Mostrar el registro sencillo del ítem

dc.contributor.advisorCeballos Aguirre, Nelson
dc.contributor.authorPadilla Hurtado, Beatriz Elena
dc.date.accessioned2022-04-17T18:32:25Z
dc.date.available2025-01-31
dc.date.available2022-04-17T18:32:25Z
dc.date.issued2022-04-07
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/17557
dc.descriptionIlustracionesspa
dc.description.abstractspa:La caracterización y evaluación de los recursos fitogenéticos de tomate están dentro de las áreas de investigación estratégica para poder responder a los retos en los sistemas agrícolas productivos actuales y futuros. El tomate es originario de la cordillera de los Andes y ocupa el primer lugar dentro de la lista de producción mundial de hortalizas de la FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura). El tomate Solanum lycopersicum L. es la única especie domesticada dentro de la sección Lycopersicon del Genero Solanum. Presenta una baja diversidad, ya que contiene menos del 5% de la variación genética de sus parientes silvestres. Por tanto, sus parientes silvestres son fuente promisoria de resistencia a patógenos y reservorio de genes para la producción sostenible de la especie cultivada. Una de las principales enfermedades del cultivo del tomate es la nodulación radical causada por Meloidogyne spp, debido a que los nematodos penetran en las raíces y migran hacia los haces vasculares, lo que resulta en la formación de nódulos, que afectan la captación de nutrientes y agua por parte de la planta; ocasionando un retraso en el desarrollo, debilitamiento generalizado, amarillamiento en las hojas más viejas y una reducción considerable en la cantidad y calidad de la producción. Se han reportado pérdidas en producción causadas por éste patógeno en el cultivo de tomate entre el 25 al 68%. Las plantas han evolucionado para protegerse del ataque de patógenos mediante mecanismos de defensa, en los cuales están involucradas las Proteínas de Resistencia (PR), mecanismo conocido como resistencia gen a gen, en la cual cada gen R de la planta corresponde a un gen Avr específico del patógeno. Estos genes R están en constante selección y diversificación para mantener el mismo ritmo de la evolución de los patógenos. En la resistencia de tomate a Meloidogyne spp, un único gen R dominante, denominado Mi-1, se encontró en la especie silvestre S. peruvianum, el cual, fue introgresado en variedades de tomate aportando el rasgo de resistencia, observado como reducción en la reproducción de las especies, M. incognita, M. arenaria, y M. javanica. Los bancos de germoplasma contienen enormes recursos sin explotar de distintos alelos de los genes R, que pueden tener una aplicación potencial en programas de mejoramiento genético. La contrastación de la respuesta en campo de los diferentes genotipos frente a la enfermedad, permiten corroborar o encontrar alternativas para el uso de los recursos genéticos, derivado posiblemente de otros mecanismos de defensa inducidos en la interacción planta-patógeno. De esta forma, la evaluación del potencial genético de germoplasma de tomate para patógenos de importancia económica como Meloidogyne spp., contribuirá al aprovechamiento de este recurso fitogenético, al seleccionar accesiones e identificar genes involucrados en la resistencia, que permitan aportar información para el diseño de estrategias de manejo integrado de la enfermedad, involucrando nuevas fuentes de resistencia, o variantes de las mismas, para efectos más durables en el campo. El uso de marcadores moleculares estrechamente relacionados con genes R y su aplicación en la selección asistida por marcadores (SAM), ha tenido éxito en programas de mejoramiento genético de tomate, especialmente para resistencia a enfermedades. El marcador codominante Mi-23, tipo SCAR (siglas en inglés Sequenced Characterized Amplified Region, o secuencia amplificada de una Región conocida) ligado al gen de resistencia a Meloidogyne spp., Mi-1, permitió identificar fenotipos resistentes (dominantes y heterocigotos) y susceptibles (recesivos). En el presente estudio se evaluaron 92 accesiones mediante la amplificación del marcador molecular codominante tipo SCAR Mi-23, amplificando la banda de resistencia en 18 accesiones, 12 en heterocigosis y 6 en homocigosis resistente. En el presente estudio mediante la evaluación de diferentes densidades de población de Meloidogyne spp. (0, 1000, 2000, 3000, 4000 y 5000 individuos/planta en cuatro accesiones silvestres de tomate y dos testigos comerciales uno resistente y uno susceptible, se determinó que, la densidad de población de Meloidogyne spp. que permitió evaluar el potencial de resistencia del germoplasma de tomate a Meloidogyne spp fue de 1000 individuos por planta, siendo ésta, la densidad de población seleccionada para la fenotipificación de la resistencia de 48 accesiones de tomate silvestres. Se realizó la clasificación de la respuesta mediante la medición de las variables: índice reproductivo del patógeno y la escala de daño ocasionada en las raíces, a los 60 días de inoculadas con Meloidogyne spp. Las accesiones que amplificaron la banda de resistencia con el marcador molecular Mi-23 y presentaron una clasificación en su fenotipo comomedianamente resistente en campo, fueron LA0111 (Solanum peruvianum) y LA2076 (Solanum lycopersicum var ceraciforme), las cuales pueden ser incluidas para el desarrollo de nuevas variedades de la especie cultivada o como portainjertos resistentes a dicho patógeno, alternativas que al ser incluidas en un programa de manejo integrado, pueden mitigar el impacto de patógenos de importancia económica como Meloidogyne spp. Por medio de la amplificación y secuenciación de fragmentos de las subunidades ribosomales 28S (LSU) y 18S (SSU1 y SSU2), se determinó que el inóculo experimental, usado para la evaluación de resistencia genética de germoplasma de tomate a Meloidogyne spp. está compuesto por las especies M. incognita y M. arenaria en una proporción de aproximadamente 92.3% y 7.7% respectivamente. La resistencia genética de tomate a Meloidogyne en genotipos comerciales, se ha basado únicamente en el gen Mi-1, sin embargo, dicha resistencia no se garantiza cuando hay altas densidades de población del patógeno, biotipos virulentos del patógeno al gen Mi-1 y cuando la temperatura del suelo cultivado es superior a 28°C, por lo tanto, en el presente estudio, se llevó a cabo la identificación in silico de tres secuencias para cada uno de los genes candidatos a Mi-9 y el Mi-3 reportados previamente mediante mapeo genético como resistentes al patógeno, por su característica de termoestabilidad a temperaturas superiores a 28°C. Los genes Mi-9 y el Mi-3, fueron encontrados en las accesiones de las especies silvestres de Solanum arcanum (LA2157) y Solanum peruvianum (LA3858) respectivamente, Adicionalmente, se logró integrar el conocimiento del mapa genético, el genoma y el transcriptoma de la accesión LA3858 de S. peruvianum, registrada como resistente a Meloidogyne spp. en temperaturas del suelo hasta 32°C y reportar 3 secuencias de genes candidatos al gen Mi-3. Lo anterior permitió ampliar las alternativas de resistencia genética y aprovechamiento de los parientes silvestres de la especie cultivada para proyectar sistemas de producción de tomate más sostenibles La identificación de secuencias de genes candidatos a genes Mi con resistencia termoestable a Melodogyne spp, como son el gen Mi-9 y el Mi-3 sumado al tradicional Mi-1 y posteriores estudios experimentales de genómica funcional o silenciamiento génico, se podrán incluir dentro de las alternativas del manejo integrado del patógeno, utilizando estrategias de pirimidización de genes que, produzcan una resistencia más durable, en diferentes condiciones de siembra del cultivo de tal modo que los sistemas de producción del tomate sean más sostenibles y amigables con el ambiente.spa
dc.description.abstracteng:The characterization and evaluation of tomato plant genetic resources are within the areas of strategic research to be able to respond to the challenges in current and future productive agricultural systems. The tomato is native to the Andes region and occupies the first place in the list of world vegetable production of the FAO (Food and Agriculture Organization of the United Nations). The tomato Solanum lycopersicum L. is the only domesticated species within the Lycopersicon section of the Genus Solanum. It has a low diversity, since it contains less than 5% of the genetic variation of its wild relatives. Therefore, their wild relatives are a promising source of resistance to pathogens and a reservoir of genes for the sustainable production of the cultivated species. One of the main tomato crop diseases is root nodulation caused by Meloidogyne spp, due to the fact that nematodes penetrate the roots and migrate towards the vascular bundles, resulting in the formation of nodules, which arises from the uptake of nutrients and water by the plant; causing a delay in development, generalized weakening, yellowing in the oldest leaves and a considerable reduction in the quantity and quality of production. Losses in production caused by this pathogen have been suffered in the tomato crop between 25 to 68%. Plants have evolved to protect themselves from the attack of pathogens through defense mechanisms, in which Resistance Proteins (PR) are involved, a mechanism known as gene-to-gene resistance, in which each R gene of the plant corresponds to an Avr gene pathogen specific. These R genes are under constant selection and diversification to keep pace with pathogen evolution. In tomato resistance to Meloidogyne spp, a single dominant R gene, called Mi-1, was found in the wild species S. peruvianum, which was introgressed into tomato varieties providing the resistance trait, observed as a reduction in the reproduction of the species, M. incognita, M. arenaria, and M. javanica. Germplasm banks contain enormous untapped resources of different alleles of the R genes, which may have potential application in breeding programs. The contrasting of the response in the field of the different genotypes against the disease, allows corroborating or finding alternatives for the use of genetic resources, possibly derived from other defense mechanisms induced in the plant-pathogen interaction. In this way, the evaluation of the genetic potential of tomato germplasm for pathogens of economic importance such as Meloidogyne spp., will contribute to the use of this plant genetic resource, by selecting accessions and identifying genes involved in resistance, which will provide information for the design of integrated disease management strategies, involving new sources of resistance, or variants thereof, for more lasting effects in the field. The use of molecular markers related to R genes and their application in marker-assisted selection (MAS) has been successful in tomato breeding programs, especially for disease resistance. The codominant marker Mi-23, type SCAR (acronym in English Sequenced Characterized Amplified Region, or amplified sequence of a known Region) linked to the resistance gene to Meloidogyne spp., Mi-1, allowed to identify resistant phenotypes (dominant and heterozygous) and susceptible (recessive). In the present study, 92 accessions were evaluated by amplifying the SCAR-type codominant molecular marker Mi-23, amplifying the resistance band in 18 accessions, 12 heterozygous and 6 homozygous resistant. In the present study, by evaluating different population densities of Meloidogyne spp. (0, 1,000, 2,000, 3,000, 4,000 and 5,000 individuals/plant in four wild tomato accessions and two commercial controls, one resistant and one susceptible, it was determined that the population density of Meloidogyne spp., which allowed evaluating the resistance potential of tomato germplasm to Meloidogyne spp was 1000 individuals per plant, this being the population density selected for the resistance phenotyping of 48 wild tomato accessions. The response was classified by measuring the variables: index of the pathogen and the scale of damage caused in the roots, 60 days after inoculation with Meloidogyne spp. The accessions that amplified the resistance band with the molecular marker Mi-23 and presented a classification in their phenotype as moderately resistant in the field, were LA0111 (Solanum peruvianum) and LA2076 (Solanum lycopersicum var ceraciforme), which can be included for the development of e new varieties of the cultivated species or as rootstocks resistant to said pathogen, alternatives that, when included in an integrated management program, can mitigate the impact of economically important pathogens such as Meloidogyne spp. Through the amplification and sequencing of fragments of the ribosomal subunits 28S (LSU) and 18S (SSU1 and SSU2), it was determined that the experimental inoculum, used for the evaluation of genetic resistance of tomato germplasm to Meloidogyne spp. it is composed of the species M. incognita and M. arenaria in a proportion of approximately 92.3% and 7.7%, respectively. The genetic resistance of tomato to Meloidogyne in commercial genotypes has been based solely on the Mi-1 gene, however, said resistance is not guaranteed when there are high population densities of the pathogen, virulent biotypes of the pathogen to the Mi-1 gene and when the temperature of the cultivated soil is higher than 28°C, therefore, in the present study, the in silico identification of three sequences for each of the previously reported Mi-9 and Mi-3 candidate genes was carried out by genetic mapping as resistant to the pathogen, due to its thermostability characteristic at temperatures above 28°C. The Mi-9 and Mi-3 genes were found in the accessions of the wild species of Solanum arcanum (LA2157) and Solanum peruvianum (LA3858), respectively. Additionally, it was possible to integrate the knowledge of the genetic map, the genome and the transcriptome. of the LA3858 accession of S. peruvianum, registered as resistant to Meloidogyne spp. in soil temperatures up to 32°C and report 3 candidate gene sequences to the Mi-3 gene. The foregoing allowed expanding the alternatives of genetic resistance and use of the wild relatives of the cultivated species to project more sustainable tomato production systems. The identification of candidate gene sequences for Mi genes with thermostable resistance to Melodogyne spp, such as the Mi-9 and Mi-3 genes added to the traditional Mi-1 and subsequent experimental studies of functional genomics or gene silencing, may be included within of the alternatives of the integrated management of the pathogen, using gene pyrimidization strategies that produce a more durable resistance, in different crop sowing conditions in such a way that the tomato production systems are more sustainable and friendly with the environment.eng
dc.description.tableofcontentsINTRODUCCIÓN / Referencias bibliográficas / CAPÍTULO I / 1. Revisión de literatura / 1.1 Importancia de los recursos fitogenéticos / 1.2 Cultivo del tomate / 1.3 Enfermedades del cultivo de tomate / 1.4 Nodulación radical causada por Meloidogyne spp / 1.5 Identificación de especies de Meloidogyne por taxonomía molecular / 1.6 Defensa de las plantas a patógenos / 1.7 Interacción planta-patógeno / 1.8 Mecanismo de infección de Meloidogyne spp. / 1.9 Mecanismos de defensa de las plantas a Meloidogyne spp. / 1.10 Resistencia genética de tomate a Meloidogyne spp / 1.11 Genes Mi de resistencia a Meloidogyne spp. / 1.12 Problemas de la resistencia genética mediada por genes Mi / 1.13 Marcadores moleculares asociados a genes Mi / 1.14 Referencias bibliográficas / CAPÍTULO II / 2. Evaluation of root-knot nematodes (Meloidogyne spp.) population density for disease resistance screening of tomato germplasm carrying the gene Mi-1 / 2.1 ABSTRACT / 2.2 INTRODUCTION / 2.3 MATERIAL AND METHODS / 2.3.1 Meloidogyne spp. Inoculum / 2.3.2 Plant material / 2.3.3 Amplification of the molecular marker SCAR Mi-23 / 2.3.4 Experimental design / 2.3.5 Variables / 2.3.6 Statistical analyses / 2.4 RESULTS AND DISCUSSION / 2.4.1 SCAR Mi-23 molecular marker amplification / 2.4.2 Phenotypic response to different population densities of Meloidogyne spp / 2.4.3 Genotype-phenotype association / 2.4.4 Agronomic variables / 2.4.5 Correlation of variables / 2.5 CONCLUSIONS / 2.6 REFERENCES / CAPÍTULO III / 3. Identificación molecular de Meloidogyne spp. en evaluación de resistencia genética en 13 germoplasma de tomate / 3.1 Resumen / 3.2 Introducción / 3.3.1 Material biológico / 3.3.2 Identificación molecular / 3.4 Resultados y análisis de secuencias / 3.5 Identificación de las especies que componen el inóculo experimental / 3.6 Análisis filogenético / 3.7 Conclusiones / 3.8 Referencias bibliográficas / CAPÍTULO IV / 4. Asociación del gen Mi-1 con la respuesta de resistencia de germoplasma de tomate a Meloidogyne spp / 4.1 Resumen / 4.2 Introducción / 4.3 Materiales y métodos / 4.3.1 Inóculo experimental de Meloidogyne spp / 4.3.2 Material vegetal / 4.3.3 Amplificación del marcador molecular Mi-23 asociado al gen Mi-1 / 4.3.4 Reacción de germoplasma de tomate a Meloidogyne spp. / 4.3.5 Diseño experimental /4.3.6 Análisis estadístico / 4.4 Resultados y discusión / 4.4.1 Amplificación del marcador molecular Mi-23 asociado al gen Mi-1 / 4.4.2 Reacción de germoplasma de tomate a Meloidogyne spp. / 4.4.3 Reacción de la interacción genotipo ambiente / 4.5 Conclusiones / 4.6 Referencias bibliográficas / CAPÍTULO V / 5. Identificación de genes de resistencia en germoplasma de tomate / Identificación de genes candidatos a Mi-9 y Mi-3 de resistencia termo-estable a Meloidogyne spp en el genoma reensamblado de Solanum arcanum y en el genoma secuenciado y ensamblado de Solanum peruvianum / 5.1 Resumen / 5.2 Introducción / 5.3 Identificación de genes candidatos al gen Mi-9 en Solanum arcanum, LA2157 / 5.3.1 Materiales y métodos / 5.3.1.1 Datos de las secuencias genómicas / 5.3.1.2 Re-ensamblaje del genoma de S. arcanum / 5.3.1.3 Integración mapa genético y genoma / 5.3.1.4 Identificación de genes candidatos al gen Mi-9 en S. arcanum / 5.3.1.5 Conversión de marcadores moleculares / 5.3.2 Resultados y discusión / 5.3.2.1 Re-ensamblaje del genoma de S. arcanum / 5.3.2.2 Análisis de sinténia / 5.3.2.3 Integración entre el mapa genético y genoma / 5.3.2.4 Identificación de genes candidatos al gen Mi-9 en S. arcanum SA-RT / 14 5.3.2.5 Conversión de marcadores moleculares / 5.4 Identificación de genes candidatos al gen Mi-3 en Solanum peruvianum, LA3858 / 5.4.1 Materiales y métodos / 5.4.1.1 Material vegetal / 5.4.1.2 Extracción de ADNg de alto peso molecular de S. peruvianum / 5.4.1.3 Secuenciación del genoma de S. peruvianum / 5.4.1.4 Ensamblaje del genoma de S. peruvianum / 5.4.1.5 Integración mapa genético y genoma / 5.4.1.6 Identificación de genes candidatos al gen Mi-3 en S. peruvianum y análisis de expresión diferencial / 5.4.2 Resultados y discusión / 5.4.2.1 Secuenciación del genoma de S. peruvianum, LA3858 / 5.4.2.2 Ensamblaje del genoma de S. peruvianum, LA3858 / 5.4.2.3 Integración entre el mapa genético y genoma / 5.4.2.4 Identificación de genes candidatos al gen Mi-3 en S. peruvianum LA3858 y análisis de expresión diferencial / 5.5 Conclusiones / 5.6 Referencias bibliográficas / CAPÍTULO VI / 6. Conclusiones y recomendacionesspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titlePotencial genético de germoplasma de tomate para la resistencia al nematodo nodulador Meloidogyne spp.spa
dc.typeTrabajo de grado - Doctoradospa
dc.contributor.researchgroupGIPPA: Producción Agropecuaria (Categoría A1)spa
dc.description.degreelevelDoctoradospa
dc.description.notesNo autorizó la publicación de la tesis de Doctorado ya que esta pendiente la publicación de los artículos científicos.spa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.cospa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placeManizalesspa
dc.relation.referencesAbadie, T., & Berretta, A. (2001). Caracterización y evaluación de recursos fitogenéticos. En: Berretta, T. & Rivas, M. (coord.). Estrategia en recursos fitogenéticos para los países del Cono Sur. PROCISUR, Montevideo, Uruguay, 89-97. http://repositorio.iica.int/handle/11324/7789spa
dc.relation.referencesArens, P., Mansilla, C., Deinum, D., Cavellini, L., Moretti, A., Rolland, S., Van der Schoot, H., S., ... & Vosman, B. (2010). Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theoretical and applied genetics, 120(3), 655-664. https://doi.org/10.1007/s00122-009-1183-2spa
dc.relation.referencesBai, Y., & Lindhout, P. (2007). Domestication and breeding of tomatoes: ¿what have we gained and what can we gain in the future?. Annals of Botany, 100(5), 1085-1094. https://doi.org/10.1093/aob/mcm150spa
dc.relation.referencesBai, Y., Yan, Z., Moriones, E., & Fernández-Muñoz, R. (2018). Tomato disease resistances in the postgenomics era. In V International Symposium on Tomato Diseases: Perspectives and Future Directions in Tomato Protection. Acta Horticulturae, 1207, 1-18. https://doi.org/10.17660/ActaHortic.2018.1207.1spa
dc.relation.referencesBailey, D. M. (1941). The seedling test method for root-knot-nematode resistance. Proceedings of the American Society for Horticultural Science, 38, 573-575.spa
dc.relation.referencesBoada, M. Y., Mejía, J.L., Ceballos, N., & Orozco, F. J. (2010). Evaluación agronómica de treinta introducciones de tomate silvestre tipo cereza (Solanum lycopersicum L.). Agronomía (Manizales), 18(2), 59-67.spa
dc.relation.referencesCastagnone-Sereno, P., Leroy, F., Bongiovanni, M., Zijlstra, C., & Abad, P. (1999). Specific diagnosis of two root-knot nematodes, Meloidogyne chitwoodi and M. fallax, with satellite DNA probes. Phytopathology, 89(5), 380-384. https://doi.org/10.1094/PHYTO.1999.89.5.380spa
dc.relation.referencesCeballos, N., Vallejo, F.A., & Arango, N. (2012). Evaluación del contenido de antioxidantes en introducciones de tomate tipo cereza (Solanum spp.). Acta Agronómica, 61(3), 230-238.spa
dc.relation.referencesCorpoica. (2016). Plan Estratégico de Ciencia, Tecnología e Innovación del sector Agropecuario Colombiano (2017-2027). Bogotá: Corpoica, Minagricultura. Recuperado de http://www.colciencias.gov.co/sites/default/files/upload/noticias/pectia-2017-actualizado.pdf.spa
dc.relation.referencesCortada, L., Sorribas, F. J., Ornat, C., Andrés, M. F., & Verdejo-Lucas, S. (2009). Response of tomato 25 rootstocks carrying the Mi-resistance gene to populations of Meloidogyne arenaria, M. incognita and M. javanica. European journal of plant pathology, 124(2), 337-343. https://doi.org/10.1007/s10658- 008-9413-zspa
dc.relation.referencesEl-Mansy, A. B., El-Moneim, A., ALshamrani, S. M., Alsafhi, F. A., Abdein, M. A., & Ibrahim, A. A. (2021). Genetic diversity analysis of tomato (Solanum lycopersicum L.) with morphological, cytological, and molecular markers under heat stress. Horticulturae, 7(4), 65. https://doi.org/10.3390/horticulturae7040065spa
dc.relation.referencesEl-Sappah, A. H., MM, I., El-awady, H. H., Yan, S., Qi, S., Liu, J., ... & Liang, Y. (2019). Tomato natural resistance genes in controlling the root-knot nematode. Genes, 10(11), 925. https://doi.org/10.3390/genes10110925spa
dc.relation.referencesFAOSTAT. (2018). Agriculture statistics on crops. Core production data. Consultado enero 2018. http://faostat3.fao.org/browse/Q/QC/Sspa
dc.relation.referencesFoolad, M. R., & Sharma, A. (2005). Molecular markers as selection tools in tomato breeding. In I International Symposium on Tomato Diseases. Acta Horticulturae, 695, 225-240. https://doi.org/10.17660/ActaHortic.2005.695.25spa
dc.relation.referencesGuerrero, J. (2013). Diagnóstico y control del nematodo de los nódulos en tomate. [Versión electrónica]. Recuperado el 04 de febrero de 2013, de http://www.hortalizas.com/articulo/9214/diagnostico-ycontrol-del-nematodo-de-los-nodulos-en-tomatespa
dc.relation.referencesHerison, C., Sutjahjo, S. H., Sulastrini, I., Rustikawati, R., & Marwiyah, S. (2017). Genetic diversity analysis in 27 tomato accessions using morphological and molecular markers. AGRIVITA, Journal of Agricultural Science, 40(1), 36-44. http://doi.org/10.17503/agrivita.v40i1.726spa
dc.relation.referencesJablonska, B., Ammiraju, J. S., Bhattarai, K. K., Mantelin, S., de Ilarduya, O. M., Roberts, P. A., & Kaloshian, I. (2007). The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to rootknot nematodes is a homolog of Mi-1. Plant physiology, 143(2), 1044-1054. https://doi.org/10.1104/pp.106.089615spa
dc.relation.referencesLee, J. M., Oh, C. S., & Yeam, I. (2015). Molecular markers for selecting diverse disease resistances in tomato breeding programs. Plant Breeding and Biotechnology, 3(4), 308-322. https://doi.org/10.9787/PBB.2015.3.4.308spa
dc.relation.referencesMata-Nicolás, E., Montero-Pau, J., Gimeno-Paez, E., Garcia-Carpintero, V., Ziarsolo, P., Menda, N., ... & Díez, M. J. (2020). Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Horticulture research, 7(1), 1-14. https://doi.org/10.1038/s41438-020-0291-7spa
dc.relation.referencesMilligan, S. B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P., & Williamson, V. M. (1998). The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. The Plant Cell, 10(8), 1307-1319. https://doi.org/10.1105/tpc.10.8.1307spa
dc.relation.referencesOlmo, R., Cabrera, J., Díaz‐Manzano, F. E., Ruiz‐Ferrer, V., Barcala, M., Ishida, T., ... & Escobar, C. (2020). Root‐knot nematodes induce gall formation by recruiting developmental pathways of post‐ embryonic organogenesis and regeneration to promote transient pluripotency. New Phytologist, 227(1), 200-215. https://doi.org/10.1111/nph.16521spa
dc.relation.referencesPadilla-Hurtado, B., Morillo-Coronado, Y., Tarapues, S., Burbano, S., Soto-Suárez, M., Urrea, R., & Ceballos-Aguirre, N. (2022). Evaluation of root-knot nematodes (Meloidogyne spp.) population density for disease resistance screening of tomato germplasm carrying the gene Mi-1. Chilean journal of agricultural research, 82(1), 157-166. http://dx.doi.org/10.4067/S0718-58392022000100157spa
dc.relation.referencesPerales, J. A. S. (2014). De los Objetivos del Milenio al desarrollo sostenible: Naciones Unidas y las metas globales post-2015. Anuario Ceipaz, (7), 49-84. https://dialnet.unirioja.es/servlet/articulo?codigo=4942588spa
dc.relation.referencesSeah, S., Williamson, V. M., Garcia, B. E., Mejia, L., Salus, M. S., Martin, C. T., & Maxwell, D. P. (2007). Evaluation of a co-dominant SCAR marker for detection of the Mi-1 locus for resistance to root-knot nematode in tomato germplasm. Report of the Tomato Genetics Cooperative, 57, 37-40.spa
dc.relation.referencesSeid, A., Fininsa, C., Mekete, T., Decraemer, W., & Wesemael, W. M. (2015). Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.) – a century-old battle, Nematology, 17(9), 995-1009. https://doi.org/10.1163/15685411-00002935spa
dc.relation.referencesTomato Genome Consortium. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635–641. https://doi.org/10.1038/nature11119spa
dc.relation.referencesTrudgill, D. L., & Blok, V. C. (2001). Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annual review of phytopathology, 39(1), 53-77. https://doi.org/10.1146/annurev.phyto.39.1.53spa
dc.relation.referencesVan Wersch, S., & Li, X. (2019). Stronger when together: clustering of plant NLR disease resistance genes. Trends in plant science, 24(8), 688-699. https://doi.org/10.1016/j.tplants.2019.05.005spa
dc.relation.referencesYaghoobi, J., Yates, J. L., & Williamson, V. M. (2005). Fine mapping of the nematode resistance gene Mi3 in Solanum peruvianum and construction of a S. lycopersicum DNA contig spanning the locus. Molecular Genetics and Genomics, 274(1), 60-69. https://doi.org/10.1007/s00438-005-1149-2spa
dc.relation.referencesAbad, P., Gouzy, J., Aury, J. M., Castagnone-Sereno, P., Danchin, E. G., Deleury, E., ... & Wincker, P. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature biotechnology, 26(8), 909-915. https://doi.org/10.1038/nbt.1482spa
dc.relation.referencesAbadie, T., & Berretta, A. (2001). Caracterización y evaluación de recursos fitogenéticos. En: Berretta, T. & Rivas, M. (coord.). Estrategia en recursos fitogenéticos para los países del Cono Sur. PROCISUR, Montevideo, Uruguay, 89-97. http://repositorio.iica.int/handle/11324/7789spa
dc.relation.referencesAgrios, G. N. (2005). Plant pathology (Fifth Edition). Academic Press, 867. https://doi.org/10.1016/B978- 0-08-047378-9.50024-5spa
dc.relation.referencesAhmed, M., Sapp, M., Prior, T., Karssen, G., & Back, M. A. (2016). Technological advancements and their importance for nematode identification. Soil, 2(2), 257-270. https://doi.org/10.5194/soil-2-257-2016spa
dc.relation.referencesAmmati, M., Thomason, I. J., & Mckinney, H. (1986). Retention of resistance to Meloidogyne incognita in Lycopersicon genotypes at high soil temperature. Journal of Nematology, 18(4), 491-495.spa
dc.relation.referencesAmmiraju, J., Veremis, J., Huang, X., Roberts, P., & Kaloshian, I. (2003). The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theoretical and Applied Genetics, 106(3), 478-484. https://doi.org/10.1007/s00122- 002-1106-yspa
dc.relation.referencesArens, P., Mansilla, C., Deinum, D., Cavellini, L., Moretti, A., Rolland, S., Van der Schoot, H., S., ... & Vosman, B. (2010). Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theoretical and applied genetics, 120(3), 655-664. https://doi.org/10.1007/s00122-009-1183-2spa
dc.relation.referencesArias, Y., González, I., Rodríguez, M., Rosales, C., Suárez, Z., & Peteira, B. (2009). Aspectos generales de la interacción tomate (Solanum lycopersicon L.) _ Meloidogyne incognita. Revista de Protección Vegetal, 24(1), 1-13.spa
dc.relation.referencesBai, Y., Yan, Z., Moriones, E., & Fernández-Muñoz, R. (2018). Tomato disease resistances in the postgenomics era. In V International Symposium on Tomato Diseases: Perspectives and Future Directions in Tomato Protection. Acta Horticulturae, 1207, 1-18. https://doi.org/10.17660/ActaHortic.2018.1207.1spa
dc.relation.referencesBai, Y., & Lindhout, P. (2007). Domestication and breeding of tomatoes: ¿what have we gained and what can we gain in the future?. Annals of Botany, 100(5), 1085-1094. https://doi.org/10.1093/aob/mcm150spa
dc.relation.referencesBarone, A., & Frusciante, L. (2007). Molecular marker-assisted selection for resistance to pathogens. Marker-assisted Selection: Current Status and Future Perspectives in Crops, Livestock, Forestry and Fish, 153-164.spa
dc.relation.referencesBeckers, G. J., Jaskiewicz, M., Liu, Y., Underwood, W. R., He, S. Y., Zhang, S., & Conrath, U. (2009). Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. The Plant Cell, 21(3), 944-953. https://doi.org/10.1105/tpc.108.062158spa
dc.relation.referencesBergougnoux, V. (2014). The history of tomato: from domestication to biopharming. Biotechnology advances, 32(1), 170-189. https://doi.org/10.1016/j.biotechadv.2013.11.003spa
dc.relation.referencesBleve-Zacheo, T., Melillo, M. T., & Castagnone-Sereno, P. (2007). The contribution of biotechnology to root-knot nematode control in tomato plants. Pest Technology, 1(1), 1-16. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.569.9363&rep=rep1&type=pdfspa
dc.relation.referencesBoada, M. Y., Mejía, J.L., Ceballos, N., & Orozco, F. J. (2010). Evaluación agronómica de treinta introducciones de tomate silvestre tipo cereza (Solanum lycopersicum L.). Agronomía (Manizales), 18(2), 59-67.spa
dc.relation.referencesBrenner, E. D., Lambert, K. N., Kaloshian, I., & Williamson, V. M. (1998). Characterization of LeMir, a root-knot nematode-induced gene in tomato with an encoded product secreted from the root. Plant Physiology, 118(1), 237-247. https://doi.org/10.1104/pp.118.1.237spa
dc.relation.referencesCap, G. B., Roberts, P. A., & Thomason, I. J. (1993). Inheritance of heat-stable resistance to Meloidogyne incognita in Lycopersicon peruvianum and its relationship to the Mi gene. Theoretical and Applied Genetics, 85(6), 777-783. https://doi.org/10.1007/BF00225019spa
dc.relation.referencesCastagnone-Sereno, P., Wajnberg, E., Bongiovanni, M., Leroy, F., & Dalmasso, A. (1994). Genetic variation inMeloidogyne incognita virulence against the tomatoMi resistance gene: evidence from isofemale line selection studies. Theoretical and Applied Genetics, 88(6), 749-753. https://doi.org/10.1007/BF01253980spa
dc.relation.referencesCastaño, J. (1989). Estandarización de la estimación de daños causados por hongos, bacterias y nematodos en fríjol (Phaseolus vulgaris L.). Fitopatología colombiana, 13(1), 9-19.spa
dc.relation.referencesCastaño, J. (2015). Principios Básicos de hongos fitopatógenos. Centro Editorial Universidad de Caldas. Manizales. Colombia, 360.spa
dc.relation.referencesCeballos, N., Vallejo, F.A., & Arango, N. (2012). Evaluación del contenido de antioxidantes en introducciones de tomate tipo cereza (Solanum spp.). Acta Agronómica, 61(3), 230-238spa
dc.relation.referencesChinchilla, D., Bauer, Z., Regenass, M., Boller, T., & Felix, G. (2006). The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. The Plant Cell, 18(2), 465- 476. https://doi.org/10.1105/tpc.105.036574spa
dc.relation.referencesChisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124(4), 803-814. https://doi.org/10.1016/j.cell.2006.02.008spa
dc.relation.referencesCorpoica. (2016). Plan Estratégico de Ciencia, Tecnología e Innovación del sector Agropecuario Colombiano (2017-2027). Bogotá: Corpoica, Minagricultura. Recuperado de http://www.colciencias.gov.co/sites/default/files/upload/noticias/pectia-2017-actualizado.pdf.spa
dc.relation.referencesDevran, Z., & Söğüt, M. A. (2010). Occurrence of virulent root-knot nematode populations on tomatoes bearing the Mi gene in protected vegetable-growing areas of Turkey. Phytoparasitica, 38(3), 245-251. https://doi.org/10.1007/s12600-010-0103-yspa
dc.relation.referencesDevran, Z., & Söğüt, M. A. (2014). Response of heat-stable tomato genotypes to Mi-1 virulent root-knot nematode populations. Türkiye Entomoloji Dergisi, 38(3), 229-238.spa
dc.relation.referencesDesaeger, J. A., & Csinos, A. S. (2006). Root-knot nematode management in double-cropped plasticulture vegetables. Journal of Nematology, 38(1), 59-67.spa
dc.relation.referencesDjian-Caporalino, C., Pijarowski, L., Fazari, A., Samson, M., Gaveau, L., O’byrne, C., ... & Abad, P. (2001). High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp.). Theoretical and Applied Genetics, 103(4), 592-600. https://doi.org/10.1007/PL00002914spa
dc.relation.referencesDodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11(8), 539-548. https://doi.org/10.1038/nrg2812spa
dc.relation.referencesDropkin, V. H. P. (1969). The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: reversal by temperature. Phytopathology, 59, 1632-1637.spa
dc.relation.referencesDurrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology., 42(1), 185-209. https://doi.org/10.1146/annurev.phyto.42.040803.140421spa
dc.relation.referencesEl Mehrach, K., Gharsallah Chouchane, S., Mejia, L., Williamson, V. M., Vidavski, F., Hatimi, A., ... & Maxwell, D. P. (2005). PCR-based methods for tagging the Mi-1 locus for resistance to root-knot nematode in begomovirus-resistant tomato germplasm. Acta Horticulturae, 695, 263-270. http://worldveg.tind.io/record/34216spa
dc.relation.referencesEspiau, M., Gil, C., Pina, A., Fustero, R. & Errea, P. (2012). Propagación de frutales por injerto. III Jornadas de la Red de Semillas de Aragón. Ainsa (Huesca), 43. http://hdl.handle.net/10532/1900spa
dc.relation.referencesFAOSTAT. (2021). Agriculture statistics on crops. Core production data. Consulta: enero 20 de 2021. http://faostat3.fao.org/browse/Q/QC/Sspa
dc.relation.referencesFavery, B., Lecomte, P., Gil, N., Bechtold, N., Bouchez, D., Dalmasso, A., & Abad, P. (1998). RPE, a plant gene involved in early developmental steps of nematode feeding cells. The EMBO Journal, 17(23), 6799-6811. https://doi.org/10.1093/emboj/17.23.6799spa
dc.relation.referencesFoolad, M. R., & Sharma, A. (2005). Molecular markers as selection tools in tomato breeding. In I International Symposium on Tomato Diseases. Acta Horticulturae, 695, 225-240. https://doi.org/10.17660/ActaHortic.2005.695.25spa
dc.relation.referencesGarcia, G. M., Stalker, H. T., Shroeder, E., & Kochert, G. (1996). Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome, 39(5), 836-845. https://doi.org/10.1139/g96-106spa
dc.relation.referencesChaves, C. G., Marcillo, E. M., Gonzalez, C. S., & Garcia, C. B. (2011). Susceptibilidad de genotipos de Solanum spp. al nematodo causante del nudo radical Meloidogyne spp.(chitwood). Acta agronómica, 60(1), 50-67. Recuperado a partir de https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/21157spa
dc.relation.referencesGlowacki, S., Macioszek, V., & Kononowicz, A. (2011). R proteins as fundamentals of plant innate immunity. Cellular and Molecular Biology Letters, 16(1), 1-24. https://doi.org/10.2478/s11658-010- 0024-2spa
dc.relation.referencesGuerrero, J. (2013). Diagnóstico y control del nematodo de los nódulos en tomate. [Versión electrónica]. Recuperado el 04 de febrero de 2013, de http://www.hortalizas.com/articulo/9214/diagnostico-ycontrol-del-nematodo-de-los-nodulos-en-tomatespa
dc.relation.referencesHolbein, J., Grundler, F. M., & Siddique, S. (2016). Plant basal resistance to nematodes: an update. Journal of experimental botany, 67(7), 2049-2061. https://doi.org/10.1093/jxb/erw005spa
dc.relation.referencesHoogstraten, J. G. J., & Braun III, C. J. (2014). U.S. Patent No. 8,785,720. Washington, DC: U.S. Patent and Trademark Office.spa
dc.relation.referencesHuang, X., McGiffen, M., & Kaloshian, I. (2004). Reproduction of Mi-virulent Meloidogyne incognita isolates on Lycopersicon spp. Journal of Nematology, 36(1), 69–75.spa
dc.relation.referencesHussain, G., Wani, M. S., Mir, M. A., Rather, Z. A., & Bhat, K. M. (2015). Micrografting for fruit crop improvement. African Journal of Biotechnology, 13(25), 2474-2483. https://doi.org/10.5897/AJB2013.13602spa
dc.relation.referencesHwang, C. F., Bhakta, A. V., Truesdell, G. M., Pudlo, W. M., & Williamson, V. M. (2000). Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. The Plant Cell, 12(8), 1319-1329. https://doi.org/10.1105/tpc.12.8.1319spa
dc.relation.referencesJablonska, B., Ammiraju, J. S., Bhattarai, K. K., Mantelin, S., de Ilarduya, O. M., Roberts, P. A., & Kaloshian, I. (2007). The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to rootknot nematodes is a homolog of Mi-1. Plant physiology, 143(2), 1044-1054. https://doi.org/10.1104/pp.106.089615spa
dc.relation.referencesJaiteh, F., Kwoseh, C., & Akromah, R. (2012). Evaluation of tomato genotypes for resistance to root-knot nematodes. African Crop Science Journal, 20(1), 41-49.spa
dc.relation.referencesJaramillo, J., Rodríguez, V. P., Guzmán, A., Zapata, M. A., & Rengifo, T. (2007). Manual técnico buenas prácticas agrícolas (BPA) en la producción de tomate bajo condiciones protegidas (No. Doc. 22213) CO-BAC, Bogotá. CORPOICA – MANA – Gobernación de Antioquia – Centro de Investigación “La Selva”. FAO, 179-224.spa
dc.relation.referencesJi, H., Gheysen, G., Denil, S., Lindsey, K., Topping, J. F., Nahar, K., ... & Kyndt, T. (2013). Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots. Journal of experimental botany, 64(12), 3885-3898. https://doi.org/10.1093/jxb/ert219spa
dc.relation.referencesJones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. https://doi.org/10.1038/nature05286spa
dc.relation.referencesKaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., ... & Shibuya, N. (2006). Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences, 103(29), 11086-11091. https://doi.org/10.1073/pnas.0508882103spa
dc.relation.referencesKaloshian, I., Williamson, V., Miyao, G., Lawn, D., & Westerdahl, B. (1996). “Resistance-breaking” nematodes identified in California tomatoes. California Agriculture, 50(6), 18-19. https://doi.org/10.3733/ca.v050n06p18spa
dc.relation.referencesKiewnick, S., Dessimoz, M., & Franck, L. (2009). Effects of the Mi-1 and the N root-knot nematoderesistance gene on infection and reproduction of Meloidogyne enterolobii on tomato and pepper cultivars. Journal of nematology, 41(2), 134-139.spa
dc.relation.referencesKiewnick, S., Frey, J. E., & Braun-Kiewnick, A. (2015). Development and validation of LNA-based quantitative real-time PCR assays for detection and identification of the root-knot nematode Meloidogyne enterolobii in complex DNA backgrounds. Phytopathology, 105(9), 1245-1249. https://doi.org/10.1094/PHYTO-12-14-0364-Rspa
dc.relation.referencesLagudah, E. S., Krattinger, S. G., Herrera-Foessel, S., Singh, R. P., Huerta-Espino, J., Spielmeyer, W., ... & Keller, B. (2009). Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theoretical and Applied Genetics, 119(5), 889-898. https://doi.org/10.1007/s00122-009-1097-zspa
dc.relation.referencesLee, J. M., Oh, C. S., & Yeam, I. (2015). Molecular markers for selecting diverse disease resistances in tomato breeding programs. Plant Breeding and Biotechnology, 3(4), 308-322. https://doi.org/10.9787/PBB.2015.3.4.308spa
dc.relation.referencesLi, R., Rashotte, A. M., Singh, N. K., Weaver, D. B., Lawrence, K. S., & Locy, R. D. (2015). Integrated signaling networks in plant responses to sedentary endoparasitic nematodes: a perspective. Plant cell reports, 34(1), 5-22. https://doi.org/10.1007/s00299-014-1676-6spa
dc.relation.referencesLin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., ... & Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature genetics, 46(11), 1220-1226. https://doi.org/10.1038/ng.3117spa
dc.relation.referencesMcCarter, J., Abad, P., Jones, J. T., & Bird, D. (2000). Rapid gene discovery in plant parasitic nematodes via Expressed Sequence Tags, Nematology, 2(7), 719-731. https://doi.org/10.1163/156854100509574spa
dc.relation.referencesMihaela, P., Daehwan, K., Geo, M. P., Jeffrey, T. L., & Steven, L. S. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11(9), 1650-1667. https://doi.org/10.1038/nprot.2016.095spa
dc.relation.referencesMedina, C. I., & Lobo, M. (2001). Variabilidad morfológica en el tomate pajarito (Lycopersicon esculentum var. cerosiforme) precursor del tomate cultivado. Ciencia y Tecnología Agropecuaria, 3(2), 39-50. https://www.redalyc.org/pdf/4499/449953023006.pdfspa
dc.relation.referencesMcDowell, J. M., & Simon, S. A. (2006). Recent insights into R gene evolution. Molecular plant pathology, 7(5), 437-448. https://doi.org/10.1111/j.1364-3703.2006.00342.xspa
dc.relation.referencesMiller, J. C., & Tanksley, S. D. (1990). RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and applied genetics, 80(4), 437-448. https://doi.org/10.1007/BF00226743spa
dc.relation.referencesMilligan, S. B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P., & Williamson, V. M. (1998). The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. The Plant Cell, 10(8), 1307-1319. https://doi.org/10.1105/tpc.10.8.1307spa
dc.relation.referencesMohamed, M. A., & Abd-Elgawad, M. M. (2003). Differential induction of peroxidases in tomato roots in response to Meloidogyne incognita invasion. International Journal of Nematology, 13(1), 20-26.spa
dc.relation.referencesNesbitt, T. C., & Tanksley, S. D. (2002). Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics, 162(1), 365-379. https://doi.org/10.1093/genetics/162.1.365spa
dc.relation.referencesOka, Y., Ben-Daniel, B., & Cohen, Y. (2001). Nematicidal activity of powder and extracts of Inula viscosa, Nematology, 3(8), 735-742. https://doi.org/10.1163/156854101753625245spa
dc.relation.referencesOkorley, B. A., Agyeman, C., Amissah, N., & Nyaku, S. T. (2018). Screening selected solanum plants as potential rootstocks for the management of root-knot nematodes (Meloidogyne incognita). International Journal of Agronomy, 1687-8159. https://doi.org/10.1155/2018/6715909spa
dc.relation.referencesOpperman, C. H., Taylor, C. G., & Conkling, M. A. (1994). Root-Knot Nematode—Directed Expression of a Plant Root—Specific Gene. Science, 263(5144), 221-223. https://doi.org/10.1126/science.263.5144.221spa
dc.relation.referencesPerales, J. A. S. (2014). De los Objetivos del Milenio al desarrollo sostenible: Naciones Unidas y las metas globales post-2015. Anuario Ceipaz, (7), 49-84. https://dialnet.unirioja.es/servlet/articulo?codigo=4942588spa
dc.relation.referencesPerez-Almeida, I., Morales-Astudillo, R., Medina-Litardo, R., Salcedo-Rosales, G., Dascony, A. F., & Solano-Castillo, T. (2016). Molecular screening of tomato genotypes for resistance to Meloidogyne incognita, Fusarium oxysporum and Ralstonia solanacearum for genetic improvement. Bioagro, 28(2), 107-116.spa
dc.relation.referencesPeteira, B., Díaz, D. F., González-Chavez, M., Martínez, B., & Miranda, I. (2002). Búsqueda de un marcador RAPD asociado a la resistencia a Alternaria solani Sor. en tomate. Revista de Protección Vegetal,17(1),6-13.spa
dc.relation.referencesPetitot, A. S., Dereeper, A., Agbessi, M., Da Silva, C., Guy, J., Ardisson, M., & Fernandez, D. (2016). Dual RNA‐seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants. Molecular Plant Pathology, 17(6), 860-874. https://doi.org/10.1111/mpp.12334spa
dc.relation.referencesPoczai, P., Varga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J., & Hyvönen, J. (2013). Advances in plant gene-targeted and functional markers: a review. Plant methods, 9(1), 1-32. https://doi.org/10.1186/1746-4811-9-6spa
dc.relation.referencesRamkumar, G., Biswal, A. K., Mohan, K. M., Sakthivel, K., Sivaranjani, A. K. P., Neeraja, C. N., ... & Madhav, M. S. (2010). Identifying novel alleles of rice blast resistance genes Pikh and Pita through allele mining. International Rice Research Notes, 117,spa
dc.relation.referencesRanc, N., Muños, S., Santoni, S., & Causse, M. (2008). A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC plant biology, 8(1), 1-16. https://doi.org/10.1186/1471-2229-8-130spa
dc.relation.referencesRanc, N., Muños, S., Xu, J., Le Paslier, M. C., Chauveau, A., Bounon, R., ... & Causse, M. (2012). Genomewide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3: Genes| Genomes| Genetics, 2(8), 853-864. https://doi.org/10.1534/g3.112.002667spa
dc.relation.referencesRani, C. I., Muthuvel, I., & Veeraragavathatham, D. (2009). Evaluation of 14 tomato genotypes for yield and root knot nematode resistance parameters. Pest Technology, 3(1), 76-80.spa
dc.relation.referencesRashid, M. H., Al-Mamun, M. H., & Uddin, M. N. (2017). How durable is root knot nematode resistance in tomato?. Plant Breeding and Biotechnology, 5(3), 143-162. https://doi.org/10.9787/PBB.2017.5.3.143spa
dc.relation.referencesRoberts, P. A., Dalmasso, A., Cap, G. B., & Castagnone-Sereno, P. (1990). Resistance in Lycopersicon peruvianum to Isolates of Mi Gene-Compatible Meloidogyne Populations. Journal of nematology, 22(4), 585–589.spa
dc.relation.referencesRoberts, P. A., & May, D. (1986). Meloidogyne incognita Resistance Characteristics in Tomato Genotypes Developed for Processing. Journal of nematology, 18(3), 353–358.spa
dc.relation.referencesRosales, L., Rodríguez, M. Maselli, A. & Peteira, B. (2009). Importancia de los nematodos agalladores y la marchitez bacteriana en la producción de hortalizas. INIA. Centro Nacional de Investigaciones Agropecuarias. San José de las Lajas, Cuba, 10.spa
dc.relation.referencesRossi, M., Goggin, F. L., Milligan, S. B., Kaloshian, I., Ullman, D. E., & Williamson, V. M. (1998). The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of the National Academy of Sciences, 95(17), 9750-9754. https://doi.org/10.1073/pnas.95.17.9750spa
dc.relation.referencesSalgotra, R. K., Gupta, B. B., & Stewart, C. N. (2014). From genomics to functional markers in the era of next-generation sequencing. Biotechnology letters, 36(3), 417-426. https://doi.org/10.1007/s10529- 013-1377-1spa
dc.relation.referencesSasser J. N. (1979). Economic importance of Meloidogyne in tropical countries. In: Root-Knot Nematodes (Meloidogyne Species): Systematics, Biology and Control. Academic Press, London, 359 – 374.spa
dc.relation.referencesSeah, S., Yaghoobi, J., Rossi, M., Gleason, C. A., & Williamson, V. M. (2004). The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Theoretical and Applied Genetics, 108(8), 1635-1642. https://doi.org/10.1007/s00122-004- 1594-zspa
dc.relation.referencesSeah, S., Williamson, V. M., Garcia, B. E., Mejia, L., Salus, M. S., Martin, C. T., & Maxwell, D. P. (2007). Evaluation of a co-dominant SCAR marker for detection of the Mi-1 locus for resistance to root-knot nematode in tomato germplasm. Report of the Tomato Genetics Cooperative, 57, 37-40.spa
dc.relation.referencesSeo, E., Kim, S., Yeom, S. I., & Choi, D. (2016). Genome-wide comparative analyses reveal the dynamic evolution of nucleotide-binding leucine-rich repeat gene family among Solanaceae plants. Frontiers in plant science, 7, 1205. https://doi.org/10.3389/fpls.2016.01205spa
dc.relation.referencesSchumann, G. L., & D'Arcy, C. J. (2006). Essential plant pathology. American Phytopathological Society. Editorial APS Press. USA, 338.spa
dc.relation.referencesSimeone, A. M., & Di Vito, M. (1990). Reactions to nematodes of selections of peach rootstocks. Peach, XXIII IHC. Acta Horticulturae, 315, 197-202. https://doi.org/10.17660/ActaHortic.1992.315.24spa
dc.relation.referencesSmith, P. G. (1944). Embcryo culture of a tomato species hybrid. In Proc. Amer. Soc. Hort. Sci, 44, 413- 416.spa
dc.relation.referencesShukla, N., Yadav, R., Kaur, P., Rasmussen, S., Goel, S., Agarwal, M., ... & Kumar, A. (2018). Transcriptome analysis of root‐knot nematode (Meloidogyne incognita)‐infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses. Molecular plant pathology, 19(3), 615- 633. https://doi.org/10.1111/mpp.12547spa
dc.relation.referencesSlaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B., & Mauch-Mani, B. (2012). Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant physiology, 158(2), 835-843. https://doi.org/10.1104/pp.111.191593spa
dc.relation.referencesSolórzano, E., Fernández, A., León, O., & Peteira, B. (2006). Evaluación de indicadores bioquímicos en variedades de tomate resistentes y susceptibles al tizón temprano. Revista de Protección Vegetal, 21(2), 101-108.spa
dc.relation.referencesSong, L. X., Xu, X. C., Wang, F. N., Wang, Y., Xia, X. J., Shi, K., ... & Yu, J. Q. (2018). Brassinosteroids act as a positive regulator for resistance against root‐knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOG‐dependent activation of MAPKs in tomato. Plant, Cell & Environment, 41(5), 1113-1125. https://doi.org/10.1111/pce.12952spa
dc.relation.referencesSedano, J. C. S., & Carrascal, C. E. L. (2012). RNA-seq: herramienta transcriptómica útil para el estudio de interacciones planta-patógeno. Fitosanidad, 16(2), 101-113.spa
dc.relation.referencesTameling, W. I., Elzinga, S. D., Darmin, P. S., Vossen, J. H., Takken, F. L., Haring, M. A., & Cornelissen, B. J. (2002). The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. The Plant Cell, 14(11), 2929-2939. https://doi.org/10.1105/tpc.005793spa
dc.relation.referencesTaylor, A. L., & Sasser, J. N. (1983). Biología, identificación y control de los nemátodos de nódulos de la raiz (especies de Meloidogyne). Universidad del Estado de Carolina del Norte, Carolina del Norte (EUA). Departamento de Fitopatologia, 111.spa
dc.relation.referencesTomato Genome Consortium. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635–641. https://doi.org/10.1038/nature11119spa
dc.relation.referencesThomma, B. P., Nürnberger, T., & Joosten, M. H. (2011). Of PAMPs and effectors: the blurred PTI-ETI dichotomy. The plant cell, 23(1), 4-15. https://doi.org/10.1105/tpc.110.082602spa
dc.relation.referencesTrudgill, D. L., & Blok, V. C. (2001). Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annual review of phytopathology, 39(1), 53-77. https://doi.org/10.1146/annurev.phyto.39.1.53spa
dc.relation.referencesTzortzakakis, A. A., & Gowen, S. R. (1996). Occurence of a resistance breaking pathotype of Meloidogyne javanica on tomatoes in Grete, Greece. Fundamental and Applied Nematology, 19(3), 283-288.spa
dc.relation.referencesVallejo Cabrera, F. (1999). Mejoramiento genético y producción de tomate en Colombia. Universidad Nacional de Colombia. Sede Palmira, 216.spa
dc.relation.referencesVarshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genic microsatellite markers in plants: features and applications. Trends in Biotechnology, 23(1), 48-55. https://doi.org/10.1016/j.tibtech.2004.11.005spa
dc.relation.referencesVarshney, R. K., Nayak, S. N., May, G. D., & Jackson, S. A. (2009). Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in biotechnology, 27(9), 522-530. https://doi.org/10.1016/j.tibtech.2009.05.006spa
dc.relation.referencesVerdejo‐Lucas, S., Cortada, L., Sorribas, F. J., & Ornat, C. (2009). Selection of virulent populations of Meloidogyne javanica by repeated cultivation of Mi resistance gene tomato rootstocks under field conditions. Plant Pathology, 58(5), 990-998. https://doi.org/10.1111/j.1365-3059.2009.02089.xspa
dc.relation.referencesVeremis, J. C., & Roberts, P. A. (1996). Relationships between Meloidogyne incognita resistance genes in Lycopersicon peruvianum differentiated by heat sensitivity and nematode virulence. Theoretical and Applied Genetics, 93(5), 950-959. 1996, 93, 950–959. https://doi.org/10.1007/BF00224098spa
dc.relation.referencesVeremis, J. C., & Roberts, P. A. (2000). Diversity of heat-stable genotype specific resistance to Meloidogyne in Maranon races of Lycopersicon peruvianum complex. Euphytica, 111(1), 9-16. https://doi.org/10.1023/A:1003776201585spa
dc.relation.referencesVirk, P. S., Newbury, H. J., Jackson, M. T., & Ford-Lloyd, B. V. (1995). The identification of duplicate accessions within a rice germplasm collection using RAPD analysis. Theoretical and Applied Genetics, 90(7), 1049-1055. https://doi.org/10.1007/BF00222920spa
dc.relation.referencesVossen, J. H., Jo, K. R., & Vosman, B. (2014). Mining the Genus Solanum for Increasing Disease Resistance. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7575-6_2spa
dc.relation.referencesWang, Y., Bao, Z., Zhu, Y., & Hua, J. (2009). Analysis of temperature modulation of plant defense against biotrophic microbes. Molecular Plant-Microbe Interactions, 22(5), 498-506. https://doi.org/10.1094/MPMI-22-5-0498spa
dc.relation.referencesWang, Y., Yang, W., Zhang, W., Han, Q., Feng, M., & Shen, H. (2013). Mapping of a heat-stable gene for resistance to southern root-knot nematode in Solanum lycopersicum. Plant Molecular Biology Reporter, 31(2), 352-362. https://doi.org/10.1007/s11105-012-0505-8spa
dc.relation.referencesWallace, J. G., & Mitchell, S. E. (2017). Genotyping‐by‐sequencing. Current Protocols in Plant Biology, 2(1), 64-77. https://doi.org/10.1002/cppb.20042spa
dc.relation.referencesWilliamson, V. M., & Hussey, R. S. (1996). Nematode pathogenesis and resistance in plants. The Plant cell, 8(10), 1735–1745. https://doi.org/10.1105/tpc.8.10.1735spa
dc.relation.referencesYaghoobi, J., Kaloshian, I., Wen, Y., & Williamson, V. M. (1995). Mapping a new nematode resistance locus in Lycopersicon peruvianum. Theoretical and Applied Genetics, 91(3), 457-464. https://doi.org/10.1007/BF00222973spa
dc.relation.referencesYaghoobi, J., Yates, J. L., & Williamson, V. M. (2005). Fine mapping of the nematode resistance gene Mi3 in Solanum peruvianum and construction of a S. lycopersicum DNA contig spanning the locus. Molecular Genetics and Genomics, 274(1), 60-69. https://doi.org/10.1007/s00438-005-1149-2spa
dc.relation.referencesYe, W., Zeng, Y., & Kerns, J. (2015). Molecular characterisation and diagnosis of root-knot nematodes (Meloidogyne spp.) from turfgrasses in North Carolina, USA. PLoS One, 10(11): e0143556. https://doi.org/10.1371/journal.pone.0143556spa
dc.relation.referencesYeam, I., Kang, B. C., Lindeman, W., Frantz, J. D., Faber, N., & Jahn, M. M. (2005). Allele-specific CAPS markers based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum. Theoretical and applied genetics, 112(1), 178-186. https://doi.org/10.1007/s00122-005- 0120-2spa
dc.relation.referencesZhang, Z., Wu, Y., Gao, M., Zhang, J., Kong, Q., Liu, Y., ... & Zhang, Y. (2012). Disruption of PAMPinduced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell host & microbe, 11(3), 253-263. https://doi.org/10.1016/j.chom.2012.01.015spa
dc.relation.referencesZhao, Y. L., Ruan, W. B., Yu, L., Zhang, J. Y., Fu, J. M., Shain, E. B., Huang, X. T., & Wang, J. G. (2010). Combining maxRatio analysis with real-time PCR and its potential application for the prediction of Meloidogyne incognita in field samples. Journal of nematology, 42(2), 166–172.spa
dc.relation.referencesZinoveva, S. V., Vasyukova, N. I., & Ozeretskovskaya, O. L. (2004). Biochemical aspects of plant interactions with phytoparasitic nematodes: a review. Applied Biochemistry and Microbiology, 40(2), 111-119. https://doi.org/10.1023/B:ABIM.0000018912.93529.78spa
dc.relation.referencesZipfel, C. (2009). Early molecular events in PAMP-triggered immunity. Current opinion in plant biology, 12(4), 414-420. https://doi.org/10.1016/j.pbi.2009.06.003spa
dc.relation.referencesAdam, M., Heuer, H., & Hallmann, J. (2014). Bacterial antagonists of fungal pathogens also control rootknot nematodes by induced systemic resistance of tomato plants. PloS one, 9(2): e90402. e90402. https://doi.org/10.1371/journal.pone.0090402spa
dc.relation.referencesAydinli, G., & Mennan, S. (2019). Resistance Response of tomato cultivars and rootstocks carrying the Mi1.2 Gene to isolates of Meloidogyne arenaria, M. incognita, and M. javanica at two different growing Periods. Horticultural Science and Technology, 37(4), 509-519. https://doi.org/10.7235/HORT.20190051spa
dc.relation.referencesBailey, D. M. (1941). The seedling test method for root-knot-nematode resistance. Proceedings of the American Society for Horticultural Science, 38, 573-575.spa
dc.relation.referencesBarbary, A., Djian‐Caporalino, C., Palloix, A., & Castagnone‐Sereno, P. (2015). Host genetic resistance to root‐knot nematodes, Meloidogyne spp., in Solanaceae: From genes to the field. Pest management science, 71(12), 1591-1598. https://doi.org/10.1002/ps.4091spa
dc.relation.referencesBeyan, A., Seid, A., & Shifa, H. (2019). Response of tomato genotypes to Meloidogyne javanica and Fusarium oxysporum f. sp. lycopersici co-infestation under glasshouse conditions. Pak. J. Nematol, 37(1), 63-82. http://dx.doi.org/10.18681/pjn.v37.i01.p63-82spa
dc.relation.referencesCardoso, J., Tonelli, L., Kutz, T. S., Brandelero, F. D., Vargas, T. D. O., & Dallemole-Giaretta, R. (2019). Reaction of wild Solanaceae rootstocks to the parasitism of (Meloidogyne javanica). Horticultura Brasileira, 37(1), 17-21. https://doi.org/10.1590/S0102-053620190102spa
dc.relation.referencesChidichima, L., Miamoto, A., Rinaldi, L., Corrêia, A., & Dias-Arieira, C. (2021). Response of green manure species and millet cultivars to different populations of Meloidogyne javanica. Chilean journal of agricultural research, 81(3), 310-316. http://dx.doi.org/10.4067/S0718-58392021000300310spa
dc.relation.referencesCervantes-Moreno, R., Rodríguez-Pérez, J. E., Carrillo Fonseca, C., Sahagún-Castellanos, J., & RodríguezGuzmán, E. (2014). Tolerancia de 26 colectas de tomates nativos de México al nematodo Meloidogyne incognita (Kofoid y White) Chitwood. Revista Chapingo. Serie Horticultura, 20(1), 5-18. https://doi.org/10.5154/r.rchsh.2012.12.071spa
dc.relation.referencesCorrales, S. P., de Agudelo, F. V., & Marin, N. B. (1999). Reconocimiento de nematodos y efecto de Meloidogyne spp. En el cultivo de lulo solanum quitoense lam. Acta Agronómica, 49(3 y 4), 43-47. Recuperado a partir de https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/47952spa
dc.relation.referencesDagatti, C. V., Becerra, V. C., & Herrera, M. E. (2014). Caracterización de daños producidos por Meloidogyne spp. Nemata: Tylenchida) en la Vid en Mendoza, Argentina. Revista de Ciencias Agrícolas, 31(2), 51-62. https://doi.org/10.22267/rcia.143101.42spa
dc.relation.referencesMarques de Carvalho, L., Benda, N. D., Vaughan, M. M., Cabrera, A. R., Hung, K., Cox, T., Abdo, Z., Allen, L. H., & Teal, P. E. (2015). Mi-1-Mediated Nematode Resistance in Tomatoes is Broken by Short-Term Heat Stress but Recovers Over Time. Journal of nematology, 47(2), 133–140.spa
dc.relation.referencesDoyle, J. J. & Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(13), 39-40.spa
dc.relation.referencesEl-Sappah, A. H., MM, I., El-awady, H. H., Yan, S., Qi, S., Liu, J., ... & Liang, Y. (2019). Tomato natural resistance genes in controlling the root-knot nematode. Genes, 10(11), 925. https://doi.org/10.3390/genes10110925spa
dc.relation.referencesFAO. (2020). Statistical databases. Statistics Division. Food and Agriculture Organization (FAO), Rome, Italy. http://faostat.fao.org/spa
dc.relation.referencesHerison, C., Sutjahjo, S. H., Sulastrini, I., Rustikawati, R., & Marwiyah, S. (2017). Genetic diversity analysis in 27 tomato accessions using morphological and molecular markers. AGRIVITA, Journal of Agricultural Science, 40(1), 36-44. http://doi.org/10.17503/agrivita.v40i1.726spa
dc.relation.referencesJenkins, W. R. (1964). A rapid centrifugal-flotation technique for separating nematodes from soil. Plant disease reporter, 48(9), 692.spa
dc.relation.referencesJones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., ... & Perry, R. N. (2013). Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular plant pathology, 14(9), 946-961. https://doi.org/10.1111/mpp.12057spa
dc.relation.referencesAli, A. H. H., Hasnin, N. M., Mahmoud, A. M. A., & Kesba, H. H. (2015). Evaluation of Some Tomato Genotypes to Meloidogyne incognita Resistance. American-Eurasian Journal of Agricultural & Environmental Sciences, 15(7), 1402-1410. https://doi.org/10.5829/idosi.aejaes.2015.15.7.12707spa
dc.relation.referencesKhan, M. T. A., Mukhtar, T., & Saeed, M. (2019). Resistance or Susceptibility of Eight Aubergine Cultivars to Meloidogyne javanica. Pakistan Journal of Zoology, 51(6), 2187-2192. : http://dx.doi.org/10.17582/journal.pjz/2019.51.6.2187.2192spa
dc.relation.referencesKhanzada, S., Jiskani, M. M., Khanzada, S. R., Khanzada, M. S., Ali, S., Khanzada, K. A., ... & Khalid, M. (2012). Response of some tomato cultivars against root-knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood. JAPS, Journal of Animal and Plant Sciences, 22(4), 1076-1080.spa
dc.relation.referencesMaleita, C. M., Curtis, R. H., Powers, S. J., & de O. Abrantes, I. M. (2012). Inoculum levels of Meloidogyne hispanica and M. javanica affect nematode reproduction, and growth of tomato genotypes. Phytopathologia Mediterranea, 51(3), 566-576. http://www.jstor.org/stable/43872343spa
dc.relation.referencesMata-Nicolás, E., Montero-Pau, J., Gimeno-Paez, E., Garcia-Carpintero, V., Ziarsolo, P., Menda, N., ... & Díez, M. J. (2020). Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Horticulture research, 7(1), 1-14. https://doi.org/10.1038/s41438-020-0291-7spa
dc.relation.referencesPaz, R. A. O., Piedrahita, Ó. A. G., & Caycedo, J. L. (2015). Manejo integrado del nematodo del nudo radical Meloidogyne incognita (Kofoid & White) Chitwood y Meloidogyne mayaguensis (Rammh & Hirschmann) en almácigos de guayabo (Psidium guajava Linneo), variedad Palmira ICA-1. Boletín Científico. Centro de Museos, 19(2), 104-138. https://doi.org/10.17151/bccm.2015.19.2.7spa
dc.relation.referencesÖzalp, T., & Devran, Z. (2018). Response of tomato plants carrying Mi-1 gene to Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 under high soil temperatures. Turkish Journal of Entomology, 42(4), 313-322. https://doi.org/10.16970/entoted.467189spa
dc.relation.referencesPérez-Almeida, I., Morales-Astudillo, R., Medina-Litardo, R., Salcedo-Rosales, G., Dascon, A. F., & Solano-Castillo, T. (2016). Evaluación molecular de genotipos de tomate por su resistencia a Meloidogyne incognita, Fusarium oxysporum y Ralstonia solanacearum con fines de mejoramiento. Bioagro, 28(2), 107-116. https://www.redalyc.org/pdf/857/85745749005.pdfspa
dc.relation.referencesQuénéhervé, P., Godefroid, M., Mège, P., & Marie-Luce, S. (2011). Diversity of Meloidogyne spp. parasitizing plants in Martinique Island, French west Indies. Nematropica, 41(2), 191-199.spa
dc.relation.referencesRanc, N., Muños, S., Xu, J., Le Paslier, M. C., Chauveau, A., Bounon, R., ... & Causse, M. (2012). Genomewide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3: Genes| Genomes| Genetics, 2(8), 853-864. https://doi.org/10.1534/g3.112.002667spa
dc.relation.referencesRodiuc, N., Vieira, P., Banora, M. Y., & de Almeida Engler, J. (2014). On the track of transfer cell formation by specialized plant-parasitic nematodes. Frontiers in Plant Science, 5(5), 160. https://doi.org/10.3389/fpls.2014.00160spa
dc.relation.referencesSalazar-Antón, W., & Guzmán-Hernández, T. D. J. (2013). Efecto de poblaciones de Meloidogyne sp. en el desarrollo y rendimiento del tomate. Agronomía mesoamericana, 24(2), 419-426.spa
dc.relation.referencesSañudo, B., Betancourth, C., & Salazar, C. (2003). Principios de nematología agrícola. Pasto, Colombia: Universidad de Nariño.spa
dc.relation.referencesSeid, A., Fininsa, C., Mekete, T., Decraemer, W., & Wesemael, W. M. (2015). Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.) – a century-old battle, Nematology, 17(9), 995-1009. https://doi.org/10.1163/15685411-00002935spa
dc.relation.referencesSharma, I. P., & Sharma, A. K. (2015). Effects of initial inoculums levels of Meloidogyne incognita J2 on development and growth of Tomato cv. PT-3 under control conditions. African journal of microbiology research, 9(20), 1376-1380. https://doi.org/10.5897/AJMR2015.7553spa
dc.relation.referencesStrajnar, P., Širca, S., Urek, G., Šircelj, H., Železnik, P., & Vodnik, D. (2012). Effect of Meloidogyne ethiopica parasitism on water management and physiological stress in tomato. European Journal of Plant Pathology, 132(1), 49-57. https://doi.org/10.1007/s10658-011-9847-6spa
dc.relation.referencesSukhjeet, K., Jindal, S. K., & Dhaliwal, M. S. (2019). Resistance potential of indeterminate tomato lines against root knot nematode (Meloidogyne incognita). Agricultural Research Journal, 56(2), 220-225. https://doi.org/10.5958/2395-146X.2019.00034.6spa
dc.relation.referencesTaylor, A., & Sasser, J. (1983). Identificación y control de los nematodos de nódulo de la raíz (especies de Meloidogyne). Proyecto internacional de Meloidogyne (MIP). Universidad del Estado de Carolina del Norte, Raleigh, Carolina del Norte, EE.UU.spa
dc.relation.referencesAdam, M. A., Phillips, M. S., & Blok, V. C. (2005). Identification of Meloidogyne spp. from North East Libya and comparison of their inter- and intra-specific genetic variation using RAPDs, Nematology, 7(4), 599-609. https://doi.org/10.1163/156854105774384840spa
dc.relation.referencesAdam, M. A. M., Phillips, M. S., & Blok, V. C. (2007). Molecular diagnostic key for identification of single juveniles of seven common and economically important species of root‐knot nematode (Meloidogyne spp.). Plant pathology, 56(1), 190-197. https://doi.org/10.1111/j.1365-3059.2006.01455.xspa
dc.relation.referencesÁlvarez-Ortega, S., Brito, J. A., & Subbotin, S. (2019). Multigene phylogeny of root-knot nematodes and molecular characterization of Meloidogyne nataliei Golden, Rose & Bird, 1981 (Nematoda: Tylenchida). Scientific reports, 9(1), 1-11. https://doi.org/10.1038/s41598- 019-48195-0spa
dc.relation.referencesBlok, V. C., Wishart, J., Fargette, M., Berthier, K., & Phillips, M. (2002). Mitochondrial DNA differences distinguishing Meloidogyne mayaguensis from the major species of tropical root- knot nematodes, Nematology, 4(7), 773-781. https://doi.org/10.1163/156854102760402559spa
dc.relation.referencesBlok, V. C. (2005). Achievements in and future prospects for molecular diagnostics of plantparasitic nematodes. Canadian Journal of Plant Pathology, 27(2), 176-185. https://doi.org/10.1080/07060660509507214spa
dc.relation.referencesCenis, J. L., Opperman, C. H., & Triantaphyllou, A. C. (1992). Cytogenetic, enzymatic, and restriction fragment length polymorphism variation of Meloidogyne spp. from Spain. Phytopathology (USA), 82, 527-531.spa
dc.relation.referencesConesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. https://doi.org/10.1093/bioinformatics/bti610spa
dc.relation.referencesFichot, E. B., & Norman, R. S. (2013). Microbial phylogenetic profiling with the Pacific Biosciences sequencing platform. Microbiome, 1(1), 1-5. https://doi.org/10.1186/2049-2618- 1-10spa
dc.relation.referencesHunt, D. J., & Handoo, Z. A. (2009). Taxonomy, identification and principal species. Root-knot nematodes, 1, 55-88.spa
dc.relation.referencesJanssen, T., Karssen, G., Verhaeven, M., Coyne, D., & Bert, W. (2016). Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype-based diagnostics and reveals evidence of recent reticulate evolution. Scientific reports, 6(1), 1-13. https://doi.org/10.1038/srep22591spa
dc.relation.referencesKarssen, G., Wesemael, W., & Moens, M. (2013). Root-knot nematodes. Plant nematology, (Ed. 2), 73-108. https://doi.org/10.1079/9781780641515.0073spa
dc.relation.referencesLanda, B. B., Rius, J. E. P., Vovlas, N., Carneiro, R. M., Maleita, C. M., de O. Abrantes, I. M., & Castillo, P. (2008). Molecular characterization of Meloidogyne hispanica (Nematoda, Meloidogynidae) by phylogenetic analysis of genes within the rDNA in Meloidogyne spp. Plant Disease, 92(7), 1104-1110. https://doi.org/10.1094/PDIS-92-7-1104spa
dc.relation.referencesMoens, M., Perry, R. N., & Starr, J. L. (2009). Meloidogyne species–a diverse group of novel and important plant parasites. Root-knot nematodes, 1, 483.spa
dc.relation.referencesPowers, T., Harris, T., Higgins, R., Mullin, P., & Powers, K. (2018). Discovery and Identification of Meloidogyne Species Using COI DNA Barcoding. Journal of nematology, 50(3), 399–412. https://doi.org/10.21307/jofnem-2018-029spa
dc.relation.referencesPowers, T. O., & Harris, T. S. (1993). A polymerase chain reaction method for identification of five major meloidogyne species. Journal of nematology, 25(1), 1–6.spa
dc.relation.referencesRashidifard, M., Marais, M., Daneel, M. S., Mienie, C., & Fourie, H. (2019). Molecular characterisation of Meloidogyne enterolobii and other Meloidogyne spp. from South Africa. Tropical Plant Pathology, 44(3), 213-224. https://doi.org/10.1007/s40858-019- 00281-4spa
dc.relation.referencesSasser J. N. (1979). Economic importance of Meloidogyne in tropical countries. In: Root-Knot Nematodes (Meloidogyne Species): Systematics, Biology and Control. Academic Press, London, 359 – 374.spa
dc.relation.referencesStanton, J., Hugall, A., & Moritz, C. (1997). Nucleotide polymorphisms and an improved PCRbased mtDNA diagnostic for parthenogenetic root-knot nematodes (Meloidogyne spp.). Fundamental and Applied Nematology, 20(3), 261-268.spa
dc.relation.referencesTigano, M., De Siqueira, K., Castagnone‐Sereno, P., Mulet, K., Queiroz, P., Dos Santos, M., ... & Carneiro, R. M. D. G. (2010). Genetic diversity of the root‐knot nematode Meloidogyne enterolobii and development of a SCAR marker for this guava‐damaging species. Plant pathology, 59(6), 1054-1061. https://doi.org/10.1111/j.1365-3059.2010.02350.xspa
dc.relation.referencesVillar-Luna, E., Goméz-Rodriguez, O., Rojas-Martínez, R. I., & Zavaleta-Mejía, E. (2016). Presence of on Jalapeño pepper (L.) in Sinaloa, Mexico. Helminthologia, 53(2), 155-160. https://doi.org/10.1515/helmin-2016-0001spa
dc.relation.referencesZijlstra, C., Donkers-Venne, D. T., & Fargette, M. (2000). Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterised amplified region (SCAR) based PCR assays, Nematology, 2(8), 847-853. https://doi.org/10.1163/156854100750112798spa
dc.relation.referencesZijlstra, C., Uenk, B. J., & Van Silfhout, C. H. (1997). A reliable, precise method to differentiate species of root-knot nematodes in mixtures on the basis of ITS-RFLPs. Fundamental and Applied Nematology, 20(1), 59-63.spa
dc.relation.referencesBai, Y., Yan, Z., Moriones, E., & Fernández-Muñoz, R. (2018). Tomato disease resistances in the postgenomics era. In V International Symposium on Tomato Diseases: Perspectives and Future Directions in Tomato Protection. Acta Horticulturae, 1207, 1-18. https://doi.org/10.17660/ActaHortic.2018.1207.1spa
dc.relation.referencesBailey, D. M. (1941). The seedling test method for root-knot-nematode resistance. Proceedings of the American Society for Horticultural Science, 38, 573-575.spa
dc.relation.referencesBhavana, P., Singh, A. K., Kumar, R., Prajapati, G. K., Thamilarasi, K., Manickam, R., ... & Choudhary, J. S. (2019). Identification of resistance in tomato against root knot nematode (Meloidogyne incognita) and comparison of molecular markers for Mi gene. Australasian Plant Pathology, 48(2), 93-100. https://doi.org/10.1007/s13313-018-0602-8spa
dc.relation.referencesBleve-Zacheo, T., Melillo, M. T., & Castagnone-Sereno, P. (2007). The contribution of biotechnology to root-knot nematode control in tomato plants. Pest Technology, 1(1), 1- 16.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.569.9363&rep=rep1&type=pdfspa
dc.relation.referencesCardona Piedrahíta, L. F., Castaño Zapata, J., & Ceballos Aguirre, N. (2016). Respuesta de quince introducciones de tomate cherry (Solanum lycopersicum L.) al nemátodo nodulador (Meloidogyne spp. Goeldi) e identificación de las especies. Academia Colombiana de Ciencias Exactas, Físicas y Naturales. https://doi.org/10.18257/raccefyn.365spa
dc.relation.referencesCastagnone-Sereno, P., Leroy, F., Bongiovanni, M., Zijlstra, C., & Abad, P. (1999). Specific diagnosis of two root-knot nematodes, Meloidogyne chitwoodi and M. fallax, with satellite DNA probes. Phytopathology, 89(5), 380-384. https://doi.org/10.1094/PHYTO.1999.89.5.380spa
dc.relation.referencesCastagnone-Sereno, P. (2002). Genetic variability in parthenogenetic root-knot nematodes, Meloidogyne spp., and their ability to overcome plant resistance genes, Nematology, 4(5), 605-608. https://doi.org/10.1163/15685410260438872spa
dc.relation.referencesDjian-Caporalino, C., Molinari, S., Palloix, A., Ciancio, A., Fazari, A., Marteu, N., ... & Castagnone-Sereno, P. (2011). The reproductive potential of the root-knot nematode Meloidogyne incognita is affected by selection for virulence against major resistance genes from tomato and pepper. European Journal of Plant Pathology, 131(3), 431-440. https://doi.org/10.1007/s10658-011-9820-4spa
dc.relation.referencesDoyle, J. J. & Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(13), 39-40.spa
dc.relation.referencesEl-Sappah, A. H., MM, I., El-awady, H. H., Yan, S., Qi, S., Liu, J., ... & Liang, Y. (2019). Tomato natural resistance genes in controlling the root-knot nematode. Genes, 10(11), 925. https://doi.org/10.3390/genes10110925spa
dc.relation.referencesErsts, P. J. (2020). DotDotGoose (version 1.5. 1). American Museum of Natural History. United States: Center for Biodiversity and Conservation. Available URL: from https://biodiversityinformatics. amnh. org/open_source/dotdotgoose. Accessed on, 11-11.spa
dc.relation.referencesFAO. (2020). Statistical databases. Statistics Division. Food and Agriculture Organization (FAO), Rome, Italy. http://faostat.fao.org/spa
dc.relation.referencesFAOSTAT (2018). Agriculture statistics on crops. Core production data. Consultado enero 2018. http://faostat3.fao.org/browse/Q/QC/Sspa
dc.relation.referencesGuerrero, J. (2013). Diagnóstico y control del nematodo de los nódulos en tomate. [Versión electrónica]. Recuperado el 04 de febrero de 2013, de http://www.hortalizas.com/articulo/9214/diagnostico-ycontrol-del-nematodo-de-los-nodulos-en-tomatespa
dc.relation.referencesMata-Nicolás, E., Montero-Pau, J., Gimeno-Paez, E., Garcia-Carpintero, V., Ziarsolo, P., Menda, N., ... & Díez, M. J. (2020). Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Horticulture research, 7(1), 1-14. https://doi.org/10.1038/s41438-020-0291-7spa
dc.relation.referencesOlmo, R., Cabrera, J., Díaz‐Manzano, F. E., Ruiz‐Ferrer, V., Barcala, M., Ishida, T., ... & Escobar, C. (2020). Root‐knot nematodes induce gall formation by recruiting developmental pathways of post‐ embryonic organogenesis and regeneration to promote transient pluripotency. New Phytologist, 227(1), 200-215. https://doi.org/10.1111/nph.16521spa
dc.relation.referencesÖzalp, T., & Devran, Z. (2018). Response of tomato plants carrying Mi-1 gene to Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 under high soil temperatures. Turkish Journal of Entomology, 42(4), 313-322. https://doi.org/10.16970/entoted.467189spa
dc.relation.referencesPadilla-Hurtado, B., Morillo-Coronado, Y., Tarapues, S., Burbano, S., Soto-Suárez, M., Urrea, R., & Ceballos-Aguirre, N. (2022). Evaluation of root-knot nematodes (Meloidogyne spp.) population density for disease resistance screening of tomato germplasm carrying the gene Mi-1. Chilean journal of agricultural research, 82(1), 157-166. http://dx.doi.org/10.4067/S0718-58392022000100157spa
dc.relation.referencesTaylor, A. L., & Sasser, J. N. (1978). Biology, identification and control of root-knot nematodes. North Carolina State University Graphics, 111.spa
dc.relation.referencesTrudgill, D. L., & Blok, V. C. (2001). Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annual review of phytopathology, 39(1), 53-77. https://doi.org/10.1146/annurev.phyto.39.1.53spa
dc.relation.referencesVerdejo‐Lucas, S., Cortada, L., Sorribas, F. J., & Ornat, C. (2009). Selection of virulent populations of Meloidogyne javanica by repeated cultivation of Mi resistance gene tomato rootstocks under field conditions. Plant Pathology, 58(5), 990-998. https://doi.org/10.1111/j.1365-3059.2009.02089.xspa
dc.relation.references100 Tomato Genome Sequencing Consortium, Aflitos, S., Schijlen, E., de Jong, H., de Ridder, D., Smit, S., ... & Peters, S. (2014). Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole‐genome sequencing. The Plant Journal, 80(1), 136-148. https://doi.org/10.1111/tpj.12616spa
dc.relation.referencesAlonge, M. (2020). Ragtag: Reference-guided genome assembly correction and scaffolding. GitHub archive, 10.spa
dc.relation.referencesAlonge, M., Soyk, S., Ramakrishnan, S., Wang, X., Goodwin, S., Sedlazeck, F. J., ... & Schatz, M. C. (2019). RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome biology, 20(1), 1- 17. https://doi.org/10.1186/s13059-019-1829-6spa
dc.relation.referencesAmmiraju, J., Veremis, J., Huang, X., Roberts, P., & Kaloshian, I. (2003). The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theoretical and Applied Genetics, 106(3), 478-484. https://doi.org/10.1007/s00122- 002-1106-yspa
dc.relation.referencesAshburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., ... & Sherlock, G. (2000). Gene ontology: tool for the unification of biology. Nature genetics, 25(1), 25-29. https://doi.org/10.1038/75556spa
dc.relation.referencesBaek, Y. S., Royer, S. M., Broz, A. K., Covey, P. A., López‐Casado, G., Nuñez, R., ... & Bedinger, P. A. (2016). Interspecific reproductive barriers between sympatric populations of wild tomato species (Solanum section Lycopersicon). American Journal of Botany, 103(11), 1964-1978. https://doi.org/10.3732/ajb.1600356spa
dc.relation.referencesBailey, D. M. (1941). The seedling test method for root-knot-nematode resistance. Proceedings of the American Society for Horticultural Science, 38, 573-575.spa
dc.relation.referencesBeier, S., Thiel, T., Münch, T., Scholz, U., & Mascher, M. (2017). MISA-web: a web server for microsatellite prediction. Bioinformatics, 33(16), 2583-2585. https://doi.org/10.1093/bioinformatics/btx198spa
dc.relation.referencesBlanca, J., Cañizares, J., Cordero, L., Pascual, L., Diez, M. J., & Nuez, F. (2012). Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PloS one, 7(10). https://doi.org/10.1371/journal.pone.0048198spa
dc.relation.referencesCamacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden. T. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10, 421. https://doi.org/10.1186/1471- 2105-10-421spa
dc.relation.referencesCap, G. B., Roberts, P. A., & Thomason, I. J. (1993). Inheritance of heat-stable resistance to Meloidogyne incognita in Lycopersicon peruvianum and its relationship to the Mi gene. Theoretical and Applied Genetics, 85(6), 777-783. https://doi.org/10.1007/BF00225019spa
dc.relation.referencesCarbon, S., Douglass, E., Good, B. M., Unni, D. R., Harris, N. L., Mungall, C. J., ... & Pedruzzi, I. (2021). The Gene Ontology resource: enriching a GOld mine, Nucleic Acids Research, 49, 325–334, https://doi.org/10.1093/nar/gkaa1113spa
dc.relation.referencesCheng, H., Concepcion, G. T., Feng, X., Zhang, H., & Li, H. (2021). Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature methods, 18(2), 170-175. https://doi.org/10.1038/s41592-020-01056-5spa
dc.relation.referencesConesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. https://doi.org/10.1093/bioinformatics/bti610spa
dc.relation.referencesCowger, C., & Brown, J. K. (2019). Durability of quantitative resistance in crops: greater than we know?. Annual review of phytopathology, 57, 253-277. https://doi.org/10.1146/annurev-phyto082718-100016spa
dc.relation.referencesDarling, A. E., Mau, B., & Perna, N. T. (2010). progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PloS one, 5(6): e11147. https://doi.org/10.1371/journal.pone.0011147spa
dc.relation.referencesDi Donato, A., Andolfo, G., Ferrarini, A., Delledonne, M., & Ercolano, M. R. (2017). Investigation of orthologous pathogen recognition gene-rich regions in solanaceous species. Genome, 60(10), 850- 859. https://doi.org/10.1139/gen-2016-0217spa
dc.relation.referencesDoyle, J.J. & J.L. Doyle. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochemical Bulletin, 19(1), 11-15.spa
dc.relation.referencesDu, C., Jiang, J., Zhang, H., Zhao, T., Yang, H., Zhang, D., ... & Li, J. (2020). Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita. BMC genomics, 21(1), 1-20. https://doi.org/10.1186/s12864-020-6654-5spa
dc.relation.referencesEl-Sappah, A. H., MM, I., El-awady, H. H., Yan, S., Qi, S., Liu, J., ... & Liang, Y. (2019). Tomato natural resistance genes in controlling the root-knot nematode. Genes, 10(11), 925. https://doi.org/10.3390/genes10110925spa
dc.relation.referencesFAO. (2018). Statistical Databases. Food and Agriculture Organization. Statistics Division. Consultation of 17/03/2018. http://faostat.fao.org/spa
dc.relation.referencesGurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072-1075. https://doi.org/10.1093/bioinformatics/btt086spa
dc.relation.referencesFrazee, A. C., Pertea, G., Jaffe, A. E., Langmead, B., Salzberg, S. L., & Leek, J. T. (2015). Ballgown bridges the gap between transcriptome assembly and expression analysis. Nature biotechnology, 33(3), 243- 246. https://doi.org/10.1038/nbt.3172spa
dc.relation.referencesHo, J. Y., Weide, R., Ma, H. M., van Wordragen, M. F., Lambert, K. N., Koornneef, M., ... & Williamson, V. M. (1992). The root‐knot nematode resistance gene (Mi) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes. The Plant Journal, 2(6), 971-982. https://doi.org/10.1046/j.1365-313X.1992.t01-8-00999.xspa
dc.relation.referencesHosmani, P. S., Flores-Gonzalez, M., van de Geest, H., Maumus, F., Bakker, L. V., Schijlen, E., ... & Saha, S. (2019). An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps. BioRxiv, 767764. https://doi.org/10.1101/767764spa
dc.relation.referencesJablonska, B., Ammiraju, J. S., Bhattarai, K. K., Mantelin, S., de Ilarduya, O. M., Roberts, P. A., & Kaloshian, I. (2007). The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to rootknot nematodes is a homolog of Mi-1. Plant physiology, 143(2), 1044-1054. https://doi.org/10.1104/pp.106.089615spa
dc.relation.referencesJenkins, J. A. (1948). The origin of the cultivated tomato. Economic Botany, 2(4), 379-392. https://doi.org/10.1007/BF02859492spa
dc.relation.referencesJones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., ... & Hunter, S. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics, 30(9), 1236-1240. https://doi.org/10.1093/bioinformatics/btu031spa
dc.relation.referencesKim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature biotechnology, 37(8), 907-915. https://doi.org/10.1038/s41587-019-0201-4spa
dc.relation.referencesKnapp, S., Peralta, I.E. (2016). The Tomato (Solanum lycopersicum L., Solanaceae) and Its Botanical Relatives. In: Causse, M., Giovannoni, J., Bouzayen, M., Zouine, M. (eds) The Tomato Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg, 7-21. https://doi.org/10.1007/978-3- 662-53389-5_2spa
dc.relation.referencesKoressaar, T., & Remm, M. (2007). Enhancements and modifications of primer design program Primer3. Bioinformatics, 23(10), 1289-1291. https://doi.org/10.1093/bioinformatics/btm091spa
dc.relation.referencesKoressaar, T., Lepamets, M., Kaplinski, L., Raime, K., Andreson, R., & Remm, M. (2018). Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics, 34(11), 1937-1938. https://doi.org/10.1093/bioinformatics/bty036spa
dc.relation.referencesKovaka, S., Zimin, A. V., Pertea, G. M., Razaghi, R., Salzberg, S. L., & Pertea, M. (2019). Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome biology, 20(1), 1-13. https://doi.org/10.1186/s13059-019-1910-1spa
dc.relation.referencesKrumsiek, J., Arnold, R., & Rattei, T. (2007). Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics, 23(8), 1026-1028. https://doi.org/10.1093/bioinformatics/btm039spa
dc.relation.referencesLombardo, L., Coppola, G., & Zelasco, S. (2016). New technologies for insect-resistant and herbicidetolerant plants. Trends in biotechnology, 34(1), 49-57. https://doi.org/10.1016/j.tibtech.2015.10.006spa
dc.relation.referencesMilligan, S. B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P., & Williamson, V. M. (1998). The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. The Plant Cell, 10(8), 1307-1319. https://doi.org/10.1105/tpc.10.8.1307spa
dc.relation.referencesMistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L., ... & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic acids research, 49, 412-419. https://doi.org/10.1093/nar/gkaa913spa
dc.relation.referencesMundt, C. C. (2018). Pyramiding for resistance durability: theory and practice. Phytopathology, 108(7), 792-802. https://doi.org/10.1094/PHYTO-12-17-0426-RVWspa
dc.relation.referencesNesbitt, T. C., & Tanksley, S. D. (2002). Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics, 162(1), 365-379. https://doi.org/10.1093/genetics/162.1.365spa
dc.relation.referencesÖzalp, T., & Devran, Z. (2018). Response of tomato plants carrying Mi-1 gene to Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 under high soil temperatures. Turkish Journal of Entomology, 42(4), 313-322. https://doi.org/10.16970/entoted.467189spa
dc.relation.referencesPA Silva, Y., Borba, B. C., Pereira, V. A., Reis, M. G., Caliari, M., Brooks, M. S. L., & Ferreira, T. A. (2019). Characterization of tomato processing by-product for use as a potential functional food ingredient: nutritional composition, antioxidant activity and bioactive compounds. International Journal of Food Sciences and Nutrition, 70(2), 150-160. https://doi.org/10.1080/09637486.2018.1489530spa
dc.relation.referencesPease, J. B., Haak, D. C., Hahn, M. W., & Moyle, L. C. (2016). Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS biology, 14(2): e1002379. https://doi.org/10.1371/journal.pbio.1002379spa
dc.relation.referencesPeralta, I. E., Knapp, S., & Spooner, D. M. (2005). New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from Northern Peru. Systematic Botany, 30(2), 424-434. https://doi.org/10.1600/0363644054223657spa
dc.relation.referencesMihaela, P., Daehwan, K., Geo, M. P., Jeffrey, T. L., & Steven, L. S. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11(9), 1650-1667. https://doi.org/10.1038/nprot.2016.095spa
dc.relation.referencesR Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.spa
dc.relation.referencesRashid, M. H., Al-Mamun, M. H., & Uddin, M. N. (2017). How durable is root knot nematode resistance in tomato?. Plant Breeding and Biotechnology, 5(3), 143-162. https://doi.org/10.9787/PBB.2017.5.3.143spa
dc.relation.referencesRick, C. M. (1958). The role of natural hybridization in the derivation of cultivated tomatoes of western South America. Economic Botany, 12(4), 346-367. https://doi.org/10.1007/BF02860023spa
dc.relation.referencesRhie, A., Walenz, B. P., Koren, S., & Phillippy, A. M. (2020). Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome biology, 21(1), 1-27. https://doi.org/10.1186/s13059-020-02134-9spa
dc.relation.referencesSalazar-Antón, W., & Guzmán-Hernández, T. D. J. (2013). Efecto de poblaciones de Meloidogyne sp. en el desarrollo y rendimiento del tomate. Agronomía mesoamericana, 24(2), 419-426.spa
dc.relation.referencesSchuler, G. D. (1997). Sequence mapping by electronic PCR. Genome research, 7(5), 541-550. https://doi.org/10.1101/gr.7.5.541spa
dc.relation.referencesThiel, T., Michalek, W., Varshney, R., & Graner, A. (2003). Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and applied genetics, 106(3), 411-422. https://doi.org/10.1007/s00122-002-1031-0spa
dc.relation.referencesTomato Genome Consortium. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635–641. https://doi.org/10.1038/nature11119spa
dc.relation.referencesVan Wersch, S., & Li, X. (2019). Stronger when together: clustering of plant NLR disease resistance genes. Trends in plant science, 24(8), 688-699. https://doi.org/10.1016/j.tplants.2019.05.005spa
dc.relation.referencesVeremis, J. C., & Roberts, P. A. (1996). Relationships between Meloidogyne incognita resistance genes in Lycopersicon peruvianum differentiated by heat sensitivity and nematode virulence. Theoretical and Applied Genetics, 93(5), 950-959. 1996, 93, 950–959. https://doi.org/10.1007/BF00224098spa
dc.relation.referencesVeremis, J. C., Van Heusden, A. W., & Roberts, P. A. (1999). Mapping a novel heat-stable resistance to Meloidogyne in Lycopersicon peruvianum. Theoretical and Applied Genetics, 98(2), 274-280. https://doi.org/10.1007/s001220051068spa
dc.relation.referencesVoorrips, R. (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of heredity, 93(1), 77-78. https://doi.org/10.1093/jhered/93.1.77spa
dc.relation.referencesWu, W. W., Shen, H. L., & Yang, W. C. (2009). Sources for heat-stable resistance to southern root-knot nematode (Meloidogyne incognita) in Solanum lycopersicum. Agricultural Sciences in China, 8(6), 697-702. https://doi.org/10.1016/S1671-2927(08)60267-9spa
dc.relation.referencesUntergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3—new capabilities and interfaces. Nucleic acids research, 40(15), e115-e115. https://doi.org/10.1093/nar/gks596spa
dc.relation.referencesYaghoobi, J., Kaloshian, I., Wen, Y., & Williamson, V. M. (1995). Mapping a new nematode resistance locus in Lycopersicon peruvianum. Theoretical and Applied Genetics, 91(3), 457-464. https://doi.org/10.1007/BF00222973spa
dc.relation.referencesYaghoobi, J., Yates, J. L., & Williamson, V. M. (2005). Fine mapping of the nematode resistance gene Mi3 in Solanum peruvianum and construction of a S. lycopersicum DNA contig spanning the locus. Molecular Genetics and Genomics, 274(1), 60-69. https://doi.org/10.1007/s00438-005-1149-2spa
dc.relation.referencesZhu, Z., Hao, Y., Mergoum, M., Bai, G., Humphreys, G., Cloutier, S., ... & He, Z. (2019). Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. The Crop Journal, 7(6), 730-738. https://doi.org/10.1016/j.cj.2019.06.003spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.proposalGenes de resistenciaspa
dc.subject.proposalResistencia genéticaspa
dc.subject.proposalTaxonomía molecularspa
dc.subject.proposalMapa genómicospa
dc.subject.unescoBiología agraria
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
dc.description.degreenameDoctor(a) en Ciencias Agrariasspa
dc.publisher.programDoctorado en Ciencias Agrariasspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem