Mostrar el registro sencillo del ítem

dc.contributor.advisorGonzalez-Correa, Carlos-Augusto
dc.contributor.advisorJaimes Morales, Samuel Alberto
dc.contributor.authorAguirre Cardona , Victoria Eugenia
dc.date.accessioned2023-07-04T14:05:43Z
dc.date.available2023-07-04T14:05:43Z
dc.date.issued2023-07-04
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/19525
dc.descriptionIlustraciones, gráficasspa
dc.description.abstractspa:Se llevó a cabo el estudio de las propiedades eléctricas pasivas de tejido de colon distal y recto porcino, mediante la medición de la Espectroscopia de Bioimpedancia Eléctrica EBIE, haciendo uso tanto de la parte real como de la imaginaria de los espectros de resistividad eléctrica compleja. A partir de allí, se realizó un análisis estadístico y un modelado matemático mediante el método geométrico propuesto por González Correa (C. A. Gonzalez-Correa, 2019; González-Correa et al., 2022) y mediante el modelo de Cole, con el objetivo de determinar el comportamiento eléctrico del tejido a distintas distancias desde el esfínter anal. La importancia de este estudio es la de aportar información relevante de estas propiedades, para futuras aplicaciones relacionadas con el desarrollo de herramientas para la detección de enfermedades del colon en humanos, teniendo en cuenta la escasa literatura disponible en la actualidad y a que el colon y recto porcino son un modelo válido para su contraparte humano.spa
dc.description.abstracteng:It was carried out the study of the passive electrical properties of porcine distal colon and rectum by the Electrical Bioimpedance Spectroscopy EBIS measurements considering the real and imaginary part of the electrical resistivity spectrum. Then, statistical analysis and mathematical modelling with a geometrical proposed by González Correa (C. A. Gonzalez-Correa, 2019; González-Correa et al., 2022) and Cole model were made, in order to establish the electrical behavior of the tissue for different distances from the anal sphincter. The significance of this study is to bring relevant information about these properties for further developments in colorectal disease detection in humans, consider that the literature is scarce, and the porcine colorectal tissue is a valid model.eng
dc.description.tableofcontentsAgradecimientos / Resumen ejecutivo / Executive summary / Introducción / Capítulo 1. Presentación general / 1.1. Contextualización y justificación / 1.2. Planteamiento del problema / 1.3. Hipótesis de trabajo / 1.4. Objetivos / 1.4.1. Objetivo general / 1.4.2. Objetivos específicos / Capítulo 2. Marco conceptual / 2.1. Aspectos biológicos / 2.1.1. Colon distal y recto de cerdo y humano / 2.1.2. Estructura macroscópica del colon distal y recto de cerdo y humano / 2.1.3. Estructura microscópica del colon distal y recto de cerdo y humano / 2.1.4. Ultraestructura / 2.1.5. Perspectivas a futuro de la investigación / 2.2. Aspectos físicos / 2.2.1. Electricidad y Bioelectricidad / 2.2.2. Bioelectricidad / 2.2.3. Bioimpedancia eléctrica / 2.2.3.1. Espectroscopia de bioimpedancia eléctrica y zonas de dispersión / 2.2.3.2. Modelos de la bioimpedancia eléctrica / Capítulo 3. Marco metodológico/ 3.1. Desarrollo del protocolo de medición / 3.1.1 Metodología de desarrollo. / 3.1.1.1 Primer espécimen de prueba / 3.1.1.2 Segundo espécimen de prueba / 3.1.1.3 Tercer espécimen de prueba / 3.1.2. Protocolo para la recolección del espécimen y la toma de datos. / 3.2. Metodología para la medición de tejido colorrectal de cerdo ex vivo.... 45 3.3. Calibración de la sonda de medición / 3.3.1. Preparación y medición de las soluciones / 3.3.1.1. Calibración de la magnitud de la impedancia / 3.3.1.2. Calibración de la fase. / 3.3.1.3. Cálculo de la parte real y la parte imaginaria de la resistividad eléctrica. / 3.4. Estrategia para el ajuste de datos al modelo de Cole de dos dispersiones / 3.5. Descripción del planteamiento del análisis estadístico / 3.5.1. Igualdad entre lecturas / 3.5.2. Igualdad entre puntos / 3.5.3. Igualdad entre distancias / Capítulo 4. Resultados y análisis / 4.1. Calibración de la sonda / 4.1.1. Preparación y medición de soluciones / 4.1.2. Calibración de la Magnitud de la impedancia eléctrica / 4.1.3. Calibración de la fase de la impedancia eléctrica / 10 4.2. Análisis de tejido rectal y colon / 4.2.1. Comparación respecto a lecturas / 4.2.2. Comparación respecto a puntos / 4.2.3. Comparación respecto a distancia / 4.2.3.1. Diferencias en la parte real e imaginaria. / 4.2.4. Promedio por distancia / Capítulo 5. Discusión General / 5.1. Protocolo de medición / 5.2. Calibración de la sonda de medición y conversión a resistividad eléctrica / 5.3. Análisis de tejido colorrectal / 5.4. Hipótesis sobre la estructura de capas / Capítulo 6. Conclusiones y recomendaciones generales / 6.1. Conclusiones / 6.2. Recomendaciones / Referencias / Anexos / Apéndicespa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titlePropiedades eléctricas pasivas, de tejido de colon distal y recto porcino (Sus scrofa domesticus) ex vivo, basadas en la espectroscopia de bioimpedancia eléctrica (EBIE)eng
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.researchgroupBioimpedancia eléctrica (Categoría A)spa
dc.description.degreelevelMaestríaspa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias para la Saludspa
dc.publisher.placeManizalesspa
dc.relation.referencesAbasi, S., Aggas, J. R., Garayar-Leyva, G. G., Walther, B. K., & Guiseppi-Elie, A. (2022). Bioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A Review. ACS Measurement Science Au, acsmeasuresciau.2c00033. https://doi.org/10.1021/acsmeasuresciau.2c00033spa
dc.relation.referencesAksoy, N., & Akinci, O. F. (2004). Mucin macromolecules in normal, adenomatous, and carcinomatous colon: Evidence for the neotransformation. Macromolecular Bioscience, 4(5), 483-496. https://doi.org/10.1002/mabi.200300099spa
dc.relation.referencesAppendix B: part 1. (s. f.). Recuperado 29 de junio de 2023, de http://niremf.ifac.cnr.it/docs/DIELECTRIC/AppendixB1.html#B06spa
dc.relation.referencesAtuma, C., Strugala, V., Allen, A., & Holm, L. (2001). The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. American Journal of Physiology. Gastrointestinal and Liver Physiology, 280(5), G922-929. https://doi.org/10.1152/ajpgi.2001.280.5.G922spa
dc.relation.referencesBardhan, K., & Liu, K. (2013). Epigenetics and colorectal cancer pathogenesis. Cancers, 5(2), 676-713. https://doi.org/10.3390/cancers5020676spa
dc.relation.referencesBeltran, N. E., & Sacristan, E. (2015). Gastrointestinal ischemia monitoring through impedance spectroscopy as a tool for the management of the critically ill. Experimental Biology and Medicine, 240(7), 835-845. https://doi.org/10.1177/1535370215571876spa
dc.relation.referencesBeltran, N. E., Sanchez-Miranda, G., Godinez, M., Diaz, U., & Sacristan, E. (2006). Gastric impedance spectroscopy in elective cardiovascular surgery patients. Physiological Measurement, 27(3), 265-277. https://doi.org/10.1088/0967-3334/27/3/005spa
dc.relation.referencesBlößer, S., May, A., Welsch, L., Ast, M., Braun, S., Velten, T., Biehl, M., Tschammer, J., Roeb, E., & Knabe, M. (2022). Virtual Biopsy by Electrical Impedance Spectroscopy in Barrett’s Carcinoma. Journal of Gastrointestinal Cancer, 53(4), 948-957. https://doi.org/10.1007/s12029-021-00703-0spa
dc.relation.referencesBorycka-Kiciak, K., Młyńczak, M., Kiciak, A., Pietrzak, P., & Dziki, A. (2019). Non-invasive obstetric anal sphincter injury diagnostics using impedance spectroscopy. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-43637-1spa
dc.relation.referencesBounik, R., Cardes, F., Ulusan, H., Modena, M. M., & Hierlemann, A. (2022). Impedance Imaging of Cells and Tissues: Design and Applications. BME Frontiers, 2022. https://doi.org/10.34133/2022/9857485spa
dc.relation.referencesBraakhuis, B. J. M., Tabor, M. P., Kummer, J. A., Leemans, C. R., & Brakenhoff, R. H. (2003). A Genetic Explanation of Slaughter’s Concept of Field Cancerization: Evidence and Clinical Implications1. Cancer Research, 63(8), 1727-1730spa
dc.relation.referencesCano, F. G., Zarzosa, G. R., Florenciano, M. D. A., Albors, O. L., Reviriego, R. L., Gomariz, F. M., Collado, C. S., Espinosa, A. A., Hernández, M. O., & Autón, J. M. V. (2008). Anatomía interactiva del cerdo. Departamento de Anatomía y Anatomía Patológica Comparadas. Universidad de Murcia, 30.spa
dc.relation.referencesCastro-Poças, F. M., Dinis-Ribeiro, M., Araújo, T. P., & Pedroto, I. (2015). Echoendoscopic characterization of the human colon. Revista Espanola De Enfermedades Digestivas: Organo Oficial De La Sociedad Espanola De Patologia Digestiva, 107(8), 469-475. https://doi.org/10.17235/reed.2015.3721/2015spa
dc.relation.referencesChandler, J. H., Mushtaq, F., Moxley-Wyles, B., West, N. P., Taylor, G. W., & Culmer, P. R. (2017). Real-Time Assessment of Mechanical Tissue Trauma in Surgery. IEEE Transactions on Bio-Medical Engineering, 64(10), 2384-2393. https://doi.org/10.1109/TBME.2017.2664668spa
dc.relation.referencesChiang, S., Eschbach, M., Knapp, R., Holden, B., Miesse, A., Schwaitzberg, S., & Titus, A. (2021). Electrical Impedance Characterization of in Vivo Porcine Tissue Using Machine Learning. Journal of Electrical Bioimpedance, 12(1), 26-33. https://doi.org/10.2478/joeb2021-0005spa
dc.relation.referencesChing, C. T.-S., Sun, T.-P., Huang, S.-H., Hsiao, C.-S., Chang, C.-H., Huang, S.-Y., Chen, Y.-J., Cheng, C.-S., Shieh, H.-L., & Chen, C.-Y. (2010). A preliminary study of the use of bioimpedance in the screening of squamous tongue cancer. International Journal of Nanomedicine, 5, 213-220. https://doi.org/10.2147/ijn.s8611spa
dc.relation.referencesCurtius, K., Wright, N. A., & Graham, T. A. (2018). An evolutionary perspective on field cancerization. Nature Reviews Cancer, 18(1), 19-33.spa
dc.relation.referencesDavies, R. J., Joseph, R., Kaplan, D., Juncosa, R. D., Pempinello, C., Asbun, H., & Sedwitz, M. M. (1987). Epithelial impedance analysis in experimentally induced colon cancer. Biophysical Journal, 52(5), 783-790. https://doi.org/10.1016/S0006-3495(87)83272-1spa
dc.relation.referencesDielectric Properties » IT’IS Foundation. (s. f.). Recuperado 4 de noviembre de 2022, de https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/spa
dc.relation.referencesFyderek, K., Strus, M., Kowalska-Duplaga, K., Gosiewski, T., Wędrychowicz, A., JedynakWąsowicz, U., Sładek, M., Pieczarkowski, S., Adamski, P., Kochan, P., & Heczko, P. B. (2009). Mucosal bacterial microflora and mucus layer thickness in adolescents with inflammatory bowel disease. World Journal of Gastroenterology : WJG, 15(42), 5287- 5294. https://doi.org/10.3748/wjg.15.5287spa
dc.relation.referencesGarrod, D., & Chidgey, M. (2008). Desmosome structure, composition and function. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1778(3), 572-587. https://doi.org/10.1016/j.bbamem.2007.07.014spa
dc.relation.referencesGenetic and Epigenetic Characterisation of Breast Tumours. (2016). Division of Oncology, Department of Clinical Sciences, Lund.spa
dc.relation.referencesGerstung, M., Jolly, C., Leshchiner, I., Dentro, S., Gonzalez, S., Rosebrock, D., Mitchell, T., Rubanova, Y., Anur, P., Yu, K., Tarabichi, M., Deshwar, A., Wintersinger, J., Kleinheinz, K., Vázquez-García, I., Haase, K., Jerman, L., Sengupta, S., Macintyre, G., & Loo, P. (2020). The evolutionary history of 2,658 cancers. Nature, 578, 122-128. https://doi.org/10.1038/s41586-019-1907-7spa
dc.relation.referencesGonzalez-Correa, C. A. (2019). Simplified geometrical adjustment of bioimpedance measured data to the complex plane with just three parameters. Journal of Physics: Conference Series, 1272(1), 012018. https://doi.org/10.1088/1742-6596/1272/1/012018spa
dc.relation.referencesGonzález-Correa, C. A., Brown, B. H., Smallwood, R. H., Kalia, N., Stoddard, C. J., Stephenson, T. J., Haggie, S. J., Slater, D. N., & Bardhan, K. D. (2000). Assessing the conditions forin vivo electrical virtual biopsies in Barrett’s oesophagus. Medical & Biological Engineering & Computing, 38(4), 373-376. https://doi.org/10.1007/BF02345004spa
dc.relation.referencesGonzález-Correa, C. A., Jaimes, S. A., & Cárdenas-Jiménez, J. I. (2022). Preliminary study on parameterization of raw electrical bioimpedance data with 3 frequencies. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-13299-7spa
dc.relation.referencesGonzález-Correa, C. A., Mulett-Vásquez, E., Osorio-Chica, M., Dussán-Lubert, C., & Miranda, D. (2019). Rectal electrical bio-impedance spectroscopy in the detection of colorectal anomalies associated with cancer. Journal of Physics: Conference Series, 1272(1), 012012. https://doi.org/10.1088/1742-6596/1272/1/012012spa
dc.relation.referencesGonzalez-Correa, C.-A. (2018). Clinical Applications of Electrical Impedance Spectroscopy. En Bioimpedance in Biomedical Applications and Research (pp. 187-218). https://doi.org/10.1007/978-3-319-74388-2_10spa
dc.relation.referencesGonzalez-Correa, C.-A., Mulett, E., Osorio-Chica, M., Dussán-Lubert, C., & Miranda, D. (2019). Rectal electrical bio-impedance spectroscopy in the detection of colorectal anomalies associated with cancer. Journal of Physics: Conference Series, 1272, 012012. https://doi.org/10.1088/1742-6596/1272/1/012012spa
dc.relation.referencesGonzalez-Correa, C.-A., Mulett-Vásquez, E., Miranda, D. A., Gonzalez-Correa, C. H., & GómezBuitrago, P. A. (2017). The colon revisited or the key to wellness, health and disease. Medical Hypotheses, 108, 133-143. https://doi.org/10.1016/j.mehy.2017.07.032spa
dc.relation.referencesGonzalez-Correa et al. (2016). Rectal Bioelectrical impedance (REBI) as a possible screening tool for colorectal cancer (CRC. 27(Supplement 2), 2016. https://doi.org/10.1093/annonc/mdw199.218spa
dc.relation.referencesGrimnes, S., & Martinsen, Ø. G. (2006). Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors. Journal of Physics D: Applied Physics, 40(1), 9. https://doi.org/10.1088/0022-3727/40/1/S02spa
dc.relation.referencesHeinritz, S. N., Mosenthin, R., & Weiss, E. (2013). Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutrition Research Reviews, 26(2), 191-209. https://doi.org/10.1017/S0954422413000152spa
dc.relation.referencesJaimes, S. A. (2019). Development and testing of a customizable and portable bioimpedance spectroscopy meter (BioZspectra-v1). Journal of Physics: Conference Series, 1272(1), 012024. https://doi.org/10.1088/1742-6596/1272/1/012024spa
dc.relation.referencesJohansson, M. E. V., Larsson, J. M. H., & Hansson, G. C. (2011). The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host– microbial interactions. Proceedings of the National Academy of Sciences, 108(supplement_1), 4659-4665. https://doi.org/10.1073/pnas.1006451107spa
dc.relation.referencesJohansson, M. E. V., Sjövall, H., & Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nature Reviews. Gastroenterology & Hepatology, 10(6), 352-361. https://doi.org/10.1038/nrgastro.2013.35spa
dc.relation.referencesJunko, F., Moore, D., Omari, T., Seiboth, G., Abu-Assi, R., Hammond, P., & Couper, R. (2021). Multichannel impedance monitoring for distinguishing nonerosive reflux esophagitis with minor changes on endoscopy in children. Therapeutic Advances in Gastrointestinal Endoscopy, 14, 26317745211030464. https://doi.org/10.1177/26317745211030466spa
dc.relation.referencesKadir, M., & Rabbani, K. (2018). Use of a Conical Conducting Layer with an Electrical Impedance Probe to Enhance Sensitivity in Epithelial Tissues. Journal of Electrical Bioimpedance, 9, 176-183. https://doi.org/10.2478/joeb-2018-0022spa
dc.relation.referencesKararli, T. T. (1995). Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharmaceutics & Drug Disposition, 16(5), 351-380. https://doi.org/10.1002/bdd.2510160502spa
dc.relation.referencesKassanos, P., Ip, H. M. D., & Yang, G.-Z. (2015). A tetrapolar bio-impedance sensing system for gastrointestinal tract monitoring. 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 1-6. https://doi.org/10.1109/BSN.2015.7299403spa
dc.relation.referencesKeshtkar, A., Salehnia, Z., Somi, M. H., & Eftekharsadat, A. T. (2012). Some early results related to electrical impedance of normal and abnormal gastric tissue. Physica Medica, 28(1), 19-24. https://doi.org/10.1016/j.ejmp.2011.01.002spa
dc.relation.referencesKomin, A., Russell, L. M., Hristova, K. A., & Searson, P. C. (2017). Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges. Advanced Drug Delivery Reviews, 110-111, 52-64. https://doi.org/10.1016/j.addr.2016.06.002spa
dc.relation.referencesKomori, K., Ihara, E., Minoda, Y., Ogino, H., Sasaki, T., Fujiwara, M., Oda, Y., & Ogawa, Y. (2019). The Altered Mucosal Barrier Function in the Duodenum Plays a Role in the Pathogenesis of Functional Dyspepsia. Digestive Diseases and Sciences, 64(11), 3228- 3239. https://doi.org/10.1007/s10620-019-5470-8spa
dc.relation.referencesKuang, W., & Nelson, S. (1998). Low-frequency dielectric properties of biological tissues: A review with some new insights. 41. https://doi.org/10.13031/2013.17142spa
dc.relation.referencesKuang, W., & Nelson, S. O. (1997). Low-Frequency Dielectric Dispersion from Ion Permeability of Membranes. Journal of Colloid and Interface Science, 193(2), 242-249. https://doi.org/10.1006/jcis.1997.5073spa
dc.relation.referencesKunzelmann, K., & Mall, M. (2002). Electrolyte transport in the mammalian colon: Mechanisms and implications for disease. Physiological Reviews, 82(1), 245-289. https://doi.org/10.1152/physrev.00026.2001spa
dc.relation.referencesLaukoetter, M. G., Bruewer, M., & Nusrat, A. (2006). Regulation of the intestinal epithelial barrier by the apical junctional complex. Current Opinion in Gastroenterology, 22(2), 85-89. https://doi.org/10.1097/01.mog.0000203864.48255.4fspa
dc.relation.referencesLee, H., Lee, Y., Song, C., Cho, H. R., Ghaffari, R., Choi, T. K., Kim, K. H., Lee, Y. B., Ling, D., Lee, H., Yu, S. J., Choi, S. H., Hyeon, T., & Kim, D.-H. (2015). An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nature Communications, 6(1), Article 1. https://doi.org/10.1038/ncomms10059spa
dc.relation.referencesMarkx, G. H., & Davey, C. L. (1999). The dielectric properties of biological cells at radiofrequencies: Applications in biotechnology. Enzyme and Microbial Technology, 25(3), 161-171. https://doi.org/10.1016/S0141-0229(99)00008-3spa
dc.relation.referencesMartinsen, O., & Grimnes, S. (2008). Bioimpedance and Bioelectricity Basics (2.a ed.). https://www.elsevier.com/books/bioimpedance-and-bioelectricity-basics/grimnes/978-0- 12-374004-5spa
dc.relation.referencesMcGuckin, M. A., Lindén, S. K., Sutton, P., & Florin, T. H. (2011). Mucin dynamics and enteric pathogens. Nature Reviews Microbiology, 9(4), Article 4. https://doi.org/10.1038/nrmicro2538spa
dc.relation.referencesMeng, W., & Takeichi, M. (2009). Adherens Junction: Molecular Architecture and Regulation. Cold Spring Harbor Perspectives in Biology, 1(6), a002899. https://doi.org/10.1101/cshperspect.a002899spa
dc.relation.referencesMłyńczak, M., Rosoł, M., Spinelli, A., Dziki, A., Wlaźlak, E., Surkont, G., Krzycka, M., Pająk, P., Dziki, Ł., Mik, M., & Borycka-Kiciak, K. (2021). Obstetric Anal Sphincter Injury Detection Using Impedance Spectroscopy with the ONIRY Probe. Applied Sciences, 11(2), Article 2. https://doi.org/10.3390/app11020637spa
dc.relation.referencesMulasi, U., Kuchnia, A. J., Cole, A. J., & Earthman, C. P. (2015). Bioimpedance at the bedside: Current applications, limitations, and opportunities. Nutrition in Clinical Practice: Official Publication of the American Society for Parenteral and Enteral Nutrition, 30(2), 180-193. https://doi.org/10.1177/0884533614568155spa
dc.relation.referencesMulett-Vásquez, E., Correa-Florez, A., Dussán-Lubert, C., Miranda-Mercado, D.-A., & González-Correa, C.-A. (2016). In Vitro Luminal Measurements of Colon Electrical Impedance in Rabbits. En F. Simini & P. Bertemes-Filho (Eds.), II Latin American Conference on Bioimpedance (pp. 28-31). Springer. https://doi.org/10.1007/978-981-287-928-8_8spa
dc.relation.referencesMulett-Vásquez, E., Gonzalez-Correa, C.-A., Miranda-Mercado, D.-A., Osorio-Chica, M., & Dussan-Lubert, C. (2016). In vivo Electrical-Impedance Spectroscopy (EIS) Readings in the Human Rectum. En F. Simini & P. Bertemes-Filho (Eds.), II Latin American Conference on Bioimpedance (pp. 68-71). Springer. https://doi.org/10.1007/978-981-287- 928-8_18spa
dc.relation.referencesMullin, J. M., Agostino, N., Rendon-Huerta, E., & Thornton, J. J. (2005). Keynote review: Epithelial and endothelial barriers in human disease. Drug Discovery Today, 10(6), 395- 408. https://doi.org/10.1016/S1359-6446(05)03379-9spa
dc.relation.referencesNguyen, K. T., Kim, H. Y., Park, J.-O., Choi, E., & Kim, C.-S. (2022). Tripolar Electrode Electrochemical Impedance Spectroscopy for Endoscopic Devices toward Early Colorectal Tumor Detection. ACS Sensors, 7(2), 632-640. https://doi.org/10.1021/acssensors.1c02571spa
dc.relation.referencesNielsen, M. S., Axelsen, L. N., Sorgen, P. L., Verma, V., Delmar, M., & Holstein-Rathlou, N.-H. (2012). Gap Junctions. Comprehensive Physiology, 2(3), 10.1002/cphy.c110051. https://doi.org/10.1002/cphy.c110051spa
dc.relation.referencesPark, S., Song, C. S., Yang, H., Jung, Y. S., Choi, K. Y., Koo, D. H., Eun, K., Jeong, K. U., Kim, H. O., Kim, H., Chun, H., & Park, D. I. (2016). Field Cancerization in Sporadic Colon Cancer. 10(5), 773-780.spa
dc.relation.referencesPathiraja, A., Ziprin, P., Shiraz, A., Mirnezami, R., Tizzard, A., Brown, B., Demosthenous, A., & Bayford, R. (2017). Detecting colorectal cancer using electrical impedance spectroscopy: An ex vivo feasibility study. Physiological Measurement, 38(6), 1278-1288. https://doi.org/10.1088/1361-6579/aa68cespa
dc.relation.referencesPayne, S. C., Alexandrovics, J., Thomas, R., Shepherd, R. K., Furness, J. B., & Fallon, J. B. (2020). Transmural impedance detects graded changes of inflammation in experimental colitis. Royal Society Open Science, 7(2), 191819. https://doi.org/10.1098/rsos.191819spa
dc.relation.referencesPayne, S. C., Shepherd, R. K., Sedo, A., Fallon, J. B., & Furness, J. B. (2018). An objective in vivo diagnostic method for inflammatory bowel disease. Royal Society Open Science, 5(3), 180107. https://doi.org/10.1098/rsos.180107spa
dc.relation.referencesPlakhotnyi, R. О., Кerechanyn, І. V., Fedoniuk, L. Ya., Kovalchuk, N. V., Dehtiariova, O. V., & Singh, G. (2021). Comperative structure of mucosa coat of the pig`s and the human`s rectum. Wiadomości Lekarskie, 74(7), 1718-1721. https://doi.org/10.36740/WLek202107128spa
dc.relation.referencesPlakhotnyi, R. О., Кerechanyn, І. V., Fedoniuk, L. Ya., Trunina, T. I., & Yaremenko, L. M. (2020). Comparative morphology of the pig`s rectum and human`s rectum via 3d reconstruction. Wiadomości Lekarskie, 73(11), 2354-2357. https://doi.org/10.36740/WLek202011106spa
dc.relation.referencesPullan, R. D., Thomas, G. A., Rhodes, M., Newcombe, R. G., Williams, G. T., Allen, A., & Rhodes, J. (1994). Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut, 35(3), 353-359. https://doi.org/10.1136/gut.35.3.353spa
dc.relation.referencesRoss, M., & Pawlina, W. (2007). Histología. Texto y Atlas color con Biología Celular y Molecular (Quinta). Panamericanaspa
dc.relation.referencesRoy, H. K., & Backman, V. (2012). Spectroscopic applications in gastrointestinal endoscopy. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association, 10(12), 1335-1341. https://doi.org/10.1016/j.cgh.2012.10.002spa
dc.relation.referencesRuiz-Vargas, A., Ivorra, A., & Arkwright, J. W. (2018a). Design, Construction and Validation of an Electrical Impedance Probe with Contact Force and Temperature Sensors Suitable for in-vivo Measurements. Scientific Reports, 8(1), Article 1. https://doi.org/10.1038/s41598- 018-33221-4spa
dc.relation.referencesRuiz-Vargas, A., Ivorra, A., & Arkwright, J. W. (2018b). Monitoring the Effect of Contact Pressure on Bioimpedance Measurements. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2018, 4949-4952. https://doi.org/10.1109/EMBC.2018.8513173spa
dc.relation.referencesSabuncu, A. C., Shen, J., Zaki, M. H., & Beskok, A. (2018). Changes in the dielectric spectra of murine colon during neoplastic progression. Biomedical Physics &amp$\mathsemicolon$ Engineering Express, 4(3), 035003. https://doi.org/10.1088/2057-1976/aaad81spa
dc.relation.referencesSchaaf, C. R., & Gonzalez, L. M. (2022). Use of Translational, Genetically Modified Porcine Models to Ultimately Improve Intestinal Disease Treatment. Frontiers in Veterinary Science, 9. https://www.frontiersin.org/articles/10.3389/fvets.2022.878952spa
dc.relation.referencesShackelford, J. F. (1995). Ciencia de materiales para ingenieros (3.a ed.). Prentice-Hall. https://www.urbe.edu/UDWLibrary/InfoBook.do?id=5334spa
dc.relation.referencesShellikeri, S., Yunusova, Y., Green, J. R., Pattee, G. L., Berry, J. D., Rutkove, S. B., & Zinman, L. (2015). Electrical impedance myography in the evaluation of the tongue musculature in amyotrophic lateral sclerosis. Muscle & Nerve, 52(4), 584-591. https://doi.org/10.1002/mus.24565spa
dc.relation.referencesSisson, S., & Grossman, J. D. (2002). Anatomia de los animales domesticos (Quinta). MASSON.spa
dc.relation.referencesSlaughter, D. P., Southwick, H. W., & Smejkal, W. (1953). Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer, 6(5), 963-968. https://doi.org/10.1002/1097-0142(195309)6:5<963::aid-cncr2820060515>3.0.co;2-qspa
dc.relation.referencesSoler, A. P., Miller, R. D., Laughlin, K. V., Carp, N. Z., Klurfeld, D. M., & Mullin, J. M. (1999). Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis, 20(8), 1425-1431. https://doi.org/10.1093/carcin/20.8.1425spa
dc.relation.referencesSteed, E., Balda, M. S., & Matter, K. (2010). Dynamics and functions of tight junctions. Trends in Cell Biology, 20(3), 142-149. https://doi.org/10.1016/j.tcb.2009.12.002spa
dc.relation.referencesSuriano, F., Nyström, E. E. L., Sergi, D., & Gustafsson, J. K. (2022). Diet, microbiota, and the mucus layer: The guardians of our health. Frontiers in Immunology, 13, 953196. https://doi.org/10.3389/fimmu.2022.953196spa
dc.relation.referencesThomson, H. J., Busuttil, A., Eastwood, M. A., Smith, A. N., & Elton, R. A. (1986). The submucosa of the human colon. Journal of Ultrastructure and Molecular Structure Research, 96(1-3), 22-30. https://doi.org/10.1016/0889-1605(86)90004-2spa
dc.relation.referencesThornton, C., & Choi, J. (2019). Design of an Impedance-Controlled Hot Snare Polypectomy Device. Sensors (Basel, Switzerland), 20(1), 142. https://doi.org/10.3390/s20010142spa
dc.relation.referencesTsukita, S., Furuse, M., & Itoh, M. (2001). Multifunctional strands in tight junctions. Nature Reviews Molecular Cell Biology, 2(4), Article 4. https://doi.org/10.1038/35067088spa
dc.relation.referencesVarum, F. J. O., Veiga, F., Sousa, J. S., & Basit, A. W. (2012). Mucus thickness in the gastrointestinal tract of laboratory animals. The Journal of Pharmacy and Pharmacology, 64(2), 218-227. https://doi.org/10.1111/j.2042-7158.2011.01399.xspa
dc.relation.referencesZhao, L., Zhou, Y., Song, C., Wang, Z., & Cuschieri, A. (2017). Predicting burst pressure of radiofrequency-induced colorectal anastomosis by bio-impedance measurement. Physiological Measurement, 38(3), 489-500. https://doi.org/10.1088/1361-6579/38/3/489spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalBioimpedancia eléctricaspa
dc.subject.proposalPorcinospa
dc.subject.proposalColonspa
dc.subject.proposalRectospa
dc.subject.proposalElectrical bioimpedanceeng
dc.subject.proposalPorcineeng
dc.subject.proposalColoneng
dc.subject.proposalRectumeng
dc.subject.unescoCiencias médicas
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.description.degreenameMagister en Ciencias Biomédicasspa
dc.publisher.programMaestría en Ciencias Biomédicasspa
dc.description.researchgroupDetección precoz de cáncer mediante EBI, especialmente colorrectal, cutáneo y de cérvixspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem