Mostrar el registro sencillo del ítem

dc.contributor.advisorCarmona Ramírez, Jorge Uriel
dc.contributor.authorGallego Mejia, Miller
dc.date.accessioned2022-11-02T17:34:39Z
dc.date.available2022-11-02T17:34:39Z
dc.date.issued2022-11-04
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/18164
dc.descriptionIlustracions, gráficasspa
dc.description.abstractspa:Antecedentes: hay escasos estudios in vitro que indiquen los mecanismos básicos por los que el plasma rico en plaquetas (PRP) es útil en el tratamiento clínico de perros con OA de origen natural. Métodos: los explantes de cartílago y membrana sinovial de seis perros fueron desafiados con LPS y cultivados durante 48 h con gel pobre en plaquetas y sobrenadantes de gel rico en plaquetas (PPGS y PRGS) en concentraciones del 25% y 50%, respectivamente. Los explantes de tejido desafiados con LPS fueron co-cultivados durante 48 h y los medios de cultivo fueron muestreados a 1 y 48 h para la determinación, por ELISA, de IL-1, IL-10, ácido hialuronico, TGF1 y PDGF-BB. Resultados: Las concentraciones de IL-1 fueron significativamente mayores en los grupos de explantes de tejido cultivados con PRGS al 50% y PPGS al 25% a las 48 h en comparación con el resto de los grupos experimentales en cualquier momento. La IL-10 y la HA presentaron concentraciones similares en todos los grupos valorados en cualquier momento. El TGF-1 y el PDGF-BB presentaron mayores concentraciones en los medios de cultivo de los explantes de tejido cultivados con PPGS y PRGS al 50%, que disminuyeron con el tiempo. Conclusiones: Tanto el PPGS como el PRGS a ambas concentraciones mostraron un efecto biológico limitado en los explantes de cartílago y membrana sinovial en co-cultivo con LPS e incluso el PPGS al 25% y el PRGS al 50% mostraron un efecto pro inflamatorio en estos tejidos a las 48h.spa
dc.description.abstracteng:Background: There are few in vitro studies indicating the basic mechanisms by which platelet-rich plasma (PRP) is useful in the clinical treatment of dogs with naturally occurring OA. Methods: cartilage and synovial membrane explants from six dogs were challenged with LPS and cultured for 48 h with platelet-poor gel and platelet-rich gel supernatants (PPGS and PRGS) at concentrations of 25% and 50%, respectively. Tissue explants challenged with LPS were co-cultured for 48 h and culture media were sampled at 1 and 48 h for ELISA determination of IL-1, IL-10, hyaluronic acid, TGF-1 and PDGFBB. Results: IL-1 concentrations were significantly higher in the groups of tissue explants cultured with PRGS at 50% and PPGS at 25% at 48 h compared to the rest of the experimental groups at any time. IL-10 and HA showed similar concentrations in all assessed groups at any one time. TGF-1 and PDGF-BB had higher concentrations in the culture media of tissue explants grown with PPGS and PRGS at 50%, which decreased over time. Conclusions: Both PPGS and PRGS at both concentrations showed a limited biological effect in cartilage and synovial membrane explants in co-culture with LPS and even PPGS at 25% and PRGS at 50% showed a pro-inflammatory effect on these tissues at 48h.eng
dc.description.tableofcontentsLISTA DE ABREVIATURAS/ INTRODUCCIÓN/ PLANTEAMIENTO DEL PROBLEMA / MATERIALES Y MÉTODOS / Animales/ Extracción de sangre y procesamiento de los hemocomponentes / Obtención de plasma rico en plaquetas y plasma / Recolección de cartílago y membrana sinovial/ Cultivo conjunto de explantes de tejido in vitro y diseño del estudio / Figura 1. Diseño y metodología del estudio. HA, ácido hialuronico; IL, interleucina; LPS, lipopolisacárido; PLT, plaqueta; PDGF-BB: isoforma BB del factor de crecimiento derivado de las plaquetas; PPP/PPGS: sobrenadante de plasma pobre en plaquetas/gel pobre en plaquetas; PRP/PRGS: sobrenadante de plasma rico en plaquetas/gel rico en plaquetas; TGF-1: factor de crecimiento transformante beta 1; WBC: glóbulos blancos.12 Medición de citoquinas, ácido hialuronico y factores de crecimiento/ Análisis estadístico / RESULTADOS / Recuentos celulares en sangre total y hemoderivados/ Figura 2. Concentraciones celulares en sangre total y hemoderivados. (a) Concentraciones medias (sd) de plaquetas en sangre total, PRP y PPP (b) Concentraciones medias (sd) de leucocitos en sangre total, PRP y PPP. a-c= diferentes letras minúsculas representan diferencias significativas (P 0,05) entre los hemocomponentes para la concentración de plaquetas y leucocitos. Acrónimos como en la figura 1. / Concentraciones de factores de crecimiento, citocinas e ácido hialuronico en los sobrenadantes del gel rico en plaquetas y del gel pobre en plaquetas/ Concentraciones de factores de crecimiento, citocinas e ácido hialuronico en los medios de cultivo a 1 y 48h/ Figura 3. Concentraciones de biomoléculas en ambos hemocomponentes, el sobrenadante de gel pobre en plaquetas (PPGS) y el sobrenadante de gel rico en plaquetas (PRGS). (a) Concentraciones medias (± d.s.) de interleucina 1 beta (IL-1) en PPGS y PRGS (b) Concentraciones medias (± d.s.) de interleucina 10 (IL-1) en PPGS y PRGS. (c) Concentraciones medias (± d.s.) de hialuronano (HA) en PPGS y PRGS. (d) Media (± d.s.) de las concentraciones del factor de crecimiento transformante beta 1 (TGF-1) en PPGS y PRGS. (e) Concentraciones medias (± d.s.) de la isoforma BB del factor de crecimiento derivado de las plaquetas (PDGF-BB) en PPGS y PRGS. a= las letras minúsculas diferentes representan diferencias significativas (P 0,05) entre los hemocomponentes para las biomoléculas. Acrónimos como en la figura 1. / (b)/ 4 Figura 4. Concentraciones de Citoquinas en los medios de cultivo de los grupos experimentales a la hora y a las 48 horas (a) (a) media (± s.d) concentraciones de IL-1β (pg/ml) (b) Media (± s.d) Concentraciones de IL-10 (pg/ml). a-c= letras minúsculas diferentes representan diferencias significativas (P< 0,01) entre los grupos de experimentación en cada momento independiente. A-B= las diferentes letras mayúsculas representan diferencias significativas (P< 0,01) entre los grupos de experimentación en cada momento independiente. A-B= las diferentes letras mayúsculas representan diferencias significativas (Pspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleEvaluación de los efectos in vitro de gel rico en plaquetas autólogo en explantes de cartílago y membrana sinovial de caninos desafiados con lipopolisacaridospa
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.educationalvalidatorJorge Uriel Carmona Ramírez
dc.contributor.educationalvalidatorCatalina López Villegas
dc.contributor.researchgroupTerapia Regenerativa (Categoría A1)spa
dc.description.degreelevelMaestríaspa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/mydspacespa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placeManizalesspa
dc.relation.references1. Anderson, K.L., et al., Prevalence, duration and risk factors for appendicular osteoarthritis in a UK dog population under primary veterinary care. Sci Rep, 2018. 8(1): p. 5641.spa
dc.relation.references2. Mehana, E.E., A.F. Khafaga, and S.S. El-Blehi, The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci, 2019. 234: p. 116786.spa
dc.relation.references3. Cimino Brown, D., What can we learn from osteoarthritis pain in companion animals? Clin Exp Rheumatol, 2017. 35 Suppl 107(5): p. 53-58.spa
dc.relation.references4. Johnston, S.A., Osteoarthritis. Joint anatomy, physiology, and pathobiology. Vet Clin North Am Small Anim Pract, 1997. 27(4): p. 699-723.spa
dc.relation.references5. DG, O.N., et al., Prevalence of disorders recorded in dogs attending primary-care veterinary practices in England. PLoS One, 2014. 9(3): p. e90501.spa
dc.relation.references6. Clements, D.N., et al., Genetic basis of secondary osteoarthritis in dogs with joint dysplasia. Am J Vet Res, 2006. 67(5): p. 909-18spa
dc.relation.references7. Bhathal, A., et al., Glucosamine and chondroitin use in canines for osteoarthritis: A review. Open Vet J, 2017. 7(1): p. 36-49.spa
dc.relation.references8. Black, L.L., et al., Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther, 2008. 9(3): p. 192-200.spa
dc.relation.references9. Kim, S.E., et al., Intra-Articular Umbilical Cord Derived Mesenchymal Stem Cell Therapy for Chronic Elbow Osteoarthritis in Dogs: A Double-Blinded, PlaceboControlled Clinical Trial. Front Vet Sci, 2019. 6: p. 474.spa
dc.relation.references10. Maki, C.B., et al., Intra-articular Administration of Allogeneic Adipose Derived MSCs Reduces Pain and Lameness in Dogs With Hip Osteoarthritis: A Double Blinded, Randomized, Placebo Controlled Pilot Study. Front Vet Sci, 2020. 7: p. 570.spa
dc.relation.references11. Pavarotti, G.S., et al., Evaluation of a Single Intra-Articular Injection of Autologous Adipose Tissue for the Treatment of Osteoarthritis: A Prospective Clinical Study in Dogs. Vet Comp Orthop Traumatol, 2020. 33(4): p. 258-266.spa
dc.relation.references12. Srzentić Dražilov, S., et al., The use of canine mesenchymal stem cells for the autologous treatment of osteoarthritis. Acta Vet Hung, 2018. 66(3): p. 376-389.spa
dc.relation.references13. Catarino, J., et al., Treatment of canine osteoarthritis with allogeneic platelet-rich plasma: review of five cases. Open Vet J, 2020. 10(2): p. 226-231.spa
dc.relation.references14. Cuervo, B., et al., Objective Comparison between Platelet Rich Plasma Alone and in Combination with Physical Therapy in Dogs with Osteoarthritis Caused by Hip Dysplasia. Animals (Basel), 2020. 10(2).spa
dc.relation.references15. Venator, K.P., et al., Assessment of a Single Intra-Articular Stifle Injection of Pure Platelet Rich Plasma on Symmetry Indices in Dogs with Unilateral or Bilateral Stifle Osteoarthritis from Long-Term Medically Managed Cranial Cruciate Ligament Disease. Vet Med (Auckl), 2020. 11: p. 31-38.spa
dc.relation.references16. Vilar, J.M., et al., Effect of leukocyte-reduced platelet-rich plasma on osteoarthritis caused by cranial cruciate ligament rupture: A canine gait analysis model. PLoS One, 2018. 13(3): p. e0194752.spa
dc.relation.references17. Silva, R.F., J.U. Carmona, and C.M. Rezende, Intra-articular injections of autologous platelet concentrates in dogs with surgical reparation of cranial cruciate ligament rupture: a pilot study. Vet Comp Orthop Traumatol, 2013. 26(4): p. 285-90.spa
dc.relation.references18. 2000 Report of the AVMA Panel on Euthanasia. J Am Vet Med Assoc, 2001. 218(5): p. 669-96.spa
dc.relation.references19. Congress, C., Law by which the possession and registration of potentially dangerous dogs is regulated., in Official Bulletin of the State, C. Congress, Editor. 2002: Bogotá D.C. p. 4.spa
dc.relation.references20. Carmona, J.U., et al., In vitro effects of platelet-rich gel supernatants on histology and chondrocyte apoptosis scores, hyaluronan release and gene expression of equine 25 cartilage explants challenged with lipopolysaccharide. BMC Vet Res, 2016. 12(1): p. 135spa
dc.relation.references21. Carmona, J.U., et al., Proinflammatory and Anabolic Gene Expression Effects of PlateletRich Gel Supernatants on Equine Synovial Membrane Explants Challenged with Lipopolysaccharide. Vet Med Int, 2017. 2017: p. 6059485.spa
dc.relation.references22. Moreira, M.L., et al., Cross-reactivity of commercially available anti-human monoclonal antibodies with canine cytokines: establishment of a reliable panel to detect the functional profile of peripheral blood lymphocytes by intracytoplasmic staining. Acta Vet Scand, 2015. 57(1): p. 51.spa
dc.relation.references23. Manning, A.M., et al., Cloning of a canine cDNA homologous to the human transforming growth factor-beta 1-encoding gene. Gene, 1995. 155(2): p. 307-8.spa
dc.relation.references24. Franklin, S.P., et al., Influence of Cellular Composition and Exogenous Activation on Growth Factor and Cytokine Concentrations in Canine Platelet-Rich Plasmas. Front Vet Sci, 2017. 4: p. 40spa
dc.relation.references25. Silva, R.F., J.U. Carmona, and C.M. Rezende, Comparison of the effect of calcium gluconate and batroxobin on the release of transforming growth factor beta 1 in canine platelet concentrates. BMC Vet Res, 2012. 8: p. 121spa
dc.relation.references26. Gossan, N., R. Boot-Handford, and Q.J. Meng, Ageing and osteoarthritis: a circadian rhythm connection. Biogerontology, 2015. 16(2): p. 209-19.spa
dc.relation.references27. Wojdasiewicz, P., A. Poniatowski Ł, and D. Szukiewicz, The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm, 2014. 2014: p. 561459spa
dc.relation.references28. Finnson, K.W., et al., TGF-b signaling in cartilage homeostasis and osteoarthritis. Front Biosci (Schol Ed), 2012. 4: p. 251-68.spa
dc.relation.references29. Martel-Pelletier, J., et al., Osteoarthritis. Nat Rev Dis Primers, 2016. 2: p. 16072.spa
dc.relation.references30. Wang, T. and C. He, Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev, 2018. 44: p. 38-50.spa
dc.relation.references31. Montaseri, A., et al., IGF-1 and PDGF-bb suppress IL-1β-induced cartilage degradation through down-regulation of NF-κB signaling: involvement of Src/PI-3K/AKT pathway. PLoS One, 2011. 6(12): p. e28663spa
dc.relation.references32. Conaghan, P.G., et al., Therapeutic options for targeting inflammatory osteoarthritis pain. Nat Rev Rheumatol, 2019. 15(6): p. 355-363.spa
dc.relation.references33. Kuroki, K., J.L. Cook, and J.M. Kreeger, Mechanisms of action and potential uses of hyaluronan in dogs with osteoarthritis. J Am Vet Med Assoc, 2002. 221(7): p. 944-50.spa
dc.relation.references34. Barreto, G., et al., Lumican is upregulated in osteoarthritis and contributes to TLR4- induced pro-inflammatory activation of cartilage degradation and macrophage polarization. Osteoarthritis Cartilage, 2020. 28(1): p. 92-101spa
dc.relation.references35. Li, X., et al., Tougu Xiaotong capsules may inhibit p38 MAPK pathway-mediated inflammation: In vivo and in vitro verification. J Ethnopharmacol, 2020. 249: p. 112390.spa
dc.relation.references36. Li, Y., et al., Piperine mediates LPS induced inflammatory and catabolic effects in rat intervertebral disc. Int J Clin Exp Pathol, 2015. 8(6): p. 6203-13.spa
dc.relation.references37. Hartog, A., et al., The multicomponent phytopharmaceutical SKI306X inhibits in vitro cartilage degradation and the production of inflammatory mediators. Phytomedicine, 2008. 15(5): p. 313-20.spa
dc.relation.references38. Hu, H., et al., Ginkgolide B exerts anti-inflammatory and chondroprotective activity in LPS-induced chondrocytes. Adv Clin Exp Med, 2018. 27(7): p. 913-920spa
dc.relation.references39. Ríos, D.L., et al., Effects over time of two platelet gel supernatants on growth factor, cytokine and hyaluronan concentrations in normal synovial membrane explants challenged with lipopolysaccharide. BMC Musculoskelet Disord, 2015. 16: p. 153.spa
dc.relation.references40. Ríos, D.L., C. López, and J.U. Carmona, Evaluation of the anti-inflammatory effects of two platelet-rich gel supernatants in an in vitro system of cartilage inflammation. Cytokine, 2015. 76(2): p. 505-513.spa
dc.relation.references41. Zeddou, M., Osteoarthritis Is a Low-Grade Inflammatory Disease: Obesity's Involvement and Herbal Treatment. Evid Based Complement Alternat Med, 2019. 2019: p. 2037484.spa
dc.relation.references42. Dohan Ehrenfest, D.M., et al., Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: current consensus, clinical implications and perspectives. Muscles Ligaments Tendons J, 2014. 4(1): p. 3-9.spa
dc.relation.references43. Araya, N., et al., Intra-articular Injection of Pure Platelet-Rich Plasma Is the Most Effective Treatment for Joint Pain by Modulating Synovial Inflammation and Calcitonin Gene-Related Peptide Expression in a Rat Arthritis Model. Am J Sports Med, 2020. 48(8): p. 2004-2012.spa
dc.relation.references44. Kazemi, D. and A. Fakhrjou, Leukocyte and Platelet Rich Plasma (L-PRP) Versus Leukocyte and Platelet Rich Fibrin (L-PRF) For Articular Cartilage Repair of the Knee: A Comparative Evaluation in an Animal Model. Iran Red Crescent Med J, 2015. 17(10): p. e19594.spa
dc.relation.references45. Sundman, E.A., et al., The anti-inflammatory and matrix restorative mechanisms of platelet-rich plasma in osteoarthritis. Am J Sports Med, 2014. 42(1): p. 35-41.spa
dc.relation.references46. Castillo-Franz, C., et al., Anti-inflammatory effects of two platelet-rich gel supernatants in an in vitro system of ligament desmitis. Muscles Ligaments Tendons J, 2019. 9(4): p. 506-516.spa
dc.relation.references47. Mariani, E., et al., Leukocyte-Rich Platelet-Rich Plasma Injections Do Not Up-Modulate Intra-Articular Pro-Inflammatory Cytokines in the Osteoarthritic Knee. PLoS One, 2016. 11(6): p. e0156137.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.lembFisiología animal
dc.subject.lembOsteopatías
dc.subject.proposalPure platelet-rich plasmaeng
dc.subject.proposalDegenerative joint diseaseeng
dc.subject.proposalGrowth factors, cytokineseng
dc.subject.proposalHyaluronic acideng
dc.subject.proposalIn vitro systemeng
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
dc.description.degreenameMagister en Ciencias Veterinariasspa
dc.publisher.programMaestría en Ciencias Veterinariasspa
dc.description.researchgroupMedicina Regenerativa en pequeños animalesspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem