lluvias y favorecido por el terraceo y en otros casos por la socavación lateral de este drenaje.

Por este mismo sector cerca de la finca La Siberia se presenta dos deslizamientos compuestos en los cuales se pueden observar dos superficies de fallas, la primera superficie se genera sobre la ceniza y la segunda superficie se da a lo largo del contacto entre la ceniza y material del Complejo Quebradagrande (Iodolita o paquetes de arcillolita), el primer deslizamiento se ubica en la parte mas alta del drenaje que alimenta el nacimiento de la quebrada La Albania y el segundo se encuentra unos metros mas abajo de la casa (Figura 24).
Figura 24. Ubicación de los dos deslizamientos compuestos (D1 y D2), se observa también la zona de sobrepastoreo en este sector (SP)

El primer movimiento en masa tipo deslizamiento compuesto se presenta sobre el depósito de caída piroclástica (cenizas) y los paquetes de arcillolitas del Complejo Quebradagrande, y en cuyo cuerpo se presenta dos drenajes permanentes, generalmente son de tipo antrópico como resultado del sobrepastoreo, pero uno de sus mayores detonantes es un problema de aguas no manejadas provenientes de dos tanques de abastecimiento ubicados en la parte alta de la ladera cerca de la corona de este deslizamiento (Figura 25) y cuya saturación de material también es favorecido por las aguas lluvias en época de invierno haciendo que este proceso se mantenga activo.

Figura 25. Tanques de abastecimiento ubicados cerca de la corona (T) y zona de saturación por el escape de esta agua (ZS)
El segundo deslizamiento ubicado unos 6m más abajo por detrás de la casa entrando por el corral, es de considerable extensión areal (aproximadamente 45m de amplitud) generado sobre el depósito de caída piroclástica (cenizas) y lodo líquido del Complejo Quebradagrande favorecido por el sobrepastoreo de la zona que produce terracería e infiltración de aguas lluvias y por la pendiente de la zona.

Las obras de control propuestas para este sector son:

Incentivar la rotación ganadera en este sector para evitar la erosión en surcos y el terracería, dado que el área donde se generan estos problemas es muy amplia.

Controlar el escape de aguas provenientes de los dos tanques de abastecimiento para el primer deslizamiento compuesto y revegetalizar esta zona con especies extractoras de agua, captar todas las aguas por medio de un sistema de drenaje en espina de pescado (filtros vivos) acompañada de estructuras dissipadoras de energía, proteger con plantas de forrajaje, sellamiento de grietas, evitar remover material de la base y detener el pastoreo en las zonas aledañas (Figura 26).

Figura 26. Obras de control propuestas para el primer deslizamiento compuesto en el sector de La Siberia
Para el segundo deslizamiento compuesto, se debe aislar el área para evitar la influencia del ganado sobre el terreno, efectuar un manejo adecuado de las aguas de escorrentía por medio de un sistema de drenaje (filtros vivos) en sentido de la pendiente acompañado de la construcción de terrazas vivas, sellamiento de grietas, hacer un programa de revegetalización que permita amarrar todo el terreno, como por ejemplo con especies de forraje, anclaje y protección (Figura 27).

Figura 27. Obras de control propuestas para el segundo deslizamiento compuesto en el sector de La Siberia

Aislar la zona con el problema de deslizamiento traslacional y sembrar vegetación con sistemas de raíces profundas de la región que puedan ayudar a sostener el suelo y permitir la estabilización del lugar.

5.4 ESPECIES RECOMENDADAS PARA LAS OBRAS

En las diferentes obras propuestas para el control y estabilización de los procesos de erosión y movimiento en masa en cada uno de los sectores, se ha recomendado hacerlo utilizando partes de algunas plantas y programas de revegetalización con especies nativas, para esto en la tabla 3 se muestra las
diferentes plantas que se pueden utilizar en este sector para obtener mejores resultados y que los costos sean más bajos (Rivera).

Estas especies se clasificaron según la función que mejor pueden cumplir:

Estaca viva, Filtro vivo, Trincho: Incluye especies que pueden ser de fácil rebrote y cuyo papel fundamental es la restauración de áreas degradadas.

Anclaje: Son especies que presentan sistemas de raíces fuertes y profundas capaz de sostener el suelo.

Protección: Son especies generalmente utilizadas para el sombrío de cultivos, pero en ocasiones se puede utilizar para el cuidado en márgenes de drenajes y zonas de ladera, debido a su crecimiento rápido y al sistema de raíces que posee.

Forraje: Algunas son reconocidas como alimento para el ganado, pero también se utilizan como cobertura ayudando a proteger contra el impacto de las lluvias, escorrentía y contrarrestar así la pérdida superficial de suelo por erosión.

Controladoras de saturación: Estas especies son capaces de controlar la humedad extrayendo el agua, generalmente se encuentran en zonas de nacimiento o de excesiva humedad.

<table>
<thead>
<tr>
<th>Especie</th>
<th>EV</th>
<th>An</th>
<th>Pr</th>
<th>FV</th>
<th>Fo</th>
<th>Tr</th>
<th>CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arboloco (Montanoa quadrangularis)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guadua (Guadua angustifolia)</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nacedero (Trichanthera gigantea)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matarratón (Gliricida sepium)</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yarumo (Crecopia peltata)</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guadilla (Phyllostachis aurea)</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sauce (Salix humboldtiana)</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aliso (Alnus jorullensis)</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Especie</td>
<td>EV</td>
<td>An</td>
<td>Pr</td>
<td>FV</td>
<td>Fo</td>
<td>Tr</td>
<td>CS</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Eucalipto (Eucaliptus camandulensis)</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pino (Pinus sp)</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caña Brava (Gynerium saggittatum)</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helecho (Asplenium cuspidatum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Pasto estrella (Cynodon plectostachyus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Pasto Kikuyo (pennisetum clandestinun)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Mani forrajero (Arachis pintoi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
6. ZONIFICACION DE LA SUSCEPTIBILIDAD

Para la zonificación de la susceptibilidad del terreno a movimientos en masa se hizo una modificación del método heurístico presentado por Vargas y Gómez (1999), en el cual, el método de evaluación de las variables para la zonificación de la susceptibilidad basado en la calificación subjetiva de las variables y unidades cartográficas de parámetro UCP, se adapto para las características encontradas en la zona de estudio.

Para el análisis de la susceptibilidad, se hace un cruce de mapas a partir de la siguiente cartografía temática: geología, uso del terreno y pendientes, estos mapas se toman como parámetros que serán comparados con el mapa de proceso denudativos. Cada unidad cartográfica de parámetro se califica en un orden de 1 a 5, considerando 5 como la categoría más alta de susceptibilidad y 1 como la categoría más baja (Tabla 4).

<table>
<thead>
<tr>
<th>Valor</th>
<th>Categoría de Susceptibilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Muy baja</td>
</tr>
<tr>
<td>2</td>
<td>Baja</td>
</tr>
<tr>
<td>3</td>
<td>Moderada</td>
</tr>
<tr>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td>5</td>
<td>Muy alta</td>
</tr>
</tbody>
</table>

Tabla 4. Categorías y valores de susceptibilidad para el análisis de las unidades cartográficas de parámetro (UCP).

6.1 EVALUACION DE PARAMETROS

Se evalúa cada uno de los parámetros como geología, uso del terreno y pendientes y se categorizan las unidades cartográficas de parámetro (UCP) de acuerdo al valor obtenido, para finalmente realizar la zonificación de la susceptibilidad.

6.1.1 Geología

Para la caracterización de este parámetro se tomó en cuenta las principales unidades que afloran en la zona y que tan afectadas se encuentra cada una por los proceso denudativos (Tabla 5).
Tabla 5. Categorías y valores de susceptibilidad del parámetro geología.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Unidad Cartográfica de Parámetro</th>
<th>valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geología</td>
<td>Depósitos Aluviales</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Depósitos de Caída Piroclástica</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Complejo Quebradagrande</td>
<td>4</td>
</tr>
</tbody>
</table>

6.1.2 Uso del terreno

El factor principal de estudio para esta caracterización es el cambio en la cobertura vegetal debido al uso dado al terreno, el cual puede aumentar o disminuir los procesos denudativos en las laderas del terreno (Tabla 6).

Tabla 6. Categorías y valores de susceptibilidad del parámetro uso del terreno.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Unidad Cartográfica de Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso del terreno</td>
<td>Construcciones</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Agrícola</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Pastos</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Bosque de Galería</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Bosque primario</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Bosque Industrial</td>
<td>2</td>
</tr>
</tbody>
</table>

6.1.3 Pendientes

Partiendo del modelo digital de terreno generado tras la digitalización de curvas de nivel a una escala 1:10000, se genero el mapa de pendientes con 4 clases para el área de estudio (Tabla 7).

Tabla 7. Categorías y valores de susceptibilidad del parámetro pendientes.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Unidad Cartográfica de Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendientes</td>
<td>Bajas (0-15 grados)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Medias (15-30 grados)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Altas (30-45 grados)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Muy Altas (>45 grados)</td>
<td>2</td>
</tr>
</tbody>
</table>
6.2 ZONIFICACION

Una vez establecidos semicuantitativamente el diferente valor de susceptibilidad para cada UCP, se realiza el mapa de susceptibilidad mediante la suma de los 3 mapas de susceptibilidad temática que se obtuvieron a partir de la evaluación de parámetros.

El modelamiento de las variables se realizó utilizando la siguiente ecuación:

$$ST = Stg + Stut + Stp$$

Donde:

ST = Susceptibilidad total del terreno.

Stg = Susceptibilidad del parámetro geología.

Stut = Susceptibilidad del parámetro uso del terreno.

Stp = Susceptibilidad del parámetro pendientes.

Tomando en cuenta que existe 3 parámetros o variables de análisis, los valores sumatorios estarán entre 3 y 15 con lo cual se establecen los rangos para la categorización del mapa de susceptibilidad general del terreno a los movimientos en masa (Tabla 8).

<table>
<thead>
<tr>
<th>Rango</th>
<th>Categoría de Susceptibilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-7</td>
<td>Baja</td>
</tr>
<tr>
<td>7-11</td>
<td>Moderada</td>
</tr>
<tr>
<td>11-15</td>
<td>Alta</td>
</tr>
</tbody>
</table>

Tabla 8. Intervalos para categorizar la susceptibilidad general del terreno.
CONCLUSIONES

En la zona de estudio afloran diferentes litologías comprendidas entre el Cretácico inferior hasta el reciente, las cuales en orden cronológico son: Complejo Quebradagrande, Depósitos De Caída Piroclástica Y Depósitos Aluviales. Estas litologías son las que generan las diferentes geoformas que caracterizan este sector.

Las estructuras más importantes se encuentran orientadas NW y NS correspondiendo a las fallas Villamaría –Termales y La Albania respectivamente.

Las litologías más afectadas por los procesos denudativos son los depósitos de caída piroclástica, seguido por el Complejo Quebradagrande y por último los depósitos aluviales.

El uso del terreno es un elemento significativo en el comportamiento de las laderas y la zona está expuesta a manejos inadecuados como lo es el sobrepastoreo, que se genera en gran parte del terreno asociado al uso pastos los cuales ocupan un 58.69% del área siendo el principal uso de terreno en la zona de estudio.

Se ha encontrado que los principales problemas de erosión y movimientos en masa están asociados principalmente a condiciones antrópicas, contenido de agua en el terreno, zonas donde las pendientes varían de moderada a alta y la perdida de soporte lateral por la acción de algunas quebradas.

La zona de estudio presenta pendientes bajas con un 45.95%, seguido de pendientes medias con 38.02%, pendientes altas con 14.21% y pendientes muy altas con 1.81%. Donde mas se generan procesos erosivos son los sectores con pendientes medias y altas.

De la elaboración del mapa de susceptibilidad se determina que del área estudiada las zonas de alta susceptibilidad se concentran especialmente en los sectores de la Planta de tratamiento, predios de la Hacienda de los Blandon y finca La Albania y en el sector de La Sibería.
RECOMENDACIONES

Se sugiere la realización de las obras de control para la estabilización de la erosión y los movimientos en masa y efectuar un estudio económico comparando el costo de las obras de Bioingeniería con obras de ingeniería convencionales.

Se recomienda adquirir los terrenos por donde pasan las tuberías y sus áreas de influencia, para su protección, y evitar su desestabilización futura.

Se debe tener en cuenta que solo se hacen propuestas de obras para la estabilización, por ende es necesaria una etapa de diseño ingenieril para corregir los daños en la zona.

Es importante capacitar a los habitantes y dueños de los diferentes predios indicando los métodos de siembra y bioingenieriles mas apropiados para evitar la inestabilidad en las laderas por el uso inadecuado del suelo.

Es de suma importancia la realización de una base topográfica de escala mas adecuada para la zona que ayude a mejorar los estudios futuros, ya que las bases existentes son pocas y se encuentran desactualizadas.

Se recomienda seguir efectuando un monitoreo permanente de la línea de aducción con el fin de detectar posibles fugas de agua que puedan producir saturación en el terreno, causando inestabilidad en las laderas.
BIBLIOGRAFÍA

Rivera, J.H. 2005. Diagnóstico problemas de erosión y movimientos masales en el acueducto de Villamaría, Caldas. Asesoría sobre problemas de erosión y movimientos masales en el acueducto de Villamaría. Aquamaná E.S.P.

Rivera, J.H. 2008. Curso de bioingeniería para la prevención y control de erosión y deslizamientos en zonas de ladera Andina Colombiana.
