Mostrar el registro sencillo del ítem

dc.contributor.advisorBetancur, Luz Adriana
dc.contributor.advisorCARDONA CASTAÑO, JULIO ANDRES
dc.contributor.authorChaves Vallejos, Fernando Antonio
dc.date.accessioned2024-01-19T18:57:47Z
dc.date.available2024-01-19T18:57:47Z
dc.date.issued2024-06-19
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/19750
dc.descriptionIlustraciones, fotos, gráficasspa
dc.description.abstractEl proceso de lixiviación en la minería del oro produce efluentes con alta carga de compuestos cianurados que son perjudiciales para el medio ambiente. Si bien existen varios tratamientos para las aguas residuales de origen minero, muchos de ellos generan subproductos dañinos y requieren de tecnología costosa y especializada para su aplicación. Como alternativa, existen los tratamientos biológicos que pueden ser una opción para la eliminación de contaminantes de aguas cianuradas debido a su bajo costo, simplicidad, selectividad y ausencia de subproductos contaminantes. Dentro de los tratamientos biológicos, los biorreactores con microorganismos son una tecnología que asimila sustratos contaminantes como los compuestos cianurados, para metabolizarlos y excretar sustancias inocuas. En este estudio se evaluó la capacidad degradadora de especies cianuradas, mediante cromatografía de intercambio iónico, a partir de un consorcio microbiano. Para cumplir este objetivo se desarrollaron 3 etapas. Primero, se desarrolló y estandarizó un método de identificación y cuantificación de especies cianuradas, por cromatografía iónica con detector de conductividad. Segundo, se evaluó la degradación preliminar de cianuro y tiocianato, utilizando Pseudomonas putida ATCC 31483 y un consorcio microbiano aislado de la zona minera de Manizales. En tercer lugar, se evaluó preliminarmente la degradación de cianuro y tiocianato a escala de laboratorio y en un reactor en continuo, utilizando el consorcio microbiano. Experimentalmente se logró obtener un método de cromatografía iónica preciso, selectivo, sensible y adecuado para el análisis de tiocianato, sulfato, nitrato, nitrito, fosfato y cloruro. No se logró degradar cianuro ni tiocianato utilizando Pseudomonas putida. Sin embargo, se logró aislar un consorcio microbiano que degrado estos sustratos. Se identificaron 5 microorganismos degradadores los cuales fueron: Raoultella terrígena, Rahnella aquatilis, y tres cepas de Pseudomonas veronii. Al hacer un comparativo entre cada aislado y el consorcio microbiano frente a la degradación de cianuro y tiocianato se encontró que el este último tiene mejor porcentaje de remoción. Utilizando el consorcio microbiano y optimizando el método a escala de laboratorio, se alcanzó una degradación del 85.71 % para cianuro y del 71.98 % para tiocianato. En el biorreactor continuo con lecho fijo, se obtuvo una degradación del 85.71 % para cianuro y del 45.36 % para tiocianato. Estos resultados sugieren que se encontraron microorganismos nativos de la zona minera de Manizales, con potencial degradador de especies cianuradas.spa
dc.description.abstractThe leaching process in gold mining generates effluents with a high concentration of cyanide compounds that are harmful to the environment. While various treatments exist for mining wastewater, many of them produce harmful byproducts and require expensive, specialized technology for implementation. As an alternative, biological treatments may be an option for eliminating contaminants from cyanide-laden waters due to their low cost, simplicity, selectivity, and absence of contaminating byproducts. Among biological treatments, microbial bioreactors are a technology that assimilates contaminant substrates like cyanide compounds, metabolizing them and excreting harmless substances. This study evaluated the degrading capacity of cyanide species through ion exchange chromatography using a microbial consortium. To achieve this objective, three stages were developed. First, a method for the identification and quantification of cyanide species was developed and standardized using ion chromatography with conductivity detection. Second, the preliminary degradation of cyanide and thiocyanate was evaluated using Pseudomonas putida ATCC 31483 and a microbial consortium isolated from Manizales´s mining area. Third, the degradation of cyanide and thiocyanate was preliminarily assessed on a laboratory scale in a continuous reactor using the microbial consortium. Experimentally, a precise, selective, sensitive, and suitable ion chromatography method was developed for the analysis of thiocyanate, sulfate, nitrate, nitrite, phosphate, and chloride. Cyanide and thiocyanate degradation using Pseudomonas putida was not achieved. However, a microbial consortium capable of degrading these substrates was isolated. Five degrading microorganisms were identified: Raoultella terrígena, Rahnella aquatilis, and three strains of Pseudomonas veronii. When comparing each isolate and the microbial consortium for cyanide and thiocyanate degradation, the latter showed a higher removal percentage. Using the microbial consortium and optimizing the method on a laboratory scale, degradation reached 85.71% for cyanide and 71.98% for thiocyanate. In the continuous fixed-bed bioreactor, degradation was 85.71% for cyanide and 45.36% for thiocyanate. These results suggest that microbial consortium has potential to degrade cyanide species.eng
dc.description.tableofcontentsResumen / Abstract / Introducción / Objetivos / Objetivo general / Objetivos específicos / 1. Capítulo I - Marco teórico / 1.1 El oro en Colombia / 1.2 Cianuración / 1.3 Cianuro. / 1.4 Tiocianato / 1.5 Toxicidad de los compuestos cianurados / 1.6 Métodos de tratamiento de compuestos cianuro / 1.7 Biorremediación microbiana para el tratamiento de compuestos cianurados / 1.8 Consorcios microbianos en los procesos de biodegradación de compuestos cianurados / 1.9 Bacterias empleadas en esta investigación / 1.9 Biorreactores en el tratamiento de especies cianuradas / 1.10 Análisis de especies cianuradas por fotometría / 1.11 Análisis de especies cianuradas por cromatografía iónica / 2. Capitulo II – Metodología / 2.1 Estandarizar las condiciones cromatográficas para la cuantificación de especies cianuradas por cromatografía de intercambio iónico con detector de conductividad / 2.1.1 Reactivos / 2.1.2 Análisis mediante cromatografía iónica / 2.1.3 Determinación de las mejores condiciones de análisis por cromatografía iónica / 2.1.4 Determinación de parámetros analíticos del método usado / 2.1.5 Determinación de cianuro / 6 2.2 Aislar e identificar un consorcio de microorganismos con potencial degradador de especies cianuradas / 2.2.1 Ensayos preliminares de la evaluación de la capacidad degradadora de especies cianuradas por Pseudomonas putida / 2.2.2 Muestreo y aislamiento de un consorcio microbiano con capacidad degradadora de especies cianuradas / 2.2.2.6 Caracterización microscópica y macroscópica de los aislamientos / 2.3 Evaluación preliminar a escala de laboratorio la capacidad degradadora de especies cianuradas por consorcio microbiano / 2.3.1 Diseño experimental para la degradación de cianuro a escala de laboratorio / 2.3.2 Diseño experimental para la degradación de tiocianato a escala de laboratorio / 2.3.3 Diseño preliminar y puesta en marcha del reactor en continuo para evaluar la degradación preliminar de tiocianato y cianuro / 3. Capítulo III – Resultados y discusión / 3.1 Estandarizar las condiciones cromatográficas para la cuantificación de especies cianuradas por cromatografía de intercambio iónico con detector de conductividad / 3.1.1 Análisis mediante cromatografía iónica / 3.1.2 Determinación de las mejores condiciones de análisis por cromatografía iónica / 3.1.3 Determinación de parámetros analíticos del método usado / 3.2 Aislar e identificar un consorcio de microorganismos con potencial degradador de especies cianuradas / 3.2.1 Ensayos preliminares de la evaluación de la capacidad degradadora de especies cianuradas por Pseudomonas putida / 3.2.2 Muestreo y aislamiento de un consorcio microbiano con capacidad degradadora de especies cianuradas / 3.2.2.2 Ensayos de actividad del consorcio microbiano en la degradación de especies cianuradas / 3.2.2.3 Aislamiento de los microorganismos presentes en el consorcio microbiano / 3.2.2.7 Pruebas bioquímicas para los aislamientos M2 y M3. / 3.2.2.8 Identificación de los microorganismos mediante ADNr 16S / 7 3.3 Evaluar preliminarmente a escala de laboratorio la capacidad degradadora de especies cianuradas por consorcio microbiano / 3.3.1 Diseño experimental para la degradación de cianuro a nivel de laboratorio / 3.3.2 Diseño experimental para la degradación de tiocianato a escala de laboratorio / 3.3.3 Diseño preliminar y puesta en marcha del reactor en continuo para evaluar la degradación preliminar de tiocianato y cianuro / Conclusiones / Recomendaciones / Referencias / Anexosspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleEvaluación de la capacidad degradadora de especies cianuradas con consorcio microbianospa
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.researchgroupGrupo de Investigación Estudios Ambientales en Agua y Suelo (Categoría B)spa
dc.description.degreelevelMaestríaspa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesKrausmann F, Wiedenhofer D, Lauk C, Haas W, Tanikawa H, Fishman T, et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc Natl Acad Sci U S A 2017;114:1880–5. https://doi.org/10.1073/pnas.1613773114.spa
dc.relation.referencesPérez C, Cuélla M. The formation of crystalline minerals and their role in the origin of life on Earth. Progress in Crystal Growth and Characterization of Materials 2022;68. https://doi.org/10.1016/j.pcrysgrow.2022.100558.spa
dc.relation.referencesCosta M, Rios F. The gold mining industry in Brazil: A historical overview. Ore Geol Rev 2022;148:105005. https://doi.org/10.1016/j.oregeorev.2022.105005.spa
dc.relation.referencesGarcía O, Veiga M, Cordy P, Suescún OE, Molina JM, Roeser M. Artisanal gold mining in Antioquia, Colombia: A successful case of mercury reduction. J Clean Prod 2015;90:244–52. https://doi.org/10.1016/j.jclepro.2014.11.032.spa
dc.relation.referencesOspina J, Osorio J, Henao A, Palacio-Acevedo DA, Giraldo-Builes J. Retos y oportunidades para la industria minera como potencial impulsor del desarrollo en Colombia. TecnoLógicas 2021;24:e1683. https://doi.org/10.22430/22565337.1683.spa
dc.relation.referencesZapata G, Puentes C, Rojas G, Enrique P, Carvajal P, Chamat V, et al. Política minera de Colombia bases para la minería del futuro. Ministerio de minas y energía. Bogota: 2016.spa
dc.relation.referencesKinyondo A, Huggins C. State-led efforts to reduce environmental impacts of artisanal and small-scale mining in Tanzania: Implications for fulfilment of the sustainable development goals. Environ Sci Policy 2021;120:157–64. https://doi.org/10.1016/j.envsci.2021.02.017.spa
dc.relation.referencesVerbrugge B, Lanzano C, Libassi M. The cyanide revolution: Efficiency gains and exclusion in artisanal- and small-scale gold mining. Geoforum 2021;126:267–76. https://doi.org/10.1016/j.geoforum.2021.07.030.spa
dc.relation.referencesLi H, Oraby E, Eksteen J. Extraction of precious metals from waste printed circuit boards using cyanide-free alkaline glycine solution in the presence of an oxidant. Miner Eng 2022;181. https://doi.org/10.1016/j.mineng.2022.107501.spa
dc.relation.referencesTran Q, Lohitnavy M, Phenrat T. Assessing potential hydrogen cyanide exposure from cyanide-contaminated mine tailing management practices in Thailand’s gold mining. J Environ Manage 2019;249. https://doi.org/10.1016/j.jenvman.2019.109357.spa
dc.relation.referencesZhang Y, Cui M, Wang J, Liu X, Lyu X. A review of gold extraction using alternatives to cyanide: Focus on current status and future prospects of the novel eco-friendly synthetic gold lixiviants. Miner Eng 2022;176. https://doi.org/10.1016/j.mineng.2021.107336spa
dc.relation.referencesMonteiro T, Coelho A, Moreira M, Viana A, Almeida M. Interfacing the enzyme multiheme cytochrome c nitrite reductase with pencil lead electrodes: Towards a disposable biosensor for cyanide surveillance in the environment. Biosens Bioelectron 2021;191. https://doi.org/10.1016/j.bios.2021.113438.spa
dc.relation.referencesDouglas Gould W, King M, Mohapatra BR, Cameron RA, Kapoor A, Koren DW. A critical review on destruction of thiocyanate in mining effluents. Miner Eng 2012;34:38–47. https://doi.org/10.1016/j.mineng.2012.04.009.spa
dc.relation.referencesAlvillo-Rivera A, Garrido-Hoyos S, Buitrón G, Thangarasu-Sarasvathi P, RosanoOrtega G. Biological treatment for the degradation of cyanide: A review. Journal of Materials Research and Technology 2021;12:1418–33. https://doi.org/10.1016/J.JMRT.2021.03.030.spa
dc.relation.referencesKumar R, Saha S, Dhaka S, Kurade M, Kang C, Baek SH, et al. Remediation of cyanide-contaminated environments through microbes and plants: a review of current knowledge and future perspectives. Geosystem Engineering 2017;20:28– 40. https://doi.org/10.1080/12269328.2016.1218303.spa
dc.relation.referencesKhamar Z, Makhdoumi A, Mahmudy MH. Remediation of cyanide from the gold mine tailing pond by a novel bacterial co-culture. Int Biodeterior Biodegradation 2015;99:123–8. https://doi.org/10.1016/j.ibiod.2015.01.009.spa
dc.relation.referencesKuyucak N, Akcil A. Cyanide and removal options from effluents in gold mining and metallurgical processes. Miner Eng 2013;50–51:13–29. https://doi.org/10.1016/j.mineng.2013.05.027.spa
dc.relation.referencesBotz M, Mudder T, Akcil A. Cyanide Treatment. Gold Ore Processing, Elsevier; 2016, p. 619–45. https://doi.org/10.1016/b978-0-444-63658-4.00035-9.spa
dc.relation.referencesAndrianandraina S, Dionne J, Darvishi H, Blais J. Effect of grain size on the bacterial oxidation of a refractory gold sulfide concentrate and its dissolution by cyanidation. Miner Eng 2022;176. https://doi.org/10.1016/j.mineng.2021.107360.spa
dc.relation.referencesLuque M, Huertas M, Sáez L, Luque M, Vivián C, Castillo F, et al. Characterization of the Pseudomonas pseudoalcaligenes CECT5344 cyanase, an enzyme that is not essential for cyanide assimilation. Appl Environ Microbiol 2008;74:6280–8. https://doi.org/10.1128/AEM.00916-08spa
dc.relation.referencesLuque V, Moreno C, Roldán M. Biodegradation of cyanide wastes from mining and jewellery industries. Curr Opin Biotechnol 2016;38:9–13. https://doi.org/10.1016/j.copbio.2015.12.004.spa
dc.relation.referencesLuque V, Blasco R, Huertas M, Martínez- M, Moreno C, Castillo F, et al. Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344. vol. 33. 2005. https://doi.org/10.1042/BST0330168spa
dc.relation.referencesBaxter J, Cummings SP. The current and future applications of microorganism in the bioremediation of cyanide contamination. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 2006;90:1–17. https://doi.org/10.1007/s10482-006-9057-yspa
dc.relation.referencesDash R, Gaur A, Balomajumder C. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J Hazard Mater 2009;163:1–11. https://doi.org/10.1016/j.jhazmat.2008.06.051.spa
dc.relation.referencesSharma S. Bioremediation: Features, Strategies and applications. Asian Journal of Pharmacy and Life Science 2012;2:202–13. https://doi.org/10.1021/acs.chemrev.1c00303spa
dc.relation.referencesKhamar Z, Makhdoumi-Kakhki A, Mahmudy Gharaie MH. Remediation of cyanide from the gold mine tailing pond by a novel bacterial co-culture. Int Biodeterior Biodegradation 2015;99:123–8. https://doi.org/10.1016/j.ibiod.2015.01.009.spa
dc.relation.referencesSuh Y-J, Park JM, Yang J-W. Biodegradation of cyanide compounds by Pseudomonas fluorescens immobilized on zeolite. 1994. https://doi.org/10.1016/0141-0229(94)90025-6spa
dc.relation.referencesLi J, Wen J, Guo Y, An N, Liang C, Ge Z. Bioleaching of gold from waste printed circuit boards by alkali-tolerant Pseudomonas fluorescens. Hydrometallurgy 2020;194. https://doi.org/10.1016/j.hydromet.2020.105260spa
dc.relation.referencesHuertas M, Sáez L, Roldán M, Luque M, Martínez M, Blasco R, et al. Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH. J Hazard Mater 2010;179:72–8. https://doi.org/10.1016/j.jhazmat.2010.02.059.spa
dc.relation.referencesRazanamahandry L, Andrianisa H, Karoui H, Kouakou K, Yacouba H. Biodegradation of free cyanide by bacterial species isolated from cyanidecontaminated artisanal gold mining catchment area in Burkina Faso. Chemosphere 2016;157:71–8. https://doi.org/10.1016/j.chemosphere.2016.05.020.spa
dc.relation.referencesAlmagro V, Cabello P, Sáez L, Olaya-Abril A, Moreno-Vivián C, Roldán MD. Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation. Appl Microbiol Biotechnol 2018;102:1067–74. https://doi.org/10.1007/s00253-017-8678-6.spa
dc.relation.referencesSiddig E, Verbon A, Bakhiet S, Fahal AH, van de Sande WWJ. The developed molecular biological identification tools for mycetoma causative agents: An update. Acta Trop 2022;225. https://doi.org/10.1016/j.actatropica.2021.106205.spa
dc.relation.referencesHung Y, Lu T, Tsai M, Lai L, Chuang E. EasyMAP: A user-friendly online platform for analyzing 16S ribosomal DNA sequencing data. N Biotechnol 2021;63:37–44. https://doi.org/10.1016/j.nbt.2021.03.001.spa
dc.relation.referencesSheela Devi C, Vivian Joseph Ratnam P, Ramya SR, Kanungo R, Sampath E, Parameswaran S, et al. Detection of 16S rRNA gene for rapid identification of bacterial pathogens causing peritonitis in patients on continuous ambulatory peritoneal dialysis. Indian J Med Microbiol 2022. https://doi.org/10.1016/j.ijmmb.2022.03.011.spa
dc.relation.referencesKlemm D, Klemm R, Murr A. Gold of the Pharaohs – 6000 years of gold mining in Egypt and Nubia. Journal of African Earth Sciences 2001;33:643–59. https://doi.org/10.1016/S0899-5362(01)00094-X.spa
dc.relation.referencesAcemoglu D, García-Jimeno C, Robinson JA. Finding Eldorado: Slavery and longrun development in Colombia. J Comp Econ 2012;40:534–64. https://doi.org/10.1016/j.jce.2012.07.003.spa
dc.relation.referencesBetancur B, Loaiza C, Denich M, Borgemeister C. Gold mining as a potential driver of development in Colombia: Challenges and opportunities. J Clean Prod 2018;199:538–53. https://doi.org/10.1016/j.jclepro.2018.07.142.spa
dc.relation.referencesSIMCO. Producción de oro por departamento. Http://WwwUpmeGovCo/Generadorconsultas/Consulta_SeriesAspx?IdModulo=4&ti poSerie=116&grupo=356 2017.spa
dc.relation.referencesSpecht D, Ros-Tonen MAF. Gold, power, protest: Digital and social media and protests against large-scale mining projects in Colombia. New Media Soc 2017;19:1907–26. https://doi.org/10.1177/1461444816644567.spa
dc.relation.referencesKuyucak N, Akcil A. Cyanide and removal options from effluents in gold mining and metallurgical processes. Miner Eng 2013;50–51:13–29. https://doi.org/10.1016/j.mineng.2013.05.027spa
dc.relation.referencesLi Q, Xie F, Chang Y, Feng, Wang W, Behavior and mechanism of cyanide loss in ultrasound-assisted gold leaching process. Transactions of Nonferrous Metals Society of China 2023;33:609–18. https://doi.org/10.1016/S1003-6326(22)66132-6.spa
dc.relation.referencesTorkaman P, Veiga M. Comparing cyanidation with amalgamation of a Colombian artisanal gold mining sample: Suggestion of a simplified zinc precipitation process. Extr Ind Soc 2023;13:101208. https://doi.org/10.1016/J.EXIS.2022.101208.spa
dc.relation.referencesPiervandi Z. Pretreatment of refractory gold minerals by ozonation before the cyanidation process: A review. J Environ Chem Eng 2023;11:109013. https://doi.org/10.1016/J.JECE.2022.109013.spa
dc.relation.referencesXia J, Marthi R, Twinney J, Ghahreman A. A review on adsorption mechanism of gold cyanide complex onto activation carbon. Journal of Industrial and Engineering Chemistry 2022;111:35–42. https://doi.org/10.1016/J.JIEC.2022.04.014.spa
dc.relation.referencesGarcía O, Veiga MM, Cordy P, Suescún OE, Molina JM, Roeser M. Artisanal gold mining in Antioquia, Colombia: a successful case of mercury reduction. J Clean Prod 2015;90:244–52. https://doi.org/10.1016/J.JCLEPRO.2014.11.032.spa
dc.relation.referencesGonçalves A, Marshall BG, Kaplan RJ, Moreno-Chavez J, Veiga MM. Evidence of reduced mercury loss and increased use of cyanidation at gold processing centers in southern Ecuador. J Clean Prod 2017;165:836–45. https://doi.org/10.1016/J.JCLEPRO.2017.07.097.spa
dc.relation.referencesKondos PD, Deschênes G, Morrison RM. Process optimization studies in gold cyanidation. Hydrometallurgy 1995;39:235–50. https://doi.org/10.1016/0304- 386X(95)00032-C.spa
dc.relation.referencesMa J, Dasgupta PK. Recent developments in cyanide detection: A review. Anal Chim Acta 2010;673:117–25. https://doi.org/10.1016/j.aca.2010.05.042.spa
dc.relation.referencesDash R, Gaur A, Balomajumder C. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J Hazard Mater 2009;163:1–11. https://doi.org/10.1016/j.jhazmat.2008.06.051.spa
dc.relation.referencesJohnson C. The fate of cyanide in leach wastes at gold mines: An environmental perspective. Applied Geochemistry 2015;57:194–205. https://doi.org/10.1016/J.APGEOCHEM.2014.05.023.spa
dc.relation.referencesEbbs S. Biological degradation of cyanide compounds. Curr Opin Biotechnol 2004;15:231–6. https://doi.org/10.1016/j.copbio.2004.03.006.spa
dc.relation.referencesKao C, Chen K, Liu J, Chou S, Chen S. Enzymatic degradation of nitriles by Klebsiella oxytoca. Appl Microbiol Biotechnol 2006;71:228–33. https://doi.org/10.1007/s00253-005-0129-0.spa
dc.relation.referencesIbnul N, Russell J, Dennen K, Tripp CP. Quantification of free and weakly bound cyanide in water using infrared spectroscopy. Talanta 2024;266:124939. https://doi.org/10.1016/j.talanta.2023.124939.spa
dc.relation.referencesWelman M, Hansen R. Cyanide within gold mine waste of the free state goldfields: A geochemical modelling approach. Environmental Pollution 2023;318:120825. https://doi.org/10.1016/j.envpol.2022.120825.spa
dc.relation.referencesMoran R. Cyanide uncertainties: Observations on the chemistry, toxicity and analysis of cyanide in mining-related waters. Mineral Policy Center; 1998. https://doi.org/10.1016/j.jclepro.2004.09.005spa
dc.relation.referencesOraby E, Eksteen J. Gold dissolution and copper suppression during leaching of copper–gold gravity concentrates in caustic soda-low free cyanide solutions. Miner Eng 2016;87:10–7. https://doi.org/10.1016/j.mineng.2015.08.006.spa
dc.relation.referencesSaim A, Darteh F, Cobbinah I, Botchwey T, Ofori-Sarpong G, Amankwah RK. Synthesis of ASB-CuO nanocomposite for efficient cyanide degradation from aqueous systems: Fundamentals and potential applications to tailings water from gold operations. Hydrometallurgy 2023;218:106059. https://doi.org/10.1016/j.hydromet.2023.106059.spa
dc.relation.referencesChegeni M, Shahedi A, Darban A, Jamshidi A, Homaee M. Simultaneous removal of lead and cyanide from the synthetic solution and effluents of gold processing plants using electrochemical method. Journal of Water Process Engineering 2021;43:102284. https://doi.org/10.1016/j.jwpe.2021.102284.spa
dc.relation.referencesMontalvo P, Ticona , Illachura M, López L, Cárdenas M, Teixeira LAC. Combined treatment based on synergism between hydrodynamic cavitation and H2O2 for degradation of cyanide in effluents. Miner Eng 2021;171:107119. https://doi.org/10.1016/j.mineng.2021.107119.spa
dc.relation.referencesAzizitorghabeh A, Wang J, Ramsay JA, Ghahreman A. A review of thiocyanate gold leaching – Chemistry, thermodynamics, kinetics and processing. Miner Eng 2021;160:106689. https://doi.org/10.1016/j.mineng.2020.106689.spa
dc.relation.referencesHannachi A, Valkonen A, Rzaigui M, Smirani W. Thiocyanate precursor impact on the formation of cobalt complexes: Synthesis and characterization. Polyhedron 2019;161:222–30. https://doi.org/10.1016/j.poly.2018.12.039.spa
dc.relation.referencesDuru N, Nesbitt C. Remediation of reduced sulfur species effects on gold and silver recovery during cyanide leaching. Hydrometallurgy 2021;205:105756. https://doi.org/10.1016/j.hydromet.2021.105756.spa
dc.relation.referencesDong K, Xie F, Chang Y, Chen C, Wang W, Lu D, et al. A novel strategy for the efficient decomposition of toxic sodium cyanate by hematite. Chemosphere 2020;256:127047. https://doi.org/10.1016/j.chemosphere.2020.127047.spa
dc.relation.referencesRahman S Kantor R, Huddy R, Thomas BC, van Zyl A, Harrison STL, et al. Genome-resolved metagenomics of a bioremediation system for degradation of thiocyanate in mine water containing suspended solid tailings. Microbiologyopen 2017;6:e00446. https://doi.org/10.1002/mbo3.446.spa
dc.relation.referencesWang L, An X, Xiao X, Li N, Xie D, Lai F, et al. Treatment of thiocyanate-containing wastewater: a critical review of thiocyanate destruction in industrial effluents. World J Microbiol Biotechnol 2023;39:35. https://doi.org/10.1007/s11274-022-03481-4.spa
dc.relation.referencesOulego P, Collado S, Garrido L, Laca A, Rendueles M, Díaz M. Wet oxidation of real coke wastewater containing high thiocyanate concentration. J Environ Manage 2014;132:16–23. https://doi.org/10.1016/j.jenvman.2013.10.011.spa
dc.relation.referencesRaper E, Stephenson T, Fisher R, Anderson DR, Soares A. Characterisation of thiocyanate degradation in a mixed culture activated sludge process treating coke wastewater. Bioresour Technol 2019;288:121524. https://doi.org/10.1016/j.biortech.2019.121524.spa
dc.relation.referencesKim Y, Park D, Lee D, Park J. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment. J Hazard Mater 2008;152:915–21. https://doi.org/10.1016/j.jhazmat.2007.07.065.spa
dc.relation.referencesFan C, Guo C, Zhang J, Ding C, Li X, Reinfelder JR, et al. Thiocyanate-induced labilization of schwertmannite: Impacts and mechanisms. Journal of Environmental Sciences 2019;80:218–28. https://doi.org/10.1016/j.jes.2018.12.015.spa
dc.relation.referencesQuiroga P. N, Olmos M ;, Valentina R. Revisión de la toxicocinética y la toxicodinamia del ácido cianhídrico y los cianuros. vol. 17. 2009. Disponible en: http://www.scielo.org.ar/pdf/ata/v17n1/v17n1a03.pdfspa
dc.relation.referencesSu L, Kelly JB, Hawkridge FM, Rhoten MC, Baskin SI. Characterization of cyanide binding to cytochrome c oxidase immobilized in electrode-supported lipid bilayer membranes. Journal of Electroanalytical Chemistry 2005;581:241–8. https://doi.org/10.1016/j.jelechem.2005.04.023.spa
dc.relation.referencesDonato D Nichols O, Possingham H, Moore M, Ricci PF, Noller B. A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife. Environ Int 2007;33:974–84. https://doi.org/10.1016/J.ENVINT.2007.04.007.spa
dc.relation.referencesManar R, Bonnard M, Rast C, Veber A, Vasseur P. Ecotoxicity of cyanide complexes in industrially contaminated soils. J Hazard Mater 2011;197:369–77. https://doi.org/10.1016/j.jhazmat.2011.09.095.spa
dc.relation.referencesMaciel A, Da R, Pena S, Diniz Do Nascimento L, Almeida De Oliveira T, Celso G, et al. Health exposure risks and bioremediation of cyanide in cassava processing effluents: An overview. Journal of Water Process Engineering 2023;55:2214–7144. https://doi.org/10.1016/j.jwpe.2023.104079.spa
dc.relation.referencesKnoblauch A, Farnham A, Ouoba J, Zanetti J, Müller S, Jean-Richard V, et al. Potential health effects of cyanide use in artisanal and small-scale gold mining in Burkina Faso. J Clean Prod 2020;252. https://doi.org/10.1016/j.jclepro.2019.119689.spa
dc.relation.referencesSpeyer M, Raymond P. The acute toxicity of thiocyanate and cyanate to rainbow trout as modified by water temperature and pH. Environ Toxicol Chem 1988;7:565– 71. https://doi.org/10.1002/etc.5620070705.spa
dc.relation.referencesLanno R, Dixon D. The comparative chronic toxicity of thiocyanate and cyanide to rainbow trout. Aquatic Toxicology 1996;36:177–87. https://doi.org/10.1016/S0166- 445X(96)00815-6.spa
dc.relation.referencesLanno R, Dixon D. The comparative chronic toxicity of thiocyanate and cyanide to rainbow trout. Aquatic Toxicology 1996;36:177–87. https://doi.org/10.1016/S0166- 445X(96)00815-6.spa
dc.relation.referencesLv C, Ding J, Qian P, Li QC, Ye SF, Chen YF. Comprehensive recovery of metals from cyanidation tailing. Miner Eng 2015;70:141–7. https://doi.org/10.1016/j.mineng.2014.09.007.spa
dc.relation.referencesTu Y, Han P, Wei L, Zhang X, Yu B, Qian P, et al. Removal of cyanide adsorbed on pyrite by H2O2 oxidation under alkaline conditions. Journal of Environmental Sciences 2019;78:287–92. https://doi.org/10.1016/j.jes.2018.10.013.spa
dc.relation.referencesDong K, Xie F, Wang W, Chang Y, Lu D, Gu X, et al. The detoxification and utilization of cyanide tailings: A critical review. J Clean Prod 2021;302:126946. https://doi.org/10.1016/j.jclepro.2021.126946.spa
dc.relation.referencesQiu S, GUo P, Zheng Q, Yan B. Treatment of cyanide tailing slurry by Na2S2O5 - air method. Nonferrous Met 2015:59–62. https://doi.org/10.3390/app11052091spa
dc.relation.referencesDash R, Gaur A, Balomajumder C. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J Hazard Mater 2009;163:1–11. https://doi.org/10.1016/j.jhazmat.2008.06.051.spa
dc.relation.referencesAlvillo A, Garrido S, Buitrón G, Thangarasu P, Rosano G. Biological treatment for the degradation of cyanide: A review. Journal of Materials Research and Technology 2021;12:1418–33. https://doi.org/10.1016/j.jmrt.2021.03.030.spa
dc.relation.referencesAlvillo A, Garrido S, Buitrón G, Thangarasu-Sarasvathi P, Rosano-Ortega G. Biological treatment for the degradation of cyanide: A review. Journal of Materials Research and Technology 2021;12:1418–33. https://doi.org/10.1016/j.jmrt.2021.03.030spa
dc.relation.referencesSharma M, Akhter Y, Chatterjee S. A review on remediation of cyanide containing industrial wastes using biological systems with special reference to enzymatic degradation. World J Microbiol Biotechnol 2019;35. https://doi.org/10.1007/s11274- 019-2643-8.spa
dc.relation.referencesLuque V, Moreno-Vivián C, Roldán MD. Biodegradation of cyanide wastes from mining and jewellery industries. Curr Opin Biotechnol 2016;38:9–13. https://doi.org/10.1016/J.COPBIO.2015.12.004.spa
dc.relation.referencesDash R, Gaur A, Balomajumder C. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J Hazard Mater 2009;163:1–11. https://doi.org/10.1016/j.jhazmat.2008.06.051.spa
dc.relation.referencesXiao X, An X, Jiang Y, Wang L, Li Z, Lai F, et al. A newly developed consortium with a highly efficient thiocyanate degradation capacity: A comprehensive investigation of the degradation and detoxification potential. Environmental Pollution 2023;318. https://doi.org/10.1016/j.envpol.2022.120878.spa
dc.relation.referencesLuque V, Cabello P, Sáez L, Olaya A, Moreno-Vivián C, Roldán M. Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation. Appl Microbiol Biotechnol 2018;102:1067–74. https://doi.org/10.1007/s00253-017- 8678-6.spa
dc.relation.referencesRazanamahandry L, Andrianisa H, Karoui H, Kouakou KM, Yacouba H. Biodegradation of free cyanide by bacterial species isolated from cyanidecontaminated artisanal gold mining catchment area in Burkina Faso. Chemosphere 2016;157:71–8. https://doi.org/10.1016/j.chemosphere.2016.05.020.spa
dc.relation.referencesRazanamahandry L, Onwordi C, Saban W, Bashir AKH, Mekuto L, Malenga E, et al. Performance of various cyanide degrading bacteria on the biodegradation of free cyanide in water. J Hazard Mater 2019;380:120900. https://doi.org/10.1016/j.jhazmat.2019.120900.spa
dc.relation.referencesCopari A. Biodegradation of cyanide by Klebsiella sp under different conditions of physicochemical factors at the aerated bioreactor level [Tesis]. Tacna, Peru: Universidad Nacional Jorge Basadre Grohmann-Tacna 2019. Disponible en: https://revistas.unjbg.edu.pespa
dc.relation.referencesLuque M, Cabello P, Sáez LP, Olaya-Abril A, Moreno-Vivián C, Roldán MD. Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation. Appl Microbiol Biotechnol 2018;102:1067–74. https://doi.org/10.1007/s00253-017-8678-6.spa
dc.relation.referencesLee C, Kim J, Do H, Hwang S. Monitoring thiocyanate-degrading microbial community in relation to changes in process performance in mixed culture systems near washout. Water Res 2008;42:1254–62. https://doi.org/10.1016/j.watres.2007.09.017.spa
dc.relation.referencesNwakoby N, Ezeogo J, Orji MU, Ejimofor CF. Isolation and Identification of Bacteria and Fungi from Cassavamill Effluent in Afikpo, Ebonyi State Nigeria. South Asian Journal of Research in Microbiology 2021:18–28. https://doi.org/10.9734/sajrm/2021/v10i430235.spa
dc.relation.referencesVu H, Moreau J. Effects of Environmental Parameters on Thiocyanate Biodegradation by Burkholderia phytofirmans Candidate Strain ST01hv. Environ Eng Sci 2018;35:62–6. https://doi.org/10.1089/ees.2016.0351.spa
dc.relation.referencesMekuto L, Ntwampe SKO, Utomi CE, Mobo M, Mudumbi JB, Ngongang MM, et al. Performance of a continuously stirred tank bioreactor system connected in series for the biodegradation of thiocyanate and free cyanide. J Environ Chem Eng 2017;5:1936–45. https://doi.org/10.1016/j.jece.2017.03.038.spa
dc.relation.referencesGuamán Guadalima MP, Nieto Monteros DA. Evaluation of the rotational speed and carbon source on the biological removal of free cyanide present on gold mine wastewater, using a rotating biological contactor. Journal of Water Process Engineering 2018;23:84–90. https://doi.org/10.1016/j.jwpe.2018.03.008.spa
dc.relation.referencesMoradkhani M, Yaghmaei S, Ghobadi Nejad Z. Biodegradation of Cyanide under Alkaline Conditions by a Strain of Pseudomonas Putida Isolated from Gold Mine Soil and Optimization of Process Variables through Response Surface Methodology (RSM). Periodica Polytechnica Chemical Engineering 2017;62:265–73. https://doi.org/10.3311/PPch.10860.spa
dc.relation.referencesGuamán Guadalima MP, Nieto Monteros DA. Evaluation of the rotational speed and carbon source on the biological removal of free cyanide present on gold mine wastewater, using a rotating biological contactor. Journal of Water Process Engineering 2018;23:84–90. https://doi.org/10.1016/j.jwpe.2018.03.008.spa
dc.relation.referencesMekuto L, Ntwampe SKO, Mudumbi JBN. Microbial communities associated with the co-metabolism of free cyanide and thiocyanate under alkaline conditions. 3 Biotech 2018;8:93. https://doi.org/10.1007/s13205-018-1124-3.spa
dc.relation.referencesPark JM, Trevor Sewell B, Benedik MJ. Cyanide bioremediation: the potential of engineered nitrilases. Appl Microbiol Biotechnol 2017;101:3029–42. https://doi.org/10.1007/s00253-017-8204-x.spa
dc.relation.referencesJavaheri Z, Aminzadeh S, Zamani M, Motallebi M. Significant increase in cyanide degradation by Bacillus sp. M01 PTCC 1908 with response surface methodology optimization. AMB Express 2017;7:200. https://doi.org/10.1186/s13568-017-0502-2spa
dc.relation.referencesClemente S, Olivera C, Benites E. Microbial Biofilm as a Methodology for Treatment of Cyanide-Contaminated Water. Chem Eng Trans 2022;93:151–6. https://doi.org/10.3303/CET2293026.spa
dc.relation.referencesWang W, Duan Y, Wu Y, Huang Y, Gao F, Wang Z, et al. Harmless treatment of cyanide tailings by a bifunctional strain JK-1 based on biodegradation and biomineralization. J Clean Prod 2021;313:127757. https://doi.org/10.1016/j.jclepro.2021.127757.spa
dc.relation.referencesRosario C, VallenasT, Arévalo S, Espinosa D, Tenório J. Biodegradation of cyanide using a Bacillus subtilis strain isolated from artisanal gold mining tailings. Brazilian Journal of Chemical Engineering 2023;40:129–36. https://doi.org/10.1007/s43153- 022-00228-4.spa
dc.relation.referencesWang X, Liu L, Lin W, Luo J. Development and characterization of an aerobic bacterial consortium for autotrophic biodegradation of thiocyanate. Chemical Engineering Journal 2020;398. https://doi.org/10.1016/j.cej.2020.125461.spa
dc.relation.referencesQian X, Chen L, Sui Y, Chen C, Zhang W, Zhou J, et al. Biotechnological potential and applications of microbial consortia. Biotechnol Adv 2020;40. https://doi.org/10.1016/j.biotechadv.2019.107500.spa
dc.relation.referencesGupta P, Ahammad SZ, Sreekrishnan TR. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction. J Hazard Mater 2016;315:52–60. https://doi.org/10.1016/j.jhazmat.2016.04.028.spa
dc.relation.referencesEdward C, Smart M, Harrison STL. Towards recycling remediated cyanidation tailings water to the mineral biooxidation process – Impact on microbial community and its performance. Miner Eng 2022;176. https://doi.org/10.1016/j.mineng.2021.107359.spa
dc.relation.referencesMotsoeneng L, Naidoo V, Mekuto L. Biogas production and metabolite profiling from anaerobic biodegradation of free cyanide using municipal waste activated sludge. Bioresour Technol Rep 2023:101442. https://doi.org/10.1016/j.biteb.2023.101442.spa
dc.relation.referencesHuddy J, Van Zyl AW, Van Hille RP, Harrison STL. Characterisation of the complex microbial community associated with the ASTERTM thiocyanate biodegradation system. Miner Eng 2015;76:65–71. https://doi.org/10.1016/j.mineng.2014.12.011.spa
dc.relation.referencesRazanamahandry LC, Andrianisa HA, Karoui H, Kouakou KM, Yacouba H. Biodegradation of free cyanide by bacterial species isolated from cyanidecontaminated artisanal gold mining catchment area in Burkina Faso. Chemosphere 2016;157:71–8. https://doi.org/10.1016/J.CHEMOSPHERE.2016.05.020.spa
dc.relation.referencesKhamar Z, Makhdoumi-Kakhki A, Mahmudy Gharaie MH. Remediation of cyanide from the gold mine tailing pond by a novel bacterial co-culture. Int Biodeterior Biodegradation 2015;99:123–8. https://doi.org/10.1016/j.ibiod.2015.01.009.spa
dc.relation.referencesXiao X, An X, Jiang Y, Wang L, Li Z, Lai F, et al. A newly developed consortium with a highly efficient thiocyanate degradation capacity: A comprehensive investigation of the degradation and detoxification potential. Environmental Pollution 2023;318:120878. https://doi.org/10.1016/J.ENVPOL.2022.120878.spa
dc.relation.referencesMartin M, Batianis C, Bruinsma L, Asin E, Garcia L, WeusthuisRA, et al. A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnol Adv 2021;49:107732. https://doi.org/10.1016/j.biotechadv.2021.107732.spa
dc.relation.referencesSingh U, Arora NK, Sachan P. Simultaneous biodegradation of phenol and cyanide present in coke-oven effluent using immobilized Pseudomonas putida and Pseudomonas stutzeri. Brazilian Journal of Microbiology 2018;49:38–44. https://doi.org/10.1016/J.BJM.2016.12.013.spa
dc.relation.referencesZhao F, Zhang Q, He L, Yang W, Si M, Liao Q, et al. Molecular level insight of thiocyanate degradation by Pseudomonas putida TDB-1 under a high arsenic and alkaline condition. Science of The Total Environment 2023;874:162578. https://doi.org/10.1016/J.SCITOTENV.2023.162578.spa
dc.relation.referencesHaque M, Mosharaf M, Khatun M, Haque M, Biswas MS, Islam MS, et al. Biofilm Producing Rhizobacteria With Multiple Plant Growth-Promoting Traits Promote Growth of Tomato Under Water-Deficit Stress. Front Microbiol 2020;11. https://doi.org/10.3389/fmicb.2020.542053.spa
dc.relation.referencesMontes D, Von Rymon A-L, Ravella S, Groenhagen U, Herrmann J, Zaburannyi N, et al. Long-Chain Alkyl Cyanides: Unprecedented Volatile Compounds Released by Pseudomonas and Micromonospora Bacteria. Angewandte Chemie - International Edition 2017;56:4342–6. https://doi.org/10.1002/anie.201611940.spa
dc.relation.referencesYang W. Components of rhizospheric bacterial communities of barley and their potential for plant growth promotion and biocontrol of Fusarium wilt of watermelon. Brazilian Journal of Microbiology 2019;50:749–57. https://doi.org/10.1007/s42770- 019-00089-z.spa
dc.relation.referencesSong J, Han G, Wang Y, Jiang X, Zhao D, Li M, et al. Pathway and kinetics of malachite green biodegradation by Pseudomonas veronii. Sci Rep 2020;10. https://doi.org/10.1038/s41598-020-61442-z.spa
dc.relation.referencesLiu G, Cao L, Han R. Plant quercetin degradation by gut bacterium Raoultella terrigena of ghost moth Thitarodes xiaojinensis. Front Microbiol 2022;13. https://doi.org/10.3389/fmicb.2022.1079550.spa
dc.relation.referencesCastillo A, Flores A, Llaca J, Pérez F, Casillas N. Microbiología del género Raoultella, características clínicas y dificultades para su diagnóstico. vol. 56. 2018. https://www.medigraphic.com/pdfs/imss/im-2018/im185i.pdfspa
dc.relation.referencesLiu L, Yu S, Zhao W. A novel sucrose isomerase producing isomaltulose from raoultella terrigena. Applied Sciences (Switzerland) 2021;11. https://doi.org/10.3390/app11125521.spa
dc.relation.referencesVejvoda V, Martínková L, Veselá AB, Kaplan O, Lutz-Wahl S, Fischer L, et al. Biotransformation of nitriles to hydroxamic acids via a nitrile hydratase-amidase cascade reaction. J Mol Catal B Enzym 2011;71:51–5. https://doi.org/10.1016/j.molcatb.2011.03.008.spa
dc.relation.referencesHayat R, Ahmed I, Sheirdil RA. An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. vol. 9789400741. 2012. https://doi.org/10.1007/978-94-007-4116-4_22.spa
dc.relation.referencesFerchichi N, Toukabri W, Boularess M, Smaoui A, Mhamdi R, Trabelsi D. Isolation, identification and plant growth promotion ability of endophytic bacteria associated with lupine root nodule grown in Tunisian soil. Arch Microbiol 2019;201:1333–49. https://doi.org/10.1007/s00203-019-01702-3.spa
dc.relation.referencesXu Q, Zhang S, Ren J, Li K, Li J, Guo Y. Uptake of Selenite by Rahnella aquatilis HX2 Involves the Aquaporin AqpZ and Na+ /H+ Antiporter NhaA. Environ Sci Technol 2023;57:2371–9. https://doi.org/10.1021/acs.est.2c07028.spa
dc.relation.referencesDeloya A. Treatment of cyanide wastes through bioremediation. Tecnología en Marcha, Cartago , v. 29, supl. 1, p. 33-46. http://dx.doi.org/10.18845/tm.v29i5.2515.spa
dc.relation.referencesRestrepo O Montoya CA, Muñoz N. Microbial degradation of cyanide from gold metallurgical plants utilizing P.fluorecens. Año 2006;73:45–51. Disponible en: https://www.researchgate.net/publication/262467370spa
dc.relation.referencesMoradkhani M, Yaghmaei S, Nejad ZG. Biodegradation of cyanide under alkaline conditions by a strain of Pseudomonas putida isolated from gold mine soil and optimization of process variables through response surface methodology (RSM). Periodica Polytechnica Chemical Engineering 2018;62:265–73. https://doi.org/10.3311/PPch.10860.spa
dc.relation.referencesMoradkhani M, Yaghmaei S, Ghobadi Nejad Z. Biodegradation of Cyanide under Alkaline Conditions by a Strain of Pseudomonas Putida Isolated from gold mine soil and optimization of process variables through response surface methodology (RSM). Periodica Polytechnica Chemical Engineering 2017;62:265–73. https://doi.org/10.3311/PPch.10860.spa
dc.relation.referencesCabello P, Luque V, Olayl A, Sáez L Moreno- C, Roldán M. Assimilation of cyanide and cyano-derivatives by Pseudomonas pseudoalcaligenes CECT5344: from omic approaches to biotechnological applications. FEMS Microbiol Lett 2018;365. https://doi.org/10.1093/femsle/fny032.spa
dc.relation.referencesBouari A, Begum SA, Maiga Y, Egiebor N. Biodegradation of Cyanide Complex Compounds in Aqueous Media by Pseudomonas resinovorans. Environ Eng Sci 2013;30:757–64. https://doi.org/10.1089/ees.2013.0254.spa
dc.relation.referencesRestrepo O, Montoya C, Muñoz N. Microbial degradation of cyanide from gold metallurgical plants utilizing P.fluorecens. Año 2006;73:45–51. https://doi.org/10.1016/j.jmrt.2021.03.030spa
dc.relation.referencesAvcioglu N, Bilkay I. Biological treatment of cyanide by using Klebsiella pneumoniae Species. Food Technol Biotechnol 2016;54. https://doi.org/10.17113/ftb.54.04.16.4518.spa
dc.relation.referencesKao C, Liu J, Lou H, Lin C, Chen S. Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca. Chemosphere 2003;50:1055–61. https://doi.org/10.1016/S0045-6535(02)00624-0.spa
dc.relation.referencesNallapan, Sjahrir F, Ibrahim L, Cass A. Biodegradation of cyanide by Rhodococcus UKMP-5M. Biologia (Bratisl) 2013;68:177–85. https://doi.org/10.2478/s11756-013- 0158-6.spa
dc.relation.referencesCabuk A, Unal AT, Kolankaya N. Biodegradation of Cyanide by a White Rot Fungus, Trametes versicolor. Biotechnol Lett 2006;28:1313–7. https://doi.org/10.1007/s10529-006-9090-y.spa
dc.relation.referencesChaudhari AU, Kodam KM. Biodegradation of thiocyanate using co-culture of Klebsiella pneumoniae and Ralstonia sp. Appl Microbiol Biotechnol 2010;85:1167– 74. https://doi.org/10.1007/s00253-009-2299-7.spa
dc.relation.referencesSernaque A, Cornejo L, Regard J, Mialhe L. Caracterización molecular de bacterias cultivables y no cultivables procedentes de pozas de lixiviación con cianuro. Rev Peru Biol 2019;26:275–82. https://doi.org/10.15381/rpb.v26i2.16383.spa
dc.relation.referencesKaewkannetra P, Imai T, Garcia-Garcia FJ, Chiu TY. Cyanide removal from cassava mill wastewater using Azotobactor vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system. J Hazard Mater 2009;172:224–8. https://doi.org/10.1016/j.jhazmat.2009.06.162.spa
dc.relation.referencesLay-Son M, Drakides C. New approach to optimize operational conditions for the biological treatment of a high-strength thiocyanate and ammonium waste: pH as key factor. Water Res 2008;42:774–80. https://doi.org/10.1016/j.watres.2007.08.009.spa
dc.relation.referencesIbrahim K, Syed M, Shukor M, Ahmad SA. Biological remediation of cyanide: A review. Biotropia (Bogor) 2015;22:151–63. https://doi.org/10.11598/btb.2015.22.2.393.spa
dc.relation.referencesFlores Hernández A, Flores Montiel M, Reyes Reyes J, Astorga Zaragoza C. Diseño y modelado de un bioreactor tipo batch y continuo para aplicaciones de control automático. Aplicaciones a La Microbiología Industrial 2013;1:86–92.spa
dc.relation.referencesMekuto L, Ntwampe S, Jackson V. Biodegradation of free cyanide and subsequent utilisation of biodegradation by-products by Bacillus consortia: optimisation using response surface methodology. Environmental Science and Pollution Research 2015;22:10434–43. https://doi.org/10.1007/s11356-015-4221-4.spa
dc.relation.referencesVillemur R, Juteau P, Bougie V, Ménard J, Déziel E. Development of four-stage moving bed biofilm reactor train with a pre-denitrification configuration for the removal of thiocyanate and cyanate. Bioresour Technol 2015;181:254–62. https://doi.org/10.1016/j.biortech.2015.01.051.spa
dc.relation.referencesDvořák L, Lederer T, Jirků V, Masák J, Novák L. Removal of aniline, cyanides and diphenylguanidine from industrial wastewater using a full-scale moving bed biofilm reactor. Process Biochemistry 2014;49:102–9. https://doi.org/10.1016/j.procbio.2013.10.011.spa
dc.relation.referencesChen CY, Kao CM, Chen SC, Chien HY, Lin CE. Application of immobilized cells to the treatment of cyanide wastewater. Water Science and Technology 2007;56:99– 107. https://doi.org/10.2166/wst.2007.699.spa
dc.relation.referencesZhou X, Liu L, Chen Y, Xu S, Chen J. Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii. Can J Microbiol 2007;53:1033–7. https://doi.org/10.1139/W07-070.spa
dc.relation.referencesCampos M, Pereira P, Roseiro JC. Packed-bed reactor for the integrated biodegradation of cyanide and formamide by immobilised Fusarium oxysporum CCMI 876 and Methylobacterium sp. RXM CCMI 908. Enzyme Microb Technol 2006;38:848–54. https://doi.org/10.1016/j.enzmictec.2005.08.008.spa
dc.relation.referencesWhite DM, Schnabel W. Treatment of cyanide waste in a sequencing batch biofilm reactor. Water Res 1998;32:254–7. https://doi.org/10.1016/S0043-1354(97)00167- X.spa
dc.relation.referencesVincent S, Dale C, Young B, Laliberté M, Pouzenc A. Gold Mine Effluent Treatment: Cyanide Compounds and Total Nitrogen Biodegradation using Moving Bed Biofilm Reactor. Proceedings of the Water Environment Federation 2016;2016:5636–51. https://doi.org/10.2175/193864716819714474.spa
dc.relation.referencesRahaman F, Gautam P, Mondal S, Gupta P. Colorimetric detection of cyanide ions using Schiff base derived chemosensor. Mater Today Proc 2022;62:5589–92. https://doi.org/10.1016/J.MATPR.2022.04.805.spa
dc.relation.referencesHemalatha V, Vijayakumar V. A highly selective colorimetric sensing of CN– ion by a hydrazine appended Schiff base and its application in detection of CN– ion present in tobacco and food samples. Inorg Chem Commun 2022;144:109894. https://doi.org/10.1016/J.INOCHE.2022.109894.spa
dc.relation.referencesRai P, Mehrotra S, Raj A, Sharma SK. A rapid and sensitive colorimetric method for the detection of cyanide ions in aqueous samples. Environ Technol Innov 2021;24:101973. https://doi.org/10.1016/J.ETI.2021.101973.spa
dc.relation.referencesSaraji M, Bagheri N. Paper-based headspace extraction combined with digital image analysis for trace determination of cyanide in water samples. Sens Actuators B Chem 2018;270:28–34. https://doi.org/10.1016/j.snb.2018.05.021.spa
dc.relation.referencesAfkhami A, Sarlak N, Zarei A. Simultaneous kinetic spectrophotometric determination of cyanide and thiocyanate using the partial least squares (PLS) regression. Talanta 2007;71:893–9. https://doi.org/10.1016/j.talanta.2006.05.079.spa
dc.relation.referencesJaszczak E, Kozioł K, Kiełbratowska B, Polkowska Ż. Application of ion chromatography with pulsed amperometric detection for the determination of trace cyanide in biological samples, including breast milk. Journal of Chromatography B 2019;1110–1111:36–42. https://doi.org/10.1016/J.JCHROMB.2019.02.008.spa
dc.relation.referencesMadmon M, Shifrovich A, Tamar SY, Weissberg A. Simple and fast determination of free cyanide in drinking water by liquid chromatography electrospray ionization tandem mass spectrometry following “in vial” derivatization. Int J Mass Spectrom 2021;463:116553. https://doi.org/10.1016/J.IJMS.2021.116553.spa
dc.relation.referencesKumar Meher A, Labhsetwar N, Bansiwal A. An improved method for direct estimation of free cyanide in drinking water by Ion Chromatography-Pulsed Amperometry Detection (IC-PAD) on gold working electrode. Food Chem 2018;240:131–8. https://doi.org/10.1016/J.FOODCHEM.2017.07.041.spa
dc.relation.referencesMartinez A. Cromatografía iónica, recientes avances instrumentales. Página web: Http://AvibertBlogspotCom/2011/12/Cromatografia-Ionica-Recientes-AvancesHtml 2011. http://avibert.blogspot.com/2011/12/cromatografia-ionica-recientesavances.html (accessed January 28, 2023).spa
dc.relation.referencesPohl C. Use of Ion Chromatography for Monitoring Ionic Contaminants in Water. Chemistry and Water: The Science Behind Sustaining the World’s Most Crucial Resource, Elsevier Inc.; 2017, p. 353–91. https://doi.org/10.1016/B978-0-12- 809330-6.00010-6.spa
dc.relation.referencesYoshimura T, Araoka D, Tamenori Y, Kuroda J, Kawahata H, Ohkouchi N. Lithium, magnesium and sulfur purification from seawater using an ion chromatograph with a fraction collector system for stable isotope measurements. J Chromatogr A 2018;1531:157–62. https://doi.org/10.1016/j.chroma.2017.11.052.spa
dc.relation.referencesMa Y-J, Li M, Yu H, Li R-S. Fast analysis of thiocyanate by ion-pair chromatography with direct conductivity detection on a monolithic column. Chinese Chemical Letters 2013;24:1067–9. https://doi.org/10.1016/j.cclet.2013.06.029.spa
dc.relation.referencesDestanoğlu O, Gümüş Yılmaz G. Determination of cyanide, thiocyanate, cyanate, hexavalent chromium, and metal cyanide complexes in various mixtures by ion chromatography with conductivity detection. J Liq Chromatogr Relat Technol 2016;39:465–74. https://doi.org/10.1080/10826076.2016.1192044.spa
dc.relation.referencesYe M, Nesterenko PN, Yan Z, Xie P, Chen M. Determination of inorganic anions in weak acids by using ion exclusion chromatography – Capillary ion chromatography switching column technique. J Chromatogr A 2019;1588:169–73. https://doi.org/10.1016/j.chroma.2019.01.007.spa
dc.relation.referencesDestanoʇlu O, Yilmaz G, Apak R. Selective Determination of Free Cyanide in Environmental Water Matrices by Ion Chromatography with Suppressed Conductivity Detection. J Liq Chromatogr Relat Technol 2015;38:1537–45. https://doi.org/10.1080/10826076.2015.1076460.spa
dc.relation.referencesGutierrez Humberto DLVR. Análisis y diseño de experimentos. 2nd ed. Mexico D. F.: McGraw-Hill; 2008.spa
dc.relation.referencesGov W. Office of Water Protocol for Review and Validation of New Methods for Regulated Organic and Inorganic Analytes in Wastewater Under EPA’s Alternate Test Procedure Program. 2018. Disponible en: https://www.epa.gov/sites/default/files/2018-03/documents/chemical-new-methodprotocol_feb-2018.pdfspa
dc.relation.referencesRorke G, Mühlbauer R. Biological processes for thiocyanate and cyanide degradation, 1999, p. 731–40. https://doi.org/10.1016/S1572-4409(99)80164-3.spa
dc.relation.referencesBabu G, Wolfram J, Chapatwala K. Conversion of sodium cyanide to carbon dioxide and ammonia by immobilized cells of Pseudomonas putida. J Ind Microbiol 1992;9:235–8. https://doi.org/10.1007/BF01569629.spa
dc.relation.referencesChapatwala K, Babu G, Vijaya O, Kumar K, Wolfram J. Biodegradation of cyanides, cyanates and thiocyanates to ammonia and carbon dioxide by immobilized cells of Pseudomonas putida. J Ind Microbiol Biotechnol 1998;20:28–33. https://doi.org/10.1038/sj.jim.2900469.spa
dc.relation.referencesSingh N, Balomajumder C. Simultaneous biosorption and bioaccumulation of phenol and cyanide using coconut shell activated carbon immobilized Pseudomonas putida (MTCC 1194). J Environ Chem Eng 2016;4:1604–14. https://doi.org/10.1016/J.JECE.2016.02.011.spa
dc.relation.referencesSaha K, Kabir N, Islam M, Amin M, Hoque K, Halder K, et al. Isolation and characterisation of carbapenem-resistant Pseudomonas aeruginosa from hospital environments in tertiary care hospitals in Dhaka, Bangladesh. J Glob Antimicrob Resist 2022;30:31–7. https://doi.org/10.1016/j.jgar.2022.04.008.spa
dc.relation.referencesAnn C. Smith, Marise A. Hussey. Gram Stain Protocols. 2005. Disponible en: https://asm.org/getattachment/5c95a063-326b-4b2f-98ce-001de9a5ece3/gramstain-protocol-2886.pdfspa
dc.relation.referencesSingh U, Arora N, Sachan P. Simultaneous biodegradation of phenol and cyanide present in coke-oven effluent using immobilized Pseudomonas putida and Pseudomonas stutzeri. Brazilian Journal of Microbiology 2018;49:38–44. https://doi.org/10.1016/j.bjm.2016.12.013.spa
dc.relation.referencesPath Y. Isolation of thiocyanate degrading chemoheterotrophic bacterial consortium. Nature Environment and Pollution Technology 5(1) 2014;5:135–8. Disponible en: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2524814spa
dc.relation.referencesParuchuri YL, Shivaraman N, Kumaran P. Microbial Transformation of Thiocyanate Environ Pollut. 1990;68(1-2):15-28. DOI: 10.1016/0269-7491(90)90011-zspa
dc.relation.referencesWang W da, Duan Y ting, Wu Y ming, Huang Y, Gao F wei, Wang Z, et al. Harmless treatment of cyanide tailings by a bifunctional strain JK-1 based on biodegradation and biomineralization. J Clean Prod. https://doi.org/10.1016/J.JCLEPRO.2021.127757.spa
dc.relation.referencesRüger H. Substrate-Dependent Cold Adaptations in Some Deep-Sea Sediment Bacteria. Syst Appl Microbiol 1988;11:90–3. https://doi.org/10.1016/S0723- 2020(88)80053-5.spa
dc.relation.referencesRamasamy K Brugel S, Eriksson K, Andersson A. Pseudomonas ability to utilize different carbon substrates and adaptation influenced by protozoan grazing. Environ Res 2023;232:116419. https://doi.org/10.1016/J.ENVRES.2023.116419.spa
dc.relation.referencesEcheverri G. Adaptación de bacterias a diferentes concentraciones de fenol en el laboratorio: aspectos esenciales para un proceso de biodegradación. Publicación Científica en ciencias biomédicas 2011;9:60–9. Disponible en: https://revistas.unicolmayor.edu.co/index.php/nova/article/view/173/346spa
dc.relation.referencesRazanamahandry L, Andrianisa H, Karoui H, Kouakou K, Yacouba H. Biodegradation of free cyanide by bacterial species isolated from cyanidecontaminated artisanal gold mining catchment area in Burkina Faso. Chemosphere 2016;157:71–8. https://doi.org/10.1016/j.chemosphere.2016.05.020.spa
dc.relation.referencesRazanamahandry L, Onwordi CT, Saban W, Bashir A, Mekuto L, Malenga E, et al. Performance of various cyanide degrading bacteria on the biodegradation of free cyanide in water. J Hazard Mater 2019;380. https://doi.org/10.1016/j.jhazmat.2019.120900.spa
dc.relation.referencesWang W da, Duan Y ting, Wu Y ming, Huang Y, Gao F, Wang Z, et al. Harmless treatment of cyanide tailings by a bifunctional strain JK-1 based on biodegradation and biomineralization. J Clean Prod 2021;313:127757. https://doi.org/10.1016/J.JCLEPRO.2021.127757.spa
dc.relation.referencesJayan N, Laxmi M. Isolation and studies on zinc removal using microorganism from contaminated soil. Mater Today Proc 2021;44:1892–7. https://doi.org/10.1016/J.MATPR.2020.12.071.spa
dc.relation.referencesGuo N, Wei Q, Xu Y. Optimization of cryopreservation of pathogenic microbial strains. J Biosaf Biosecur 2020;2:66–70. https://doi.org/10.1016/j.jobb.2020.11.003spa
dc.relation.referencesIqbal H, Ishfaq M, Abbas M, Wahab A, Qayum M, Mehsud S. Pathogenic bacteria and heavy metals toxicity assessments in evaluating unpasteurized raw milk quality through biochemical tests collected from dairy cows. Asian Pac J Trop Dis 2016;6:868–72. https://doi.org/10.1016/S2222-1808(16)61148-9.spa
dc.relation.referencesIqbal H, Ishfaq M, Abbas MN, Wahab A, Qayum M, Mehsud S. Pathogenic bacteria and heavy metals toxicity assessments in evaluating unpasteurized raw milk quality through biochemical tests collected from dairy cows. Asian Pac J Trop Dis 2016;6:868–72. https://doi.org/10.1016/S2222-1808(16)61148-9.spa
dc.relation.referencesBou G, Fernández-Olmos A, García C, Sáez-Nieto JA, Valdezate S. Métodos de identificación bacteriana en el laboratorio de microbiología. Enferm Infecc Microbiol Clin 2011;29:601–8. https://doi.org/10.1016/j.eimc.2011.03.012.spa
dc.relation.referencesDobrosz-Gómez I, Ramos García BD, GilPavas E, Gómez García MÁ. Kinetic study on HCN volatilization in gold leaching tailing ponds. Miner Eng 2017;110:185–94. https://doi.org/10.1016/j.mineng.2017.05.001.spa
dc.relation.referencesKim YM, Cho H, Lee DS, Park D, Park J. Comparative study of free cyanide inhibition on nitrification and denitrification in batch and continuous flow systems. Desalination 2011;279:439–44. https://doi.org/10.1016/j.desal.2011.06.026.spa
dc.relation.referencesChen D, Shi F, Zhou Y, Xu W, Shen H, Zhu Y. Hyperbranched anion exchangers prepared from polyethylene polyamine modified polymeric substrates for ion chromatography. J Chromatogr A 2021;1655. https://doi.org/10.1016/j.chroma.2021.462508.spa
dc.relation.referencesChen N, Wu S, Zhu Y. An electrodialytic device for automated inorganic anion preconcentration with determination by ion chromatography-conductivity detection. J Chromatogr A 2021;1638:461898. https://doi.org/10.1016/j.chroma.2021.461898.spa
dc.relation.referencesIammarino M, Di Taranto A, Muscarella M, Nardiello D, Palermo C, Centonze D. Development of a new analytical method for the determination of sulfites in fresh meats and shrimps by ion-exchange chromatography with conductivity detection. Anal Chim Acta 2010;672:61–5. https://doi.org/10.1016/j.aca.2010.04.002.spa
dc.relation.referencesHaddad P, Shaw MJ, Dicinoski GW. New conductivity detection response equation for anions eluted with fully and partially ionised eluents in non-suppressed ion chromatography. J Chromatogr A 2002;956:59–64. https://doi.org/10.1016/S0021- 9673(02)00315-1.spa
dc.relation.referencesGeng X, Zhang S, Wang Q, Zhao Z (Kent). Determination of organic acids in the presence of inorganic anions by ion chromatography with suppressed conductivity detection. J Chromatogr A 2008;1192:187–90. https://doi.org/10.1016/j.chroma.2008.03.073.spa
dc.relation.referencesZhang X, Liu Y-Q, Yu H, Zhang R-Q. Rapid and simultaneous determination of piperidinium and pyrrolidinium ionic liquid cations by ion pair chromatography coupled with direct conductivity detection. Chinese Chemical Letters 2017;28:126– 30. https://doi.org/10.1016/j.cclet.2016.05.034.spa
dc.relation.referencesLopez-Moreno C, Perez IV, Urbano AM. Development and validation of an ionic chromatography method for the determination of nitrate, nitrite and chloride in meat. Food Chem 2016;194:687–94. https://doi.org/10.1016/j.foodchem.2015.08.017.spa
dc.relation.referencesNesterenko PN, Paull B. Ion chromatography. Liquid Chromatography: Fundamentals and Instrumentation: Second Edition, vol. 1, Elsevier; 2017, p. 205– 44. https://doi.org/10.1016/B978-0-12-805393-5.00009-9.spa
dc.relation.referencesZamora Martínez O, Montaño Hilario J, Galindo Zavala V, Siebe Grabach C, Prado Pano BL. Determinación Simultánea De Cationes Mayoritarios En Muestras De Agua Residual Por Medio De Cromatografía De Iones Con Detección Conductimétrica. Revista Internacional de Contaminacion Ambiental 2016;32:293– 301. https://doi.org/10.20937/RICA.2016.32.03.04.spa
dc.relation.referencesNapolitano H. Educación en Ciencias Químicas, Diseño de Experimentos. Disponible en: https://tuaulavirtual.educatic.unam.mx/pluginfile.php/1760839/mod_resource/conten t/1/Napolitano%20Dise%C3%B1o%20de%20experimentos.pdfspa
dc.relation.referencesPinillos M, Lopera G. A pharmaceutical formulation development using a experimental mixture design. Revista de la facultad de Química farmacéutica 2009;16:338–53. DOI:10.17533/udea.vitae.2804spa
dc.relation.referencesCastillo J, Rodríguez M, Wong A, Villalpando P. Diseños experimentales e investigación científica (Experimental designs and scientific research). Diseños Experimentales Inovaciones de negocios 2007;4:283–330. Disponible en: https://revistainnovaciones.uanl.mx/index.php/revin/article/view/190/176spa
dc.relation.referencesRudnykh S, López V. Elección de la función de deseabilidad para diseños óptimos bajo restricciones. Revista EIA 2018;15:13–24. https://doi.org/10.24050/reia.v15i30.903.spa
dc.relation.referencesGisbert A, Navarro J, Torres J, García M. Testing experimental designs in liquid chromatography (II): Influence of the design geometry on the prediction performance of retention models. J Chromatogr A 2021;1654. https://doi.org/10.1016/j.chroma.2021.462458.spa
dc.relation.referencesMadji B, Blasco H, Emond P, Mavel S. Liquid chromatography-high-resolution mass spectrometry-based cell metabolomics: Experimental design, recommendations, and applications. TrAC - Trends in Analytical Chemistry 2016;75:118–28. https://doi.org/10.1016/j.trac.2015.08.003.spa
dc.relation.referencesHibbert DB. Experimental design in chromatography: A tutorial review. J Chromatogr B Analyt Technol Biomed Life Sci 2012;910:2–13. https://doi.org/10.1016/j.jchromb.2012.01.020.spa
dc.relation.referencesRamezani A, Absalan G, Ahmadi R. Green-modified micellar liquid chromatography for isocratic isolation of some cardiovascular drugs with different polarities through experimental design approach. Anal Chim Acta 2018;1010:76–85. https://doi.org/10.1016/j.aca.2017.12.021.spa
dc.relation.referencesAtkinson A, Tobias R. Optimal experimental design in chromatography. J Chromatogr A 2008;1177:1–11. https://doi.org/10.1016/j.chroma.2007.11.045.spa
dc.relation.referencesDovidauskas S, Okada I, dos Santos F. Validation of a simple ion chromatography method for simultaneous determination of glyphosate, aminomethylphosphonic acid and ions of Public Health concern in water intended for human consumption. J Chromatogr A 2020;1632. https://doi.org/10.1016/j.chroma.2020.461603.spa
dc.relation.referencesMichalski R, Lyko A, Kurzyca I. Matrix influences on the determination of common ions by using ion chromatography Part 1-determination of inorganic anions. J Chromatogr Sci 2012;50:482–93. https://doi.org/10.1093/chromsci/bms027.spa
dc.relation.referencesRice EW, Bridgewater L, Association APH. Standard methods for the examination of water and wastewater. vol. 10. American public health association Washington, DC; 2012. Disponible en: https://www.standardmethods.org/spa
dc.relation.referencesCórdova C, Hepp C, Luna G, Sepúlveda G, Barattini P, Zagal E, et al. An alternative method to measure available sulphur by ion chromatograhy in volcanic soils. Chilean J Agric Anim Sci, Ex Agro-Ciencia 2017;33:118. http://dx.doi.org/10.4067/S0719-38902017005000401spa
dc.relation.referencesJiang J, James CA, Wong P. Bioanalytical method development and validation for the determination of glycine in human cerebrospinal fluid by ion-pair reversed-phase liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2016;128:132–40. https://doi.org/10.1016/j.jpba.2016.05.019.spa
dc.relation.referencesZhao F, Zhang Q, He L, Yang W, Si M, Liao Q, et al. Molecular level insight of thiocyanate degradation by Pseudomonas putida TDB-1 under a high arsenic and alkaline condition. Science of The Total Environment 2023;874:162578. https://doi.org/10.1016/j.scitotenv.2023.162578.spa
dc.relation.referencesLucchesi G, Liffourrena An. Adaptative response and degradation of ammonium compounds by Pseudomonas putida ATCC 12633. Technology and Education Topics in Applied Microbiology and Microbial Biotechnology 2010:1–7.spa
dc.relation.referencesBaxter J, Cummings SP. The Impact of Bioaugmentation on Metal Cyanide Degradation and Soil Bacteria Community Structure. Biodegradation 2006;17:207– 17. https://doi.org/10.1007/s10532-005-4219-6.spa
dc.relation.referencesNikolaev Y. Extracellular Factors of Bacterial Adaptation to Unfavorable Environmental Conditions. Appl Biochem Microbiol 2004;40:327–36. https://doi.org/10.1023/B:ABIM.0000033907.28096.2e.spa
dc.relation.referencesRazanamahandry L, Onwordi C, Saban W, Bashir AKH, Mekuto L, Malenga E, et al. Performance of various cyanide degrading bacteria on the biodegradation of free cyanide in water. J Hazard Mater 2019;380:120900. https://doi.org/10.1016/j.jhazmat.2019.120900.spa
dc.relation.referencesAkcil A, Karahan A, Ciftci H, Sagdic O. Biological treatment of cyanide by natural isolated bacteria (Pseudomonas sp.). Miner Eng 2003;16:643–9. https://doi.org/10.1016/S0892-6875(03)00101-8.spa
dc.relation.referencesDouglas Gould W, King M, Mohapatra BR, Cameron RA, Kapoor A, Koren DW. A critical review on destruction of thiocyanate in mining effluents. Miner Eng 2012;34:38–47. https://doi.org/10.1016/j.mineng.2012.04.009.spa
dc.relation.referencesZhao F, Zhang Q, He L, Yang W, Si M, Liao Q, et al. Molecular level insight of thiocyanate degradation by Pseudomonas putida TDB-1 under a high arsenic and alkaline condition. Science of The Total Environment 2023;874:162578. https://doi.org/10.1016/j.scitotenv.2023.162578.spa
dc.relation.referencesRazanamahandry L, Andrianisa H, Karoui H, Kouakou K, Yacouba H. Biodegradation of free cyanide by bacterial species isolated from cyanidecontaminated artisanal gold mining catchment area in Burkina Faso. Chemosphere 2016;157:71–8. https://doi.org/10.1016/j.chemosphere.2016.05.020.spa
dc.relation.referencesWang H, de Carvalho LPS. Metabolomic profiling reveals bacterial metabolic adaptation strategies and new metabolites. Curr Opin Chem Biol 2023;74:102287. https://doi.org/10.1016/j.cbpa.2023.102287.spa
dc.relation.referencesMekuto L, Ntwampe SKO, Akcil A. An integrated biological approach for treatment of cyanidation wastewater. Science of the Total Environment 2016;571:711–20. https://doi.org/10.1016/j.scitotenv.2016.07.040.spa
dc.relation.referencesCarolina D, Montoya A. Consorcios microbianos: una metáfora biológica aplicada a la asociatividad empresarial en cadenas productivas agropecuarias. RevFacCiencEcon 2010;1058.55–74. Disponible en: https://www.redalyc.org/pdf/909/90920053003.pdfspa
dc.relation.referencesCorrales R, Caycedo L. Principios físicoquímicos de los colorantes utilizados en microbiología. Principios físicoquímicos de los colorantes. Nova 2020;18. https://doi.org/10.22490/24629448.3701.spa
dc.relation.referencesElomari M, Coroler L, Hoste B, Gillis M, Izard D, Leclerc H. DNA Relatedness among Pseudomonas Strains Isolated from Natural Mineral Waters and Proposal of Pseudomonas veronii sp. nov. Int J Syst Bacteriol 1996;46:1138–44. https://doi.org/10.1099/00207713-46-4-1138.spa
dc.relation.referencesKaramba K, Ahmad S, Zulkharnain A, Syed M, Khalil K, Shamaan N, et al. Optimisation of biodegradation conditions for cyanide removal by Serratia marcescens strain AQ07 using one-factor-at-a-time technique and response surface methodology. Rendiconti Lincei 2016;27:533–45. https://doi.org/10.1007/s12210- 016-0516-8.spa
dc.relation.referencesJavaheri S, Aminzadeh S, Zamani M, Motallebi M. Significant increase in cyanide degradation by Bacillus sp. M01 PTCC 1908 with response surface methodology optimization. AMB Express 2017;7. https://doi.org/10.1186/s13568-017-0502-2.spa
dc.relation.referencesArias N, Vázquez L, Pérez G. Estudio comparativo entre los enfoques de diseño experimental robusto de Taguchi y tradicional en presencia de interacciones de control por control. Ingeniería Investigación y Tecnología 2015;16:131–42. Disponible en: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405- 77432015000100013spa
dc.relation.referencesGustavo F, Fernández M, Pérez I, Morón Y, García V, Perdomo I, et al. Experimental designs in pharmaceutical technology and control of medicaments. Revista Mexicana de Ciencias Farmacéuticas 2008;39:28–40. Disponible en: https://www.researchgate.net/publication/286656350_Experimental_designs_in_pha rmaceutical_technology_and_control_of_medicamentsspa
dc.relation.referencesJaszczak E, Polkowska Ż, Narkowicz S, Namieśnik J. Cyanides in the environment—analysis—problems and challenges. Environmental Science and Pollution Research 2017;24:15929–48. https://doi.org/10.1007/s11356-017-9081-7.spa
dc.relation.referencesSinnott R, Towler G. Chapter 15 - Design of Reactors and Mixers. In: Sinnott R, Towler GBT-CED (Sixth E, editors. Chemical Engineering Series, ButterworthHeinemann; 2020, p. 1039–146. https://doi.org/https://doi.org/10.1016/B978-0-08- 102599-4.00015-1.spa
dc.relation.referencesRaymond M, Douglas M. Response surface methodology. vol. 1. Third. New Jersy: John Wiley & sons; 2009.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalBiorreactoresspa
dc.subject.proposalMicroorganismos degradadoresspa
dc.subject.proposalCromatografía iónicaspa
dc.subject.proposalCompuestos cianuradosspa
dc.subject.unescoQuímica
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.description.degreenameMagister en Químicaspa
dc.publisher.programMaestría en Químicaspa
dc.description.researchgroupCalidad de agua y suelospa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem