Mostrar el registro sencillo del ítem

dc.contributor.advisorMejía Salazar, María Helena
dc.contributor.authorZuleta García, Luis Alejandro
dc.date.accessioned2021-08-31T13:56:43Z
dc.date.available2021-08-31T13:56:43Z
dc.date.issued2021-08-27
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/17093
dc.descriptionIlustraciones, gráficasspa
dc.description.abstractspa: La energía desempeña un papel crítico en el mundo entero teniendo en cuenta que la sociedad requiere de ella para llevar a cabo cualquier tipo de actividad en la modernidad. En los últimos años el incremento de consumo energético ha sido constante en los diferentes sectores consumidores imponiendo diversos retos ambientales, logísticos y regulatorios. El sector industrial como uno de los sectores con mayor participación en el consumo global, emplea el gas natural como fuente de energía para soportar procesos de manufactura y transformación de materia prima. En este escenario, la predicción del consumo de gas natural en el sector industrial cobra gran importancia para los actores involucrados en las operaciones logísticas, que buscan garantizar el suministro y transporte confiable y asequible a los diferentes sectores consumidores diariamente, a su vez reduciendo el impacto ambiental. El proceso logístico del gas natural está sujeto a un conjunto de regulaciones y condiciones impuestas dentro del marco de la cadena de suministro en la región del eje cafetero colombiano, las cuales exigen estimaciones de consumo en el corto plazo. Múltiples estudios han abordado la predicción de gas natural, sin embargo estos han sido orientados a predecir el consumo global, analizando diferentes tipos de consumidores de manera conjunta y en su mayoría enfocándose en un horizonte de tiempo a mediano y largo plazo. En este trabajo se propone el uso de técnicas de machine learning para la predicción del consumo de gas natural del sector industrial en la región. Las técnicas implementadas incluyen Random Forest, Máquinas de Vectores de Soporte y Redes Neuronales Recurrentes, específicamente la arquitectura de gran memoria a corto plazo o LSTM usada ampliamante en el campo de deep learning. Para cada industria se construyeron un conjunto de modelos a partir de los datos históricos de consumo industrial en un periodo de cinco años, y de acuerdo a su desempeño se seleccionó el mejor modelo para cada industria. La evaluación del desempeño se realizó utilizando la métrica de precisión denominada raíz del error cuadrático medio (RMSE, del inglés Root-mean-squared error). De acuerdo a lo anterior, los resultados obtenidos para cada modelo son presentados, con lo cual es posible evidenciar que las Redes Neuronales Recurrentes mostraron un desempeño superior a las demás técnicas propuestas. Adicionalmente, se presentan las predicciones diarias para un periodo de 350 días, demostrando que dicha técnica puede ser adoptada para la predicción confiable del consumo de gas natural del sector industrial en un periodo de tiempo a corto plazo. Finalmente, como parte de esta investigación se presentan las conclusiones y las recomendaciones para emprender acciones en trabajos futuros, que permitan explorar aspectos adicionales para modelar el consumo de gas natural.spa
dc.description.abstracteng: Energy plays a critical role worldwide. Society requires any form of energy to carry on every modern life activity. In recent years, continuous energy consumption in different markets has imposed environmental, logistics, and policy challenges. The industry is one of the sectors with the largest share of global energy consumption, supporting its manufacturing and raw material transformation process through natural gas usage. Consequently, industrial natural gas consumption forecasting is extremely important for stakeholders involved in logistics operations, which seek to guarantee reliable and affordable supply and transport to the different consumers daily while decreasing environmental impacts. The logistics process is regulated by a set of policies and conditions contained in the local supply chain framework. These regulations require natural gas consumption predictions in a short term. Several studies have approached the natural gas forecasting subject, however, they explore the global consumption forecasting, including different consumer sectors jointly in a mid- and long-term time horizon. This work proposes multiple machine learning techniques for forecasting natural gas consumption of the industrial sector in the Colombian coffee region. The proposed techniques include Random Forest, Support Vector Machine, and Recurrent Neural Network, specifically the long short term memory (LSTM) architecture which is used widely in the the deep learning field. A set of models for each industry were built from the consumption historical data in five years. According to its performance, the best model for each industry was selected. The RMSE (Root-mean-squared error) metric was used to evaluate the accuracy of the predictions and thereof the models themselves. Based on above results, the RMSE is presented for each industry, concluding that Recurrent Neural Networks showed superior performance than the other proposed techniques. Additionally, the predictions for 350 days are shown, demonstrating this technique can be used to reliable forecast natural gas consumption of the industrial sector in a short-term time horizon. Finally, the conclusions and recommendations for taking action in future works are presented, which can lead to additional aspects for forecasting natural gas consumption.eng
dc.description.tableofcontentsRESUMEN II ABSTRACT III CONTENIDO VI Lista de figuras IX Lista de tablas XI 1. INTRODUCCIÓN 1.1. Planteamiento del problema/1.1.1. Contexto ambiental / 1.1.2. Cadena de suministro del gas natural / 1.2. Justificación / 1.3. Objetivos / 1.3.1. Objetivo general / 1.3.2. Objetivos / 2. MARCO DE REFERENCIA/ 2.1. Análisis predictivo/2.2. Análisis predictivo de la demanda/2.3. Predicción del consumo de gas natural/ 2.4. Trabajo propuesto/ 3. METODOLOGÍA/ 3.1. Recolección y entendimiento / 3.1.1. Industria 1 /3.1.2. Industria 2 / 3.1.3. Industria 2/ 3.1.4. Industria 3 / 3.1.5. Industria 5 /3.1.6. Industria 6 / 3.1.7. Industria 7 / 3.1.8. Industria 8 /3.2. Tratamiento de datos/3.3. Descripción detallada del proceso/3.3.1. Implementación Random / 3.3.2. Implementación regresión basada en máquina de vectores de soporte /3.3.3. Implementación redes neuronales artificiales - LSTM / CONTENIDO 4. RESULTADOS 56 4.1. Resultados Random Forest / 4.2. Resultados máquina de vectores de soporte / 4.3. Resultados redes neuronales artificiales recurrentes - LSTM / 4.4. Resultados generales . . . . . . . / 4.4.1. Predicción del consumo industrial para el año 2019/5. CONCLUSIONES Y RECOMENDACIONES / 5.1. Conclusiones/5.2. Recomendaciones / BIBLIOGRAFIA .spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleModelo predictivo del consumo de gas natural, en el mercado industrial del eje cafetero.spa
dc.typeTrabajo de grado - Maestríaspa
dc.description.degreelevelMaestríaspa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeManizalesspa
dc.relation.referencesLiobikienė, G. & Butkus, M. (2018). The challenges and opportunities of climate change policy under different stages of economic development. Science of The Total Environment, 642, 999-1007. https://doi.org/10.1016/j.scitotenv.2018. 06.140spa
dc.relation.referencesRitchie, H. (2017, agosto). How long before we run out of fossil fuels? [Library Catalog: ourworldindata.org]. Consultado el 19 de mayo de 2020, desde https: //ourworldindata.org/how-long-before-we-run-out-of-fossil-fuelsspa
dc.relation.referencesErdiwansyah, Mamat, R., Sani, M. S. M. & Sudhakar, K. (2019). Renewable energy in Southeast Asia: Policies and recommendations. Science of The Total Environment, 670, 1095-1102. https://doi.org/10.1016/j.scitotenv.2019.03.273spa
dc.relation.referencesPusala, M. K., Amini Salehi, M., Katukuri, J. R., Xie, Y. & Raghavan, V. Massive Data Analysis: Tasks, Tools, Applications, and Challenges (S. Pyne, B. P. Rao & S. Rao, Eds.). en. En: En Big Data Analytics: Methods and Applications (S. Pyne, B. P. Rao & S. Rao, Eds.). Ed. por Pyne, S., Rao, B. P. & Rao, S. New Delhi: Springer India, 2016, pp. 11-40. isbn: 978-81-322-3628-3. https://doi.org/10.1007/978-81-322-3628-3_2.spa
dc.relation.referencesTarallo, E., Akabane, G. K., Shimabukuro, C. I., Mello, J. & Amancio, D. (2019). Machine Learning in Predicting Demand for Fast-Moving Consumer Goods: An Exploratory Research. IFAC-PapersOnLine, 52(13), 737-742. https:// doi.org/10.1016/j.ifacol.2019.11.203spa
dc.relation.referencesKang, Z., Catal, C. & Tekinerdogan, B. (2020). Machine learning applications in production lines: A systematic literature review. Computers & Industrial Engineering, 149, 106773. https://doi.org/10.1016/j.cie.2020.106773spa
dc.relation.referencesEnergy Information Administration (EIA). (2019). International Energy Outlook 2019 (inf. téc.). EIA. https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdfspa
dc.relation.referencesFriedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Quéré, C. L., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., … Zaehle, S. (2019). Global Carbon Budget 2019 [Publisher: Copernicus GmbH]. Earth System Science Data, 11(4), 1783-1838. https://doi.org/https://doi.org/10.5194/essd-11-1783-2019spa
dc.relation.referencesJakob, M. & Hilaire, J. (2015). Unburnable fossil-fuel reserves [Number: 7533 Publisher: Nature Publishing Group]. Nature, 517(7533), 150-151. https://doi. org/10.1038/517150aspa
dc.relation.referencesMcGlade, C. & Ekins, P. (2015). The geographical distribution of fossil fuels unused when limiting global warming to 2 °C [Number: 7533 Publisher: Nature Publishing Group]. Nature, 517(7533), 187-190. https://doi.org/10.1038/ nature14016spa
dc.relation.referencesShafiee, S. & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181-189. https://doi.org/10.1016/j.enpol.2008.08.016spa
dc.relation.referencesZou, C., Zhao, Q., Zhang, G. & Xiong, B. (2016). Energy revolution: From a fossil energy era to a new energy era. Natural Gas Industry B, 3(1), 1-11. https: //doi.org/10.1016/j.ngib.2016.02.001spa
dc.relation.referencesMaggio, G. & Cacciola, G. (2012). When will oil, natural gas, and coal peak? Fuel, 98, 111-123. https://doi.org/10.1016/j.fuel.2012.03.021spa
dc.relation.referencesBardi, U. (2019). Peak oil, 20 years later: Failed prediction or useful insight? Energy Research & Social Science, 48, 257-261. https://doi.org/10.1016/j.erss.2018. 09.022spa
dc.relation.referencesVerbruggen, A. & Al Marchohi, M. (2010). Views on peak oil and its relation to climate change policy. Energy Policy, 38(10), 5572-5581. https://doi.org/10. 1016/j.enpol.2010.05.002spa
dc.relation.referencesMartins, F., Felgueiras, C., Smitkova, M. & Caetano, N. (2019). Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries [Number: 6 Publisher: Multidisciplinary Digital Publishing Institute]. Energies, 12(6), 964. https://doi.org/10.3390/en12060964spa
dc.relation.referencesAbas, N., Kalair, A. & Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69, 31-49. https://doi.org/10.1016/j.futures.2015.03. 003spa
dc.relation.referencesChepeliev, M. & van der Mensbrugghe, D. (2020). Global fossil-fuel subsidy reform and Paris Agreement. Energy Economics, 85, 104598. https://doi.org/10. 1016/j.eneco.2019.104598spa
dc.relation.referencesBritish Petroleum (Ed.). (2019b). Statistical Review of World Energy 2019 (inf. téc.). British Petroleum. Consultado el 30 de mayo de 2020, desde https://www. bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energyeconomics/statistical-review/bp-stats-review-2019-full-report.pdfspa
dc.relation.referencesYork, R. & Bell, S. E. (2019). Energy transitions or additions?: Why a transition from fossil fuels requires more than the growth of renewable energy. Energy Research & Social Science, 51, 40-43. https://doi.org/10.1016/j.erss.2019. 01.008spa
dc.relation.referencesSeetharaman, Moorthy, K., Patwa, N., Saravanan & Gupta, Y. (2019). Breaking barriers in deployment of renewable energy [Publisher: Elsevier]. Heliyon, 5(1). https://doi.org/10.1016/j.heliyon.2019.e01166spa
dc.relation.referencesCroonenbroeck, C. & Lowitzsch, J. From Fossil to Renewable Energy Sources (J. Lowitzsch, Ed.). en. En: En Energy Transition: Financing Consumer CoOwnership in Renewables (J. Lowitzsch, Ed.). Ed. por Lowitzsch, J. Cham: Springer International Publishing, 2019, pp. 29-58. isbn: 978-3-319-93518-8. https://doi.org/10.1007/978-3-319-93518-8_2.spa
dc.relation.referencesWyllie, J. O. Y., Essah, E. A. & Ofetotse, E. L. (2018). Barriers of solar energy uptake and the potential for mitigation solutions in Barbados. Renewable and Sustainable Energy Reviews, 91, 935-949. https://doi.org/10.1016/j.rser. 2018.04.100spa
dc.relation.referencesBurke, P. J., Widnyana, J., Anjum, Z., Aisbett, E., Resosudarmo, B. & Baldwin, K. G. H. (2019). Overcoming barriers to solar and wind energy adoption in two Asian giants: India and Indonesia. Energy Policy, 132, 1216-1228. https://doi.org/10.1016/j.enpol.2019.05.055spa
dc.relation.referencesCalvo Buendía, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, S. N., Osako, A., Pyrozhenko, Y., Shermanau, P. & Federici, S. Energy. En: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Vol. 2. Introduction 1. 2019.spa
dc.relation.referencesBrehm, P. (2019). Natural gas prices, electric generation investment, and greenhouse gas emissions. Resource and Energy Economics, 58, 101106. https://doi.org/ 10.1016/j.reseneeco.2019.06.003spa
dc.relation.referencesDong, K., Sun, R., Hochman, G., Zeng, X., Li, H. & Jiang, H. (2017). Impact of natural gas consumption on CO2 emissions: Panel data evidence from China’s provinces. Journal of Cleaner Production, 162, 400-410. https://doi.org/10. 1016/j.jclepro.2017.06.100spa
dc.relation.referencesCurtis, J., Tovar, M. A. & Grilli, G. (2020). Access to and consumption of natural gas: Spatial and socio-demographic drivers. Energy Policy, 143, 111614. https://doi.org/10.1016/j.enpol.2020.111614spa
dc.relation.referencesKåberger, T. (2018). Progress of renewable electricity replacing fossil fuels. Global Energy Interconnection, 1(1), 48-52. https : / / doi . org / 10 . 14171 / j . 2096 - 5117.gei.2018.01.006spa
dc.relation.referencesYıldız, ff. 1.12 Fossil Fuels (I. Dincer, Ed.). en. En: En Comprehensive Energy Systems (I. Dincer, Ed.). Ed. por Dincer, I. Oxford: Elsevier, 2018, enero, pp. 521-567. isbn: 978-0-12-814925-6. https : / / doi . org / 10 . 1016 / B978 - 0 - 12 - 809597 - 3.00111-5.spa
dc.relation.referencesBritish Petroleum (Ed.). (2019a). Energy Outlook 2019 edition (inf. téc.). British Petroleum. Consultado el 13 de junio de 2020, desde https : / / www . bp . com/content/dam/bp/business-sites/en/global/corporate/pdfs/energyeconomics/energy-outlook/bp-energy-outlook-2019.pdfspa
dc.relation.referencesEnergy Information Administration (EIA). (2020). Average Depth of Crude Oil and Natural Gas Wells. Consultado el 7 de julio de 2020, desde https://www.eia. gov/dnav/ng/NG_ENR_WELLDEP_S1_A.htmspa
dc.relation.referencesHamedi, M., Zanjirani Farahani, R., Husseini, M. M. & Esmaeilian, G. R. (2009). A distribution planning model for natural gas supply chain: A case study. Energy Policy, 37(3), 799-812. https://doi.org/10.1016/j.enpol.2008.10.030spa
dc.relation.referencesDávila, C. A. M., Jaramillo, E. A., Pinzón, ff. S. D., Cardona, J. E. G., Bojanini, S. V. & Grajales, L. F. V. (2020). Informe de Gestión 2019 (inf. téc.). Efigasspa
dc.relation.referencesLopez, A. (2017). Por gas, el país recaudó $1,6 billones en regalías. Consultado el 24 de mayo de 2021, desde https://www.portafolio.co/economia/gas-aumentoel-recaudo-de-regalias-de-colombia-504782spa
dc.relation.referencesKozulj, R. & Di Sbroiavacca, N. (2004). Assessment of energy sector reforms: casestudies from Latin America. Energy for Sustainable Development, 8(4), 74-85. https://doi.org/10.1016/S0973-0826(08)60514-1spa
dc.relation.referencesRíos, A. (2013). Rol del gas natural en el desarrollo económico y social de América Latina y el Caribe. Consultado el 24 de mayo de 2021, desde http://www. olade.org/publicaciones/rol-del-gas-natural-en-el-desarrollo-economico-ysocial-de-america-latina-y-el-caribe/spa
dc.relation.referencesKrauss, A. (2016). How natural gas tariff increases can influence poverty: Results, measurement constraints and bias. Energy Economics, 60, 244-254. https: //doi.org/10.1016/j.eneco.2016.09.010spa
dc.relation.referencesKrauss, A. (2016). How natural gas tariff increases can influence poverty: Results, measurement constraints and bias. Energy Economics, 60, 244-254. https: //doi.org/10.1016/j.eneco.2016.09.010spa
dc.relation.referencesAsoenergía. (2020). Boletín trimestral de demanda energética. Consultado el 2 de marzo de 2021, desde https://asoenergia.com/sites/default/files/2020- 06/Boleti%CC%81n%20trimestral%20de%20demanda%20energe%CC% 81tica%20VF%20actualizada_0.pdfspa
dc.relation.referencesMahecha, J. F. A., Aguirre, J. E. F., Florez, H. H. H., Duarte, G. O. L., Rolon, S. J. L., López, A. S., Sanchez, G. I. M., Pineda, A. E. P., Gonzalez, Y. P., Paez, C. F. R. & Ortíz, J. C. T. (2016). Plan Indicativo de Abastecimiento de Gas Natural. (69), 109spa
dc.relation.referencesMcCue, C. 7 - Predictive Analytics (C. McCue, Ed.). en. En: En Data Mining and Predictive Analysis (C. McCue, Ed.). Ed. por McCue, C. Burlington: Butterworth-Heinemann, 2007, enero, pp. 117-141. isbn: 978-0-7506-7796-7. https://doi.org/10.1016/B978-075067796-7/50029-5.spa
dc.relation.referencesJanuschowski, T., Gasthaus, J., Wang, Y., Salinas, D., Flunkert, V., Bohlke-Schneider, M. & Callot, L. (2020). Criteria for classifying forecasting methods. International Journal of Forecasting, 36(1), 167-177. https://doi.org/10.1016/j. ijforecast.2019.05.008spa
dc.relation.referencesFranco, M. A. & Bacardit, J. (2016). Large-scale experimental evaluation of GPU strategies for evolutionary machine learning. Information Sciences, 330, 385-402. https://doi.org/10.1016/j.ins.2015.10.025spa
dc.relation.referencesKumar, V. & L., M. (2018). Deep Learning as a Frontier of Machine Learning: A Review. International Journal of Computer Applications, 182, 22-30. https: //doi.org/10.5120/ijca2018917433spa
dc.relation.referencesL’Heureux, A., Grolinger, K., Elyamany, H. F. & Capretz, M. A. M. (2017). Machine Learning With Big Data: Challenges and Approaches [Conference Name: IEEE Access]. IEEE Access, 5, 7776-7797. https://doi.org/10.1109/ACCESS. 2017.2696365spa
dc.relation.referencesLoh, W.-Y. (2014). Fifty Years of Classification and Regression Trees [_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/insr.12016]. International Statistical Review, 82(3), 329-348. https://doi.org/https://doi.org/10.1111/ insr.12016spa
dc.relation.referencesLundkvist, E. Decision Tree Classification and Forecasting of Pricing Time Series Data. En: 2014.spa
dc.relation.referencesZahedi, P., Parvandeh, S., Asgharpour, A., McLaury, B. S., Shirazi, S. A. & McKinney, B. A. (2018). Random forest regression prediction of solid particle Erosion in elbows. Powder Technology, 338, 983-992. https://doi.org/10. 1016/j.powtec.2018.07.055spa
dc.relation.referencesJegminat, J., Jastrzębowska, M. A., Pachai, M. V., Herzog, M. H. & Pfister, J.-P. (2020). Bayesian regression explains how human participants handle parameter uncertainty [Publisher: Public Library of Science]. PLOS Computational Biology, 16(5), e1007886. https://doi.org/10.1371/journal.pcbi.1007886spa
dc.relation.referencesYao, Z. & Ruzzo, W. L. (2006). A Regression-based K nearest neighbor algorithm for gene function prediction from heterogeneous data. BMC Bioinformatics, 7(1), S11. https://doi.org/10.1186/1471-2105-7-S1-S11spa
dc.relation.referencesCervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L. & Lopez, A. (2020). A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing, 408, 189-215. https://doi.org/10. 1016/j.neucom.2019.10.118spa
dc.relation.referencesAbiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A. & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938. https://doi.org/10.1016/j.heliyon.2018.e00938spa
dc.relation.referencesBergman, J. J., Noble, J. S., McGarvey, R. G. & Bradley, R. L. (2017). A Bayesian approach to demand forecasting for new equipment programs. Robotics and Computer-Integrated Manufacturing, 47(100), 17-21. https://doi.org/10. 1016/j.rcim.2016.12.010spa
dc.relation.referencesMiyaoka, J. & Hausman, W. H. (2007). How Improved Forecasts Can Degrade Decentralized Supply Chains [Publisher: INFORMS]. Manufacturing & Service Operations Management, 10(3), 547-562. https://doi.org/10.1287/msom. 1070.0181spa
dc.relation.referencesBarrow, D. K. (2016). Forecasting intraday call arrivals using the seasonal moving average method. Journal of Business Research, 69(12), 6088-6096. https : //doi.org/10.1016/j.jbusres.2016.06.016spa
dc.relation.referencesSpiegel, J. R., McKenna, M. T., Lakshman, G. S. & Nordstrom, P. G. (2013, diciembre). Method and system for anticipatory package shipping (pat. US8615473B2). Consultado el 25 de mayo de 2021, desde https://patents.google.com/patent/ US8615473B2/enspa
dc.relation.referencesBistline, J. E. (2015). Electric sector capacity planning under uncertainty: Climate policy and natural gas in the US [Publisher: Elsevier]. Energy Economics, 51(100), 236-251. Consultado el 25 de mayo de 2021, desde https://ideas. repec.org/a/eee/eneeco/v51y2015icp236-251.htmlspa
dc.relation.referencesKhan, M. A., Islam, Z. & Hafeez, M. Irrigation water demand forecasting: a data pre-processing and data mining approach based on spatio-temporal data. En: Proceedings of the Ninth Australasian Data Mining Conference - Volume 121. AusDM ’11. AUS: Australian Computer Society, Inc., 2011, diciembre, 183-194. isbn: 978-1-921770-02-9spa
dc.relation.referencesMedina-Hurtado, S., Moreno-Cadavid, J. & Gallego-Valencia, J. P. (2011). Pronóstico de la demanda de energía eléctrica horaria en Colombia mediante redes neuronales artificiales [Number: 59]. Revista Facultad de Ingeniería Universidad de Antioquia, (59), 98-107. Consultado el 25 de mayo de 2021, desde https://revistas.udea.edu.co/index.php/ingenieria/article/view/13766spa
dc.relation.referencesBakker, M., van Duist, H., van Schagen, K., Vreeburg, J. & Rietveld, L. (2014). Improving the Performance of Water Demand Forecasting Models by Using Weather Input. Procedia Engineering, 70, 93-102. https://doi.org/10.1016/j. proeng.2014.02.012spa
dc.relation.referencesKaytez, F., Taplamacioglu, M. C., Cam, E. & Hardalac, F. (2015). Forecasting electricity consumption: A compari Power & Energy Systems, 67, 431-438. https://doi.org/10.1016/j.ijepes.2014. 12.036 son of regression analysis, neural networks and least squares support vector machines. International Journal of Electricalspa
dc.relation.referencesCabral, J. d. A., Freitas Cabral, M. V. d. & Pereira Júnior, A. O. (2020). Elasticity estimation and forecasting: An analysis of residential electricity demand in Brazil. Utilities Policy, 66, 101108. https://doi.org/10.1016/j.jup.2020. 101108spa
dc.relation.referencesHaq, E. U., Lyu, X., Jia, Y., Hua, M. & Ahmad, F. (2020). Forecasting household electric appliances consumption and peak demand based on hybrid machine learning approach. Energy Reports, 6, 1099-1105. https://doi.org/10.1016/j. egyr.2020.11.071spa
dc.relation.referencesPesantez, J. E., Berglund, E. Z. & Kaza, N. (2020). Smart meters data for modeling and forecasting water demand at the user-level. Environmental Modelling & Software, 125, 104633. https://doi.org/10.1016/j.envsoft.2020.104633spa
dc.relation.referencesAhmad, T. & Zhang, H. (2020). Novel deep supervised ML models with feature selection approach for large-scale utilities and buildings short and mediumterm load requirement forecasts. Energy, 209, 118477. https://doi.org/10. 1016/j.energy.2020.118477spa
dc.relation.referencesBritish Petroleum. (2020). Statistical Review of World Energy 2020 (inf. téc.). British Petroleum. https://www.bp.com/content/dam/bp/business- sites/en/ global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review2020-full-report.pdfspa
dc.relation.referencesSvoboda, R., Kotik, V. & Platos, J. (2021). Short-term natural gas consumption forecasting from long-term data collection. Energy, 218, 119430. https://doi. org/10.1016/j.energy.2020.119430spa
dc.relation.referencesSu, H., Zio, E., Zhang, J., Xu, M., Li, X. & Zhang, Z. (2019). A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model. Energy, 178, 585-597. https:// doi.org/10.1016/j.energy.2019.04.167spa
dc.relation.referencesAnđelković, A. S. & Bajatović, D. (2020). Integration of weather forecast and artificial intelligence for a short-term city-scale natural gas consumption prediction. Journal of Cleaner Production, 266, 122096. https://doi.org/10.1016/ j.jclepro.2020.122096spa
dc.relation.referencesSzoplik, J. (2015). Forecasting of natural gas consumption with artificial neural networks. Energy, 85, 208-220. https://doi.org/10.1016/j.energy.2015.03.084spa
dc.relation.referencesBeyca, O. F., Ervural, B. C., Tatoglu, E., Ozuyar, P. G. & Zaim, S. (2019). Using machine learning tools for forecasting natural gas consumption in the province of Istanbul. Energy Economics, 80, 937-949. https://doi.org/10.1016/ j.eneco.2019.03.006spa
dc.relation.referencesHribar, R., Potočnik, P., Šilc, J. & Papa, G. (2019). A comparison of models for forecasting the residential natural gas demand of an urban area. Energy, 167, 511-522. https://doi.org/10.1016/j.energy.2018.10.175spa
dc.relation.referencesKarabiber, O. A. & Xydis, G. (2020). Forecasting day-ahead natural gas demand in Denmark. Journal of Natural Gas Science and Engineering, 76, 103193. https://doi.org/10.1016/j.jngse.2020.103193spa
dc.relation.referencesChen, Y., Xu, X. & Koch, T. (2020). Day-ahead high-resolution forecasting of natural gas demand and supply in Germany with a hybrid model. Applied Energy, 262, 114486. https://doi.org/10.1016/j.apenergy.2019.114486spa
dc.relation.referencesHošovský, A., Piteľ, J., Adámek, M., Mižáková, J. & Židek, K. (2021). Comparative study of week-ahead forecasting of daily gas consumption in buildings using regression ARMA/SARMA and genetic-algorithm-optimized regression wavelet neural network models. Journal of Building Engineering, 34, 101955. https://doi.org/10.1016/j.jobe.2020.101955spa
dc.relation.referencesArık, O. A. (2019). Artificial bee colony algorithm to forecast natural gas consumption of Turkey. SN Applied Sciences, 1(10), 1138. https://doi.org/10.1007/ s42452-019-1195-8spa
dc.relation.referencesXiao, Y., Li, K., Hu, Y., Xiao, J. & Wang, S. (2020). Combining STRIPAT model and gated recurrent unit for forecasting nature gas consumption of China. Mitigation and Adaptation Strategies for Global Change, 25(7), 1325-1343. https://doi.org/10.1007/s11027-020-09918-1spa
dc.relation.referencesNaim, I., Mahara, T. & Aqib Khan, M. Deep Neural Network Model for Monthly Natural Gas Prediction (M. Pant, T. K. Sharma, O. P. Verma, R. Singla & A. Sikander, Eds.). en. En: En Soft Computing: Theories and Applications (M. Pant, T. K. Sharma, O. P. Verma, R. Singla & A. Sikander, Eds.). Ed. por Pant, M., Sharma, T. K., Verma, O. P., Singla, R. & Sikander, A. Advances in Intelligent Systems and Computing. Singapore: Springer, 2020, 217-224. isbn: 9789811507519. https://doi.org/10.1007/978-981-15-0751-9_20.spa
dc.relation.referencesCosta, O. L. V., de Oliveira Ribeiro, C., Ho, L. L., Rego, E. E., Parente, V. & Toro, J. (2020). A robust least square approach for forecasting models: an application to Brazil’s natural gas demand. Energy Systems, 11(4), 1111-1135. https: //doi.org/10.1007/s12667-019-00351-1spa
dc.relation.referencesMu, X.-Z., Li, G.-H. & Hu, G.-W. (2018). Modeling and scenario prediction of a natural gas demand system based on a system dynamics method. Petroleum Science, 15(4), 912-924. https://doi.org/10.1007/s12182-018-0269-3spa
dc.relation.referencesRavnik, J. & Hriberšek, M. (2019). A method for natural gas forecasting and preliminary allocation based on unique standard natural gas consumption profiles. Energy, 180, 149-162. https://doi.org/10.1016/j.energy.2019.05.084spa
dc.relation.referencesYukseltan, E., Yucekaya, A., Bilge, A. H. & Agca Aktunc, E. (2021). Forecasting modelsfordailynaturalgasconsumptionconsideringperiodicvariationsand demand segregation. Socio-Economic Planning Sciences, 74, 100937. https: //doi.org/10.1016/j.seps.2020.100937spa
dc.relation.referencesSánchez-Úbeda, E. F. & Berzosa, A. (2007). Modeling and forecasting industrial end-use natural gas consumption. Energy Economics, 29(4), 710-742. https: //doi.org/10.1016/j.eneco.2007.01.015spa
dc.relation.referencesWirth, R. & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Miningspa
dc.relation.referencesHunter, J. D. (2007). Matplotlib: A 2D Graphics Environment [Conference Name: Computing in Science Engineering]. Computing in Science Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55spa
dc.relation.referencesHunter, J. D. (2007). Matplotlib: A 2D Graphics Environment [Conference Name: Computing in Science Engineering]. Computing in Science Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55spa
dc.relation.referencesBernard, S., Heutte, L. & Adam, S. Influence of Hyperparameters on Random Forest Accuracy (J. A. Benediktsson, J. Kittler & F. Roli, Eds.). en. En: En Multiple Classifier Systems (J. A. Benediktsson, J. Kittler & F. Roli, Eds.). Ed. por Benediktsson, J. A., Kittler, J. & Roli, F. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2009, 171-180. isbn: 978-3-642-02326-2. https: //doi.org/10.1007/978-3-642-02326-2_18.spa
dc.relation.referencesOshiro, T. M., Perez, P. S. & Baranauskas, J. A. How Many Trees in a Random Forest? (P. Perner, Ed.). en. En: En Machine Learning and Data Mining in Pattern Recognition (P. Perner, Ed.). Ed. por Perner, P. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012, 154-168. isbn: 978-3- 642-31537-4. https://doi.org/10.1007/978-3-642-31537-4_13spa
dc.relation.referencesMaity, R., Bhagwat, P. P. & Bhatnagar, A. (2010). Potential of support vector regression for prediction of monthly streamflow using endogenous property [_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/hyp.7535]. Hydrological Processes, 24(7), 917-923. https://doi.org/https://doi.org/10.1002/ hyp.7535spa
dc.relation.referencesGarcía Nieto, P. J., Martínez Torres, J., Araújo Fernández, M. & Ordóñez Galán, C. (2012). Support vector machines and neural networks used to evaluate paper manufactured using Eucalyptus globulus. Applied Mathematical Modelling, 36(12), 6137-6145. https://doi.org/10.1016/j.apm.2012.02.016spa
dc.relation.referencesGeng, J., Gan, W., Xu, J., Yang, R. & Wang, S. (2020). Support vector machine regression (SVR)-based nonlinear modeling of radiometric transforming relation for the coarse-resolution data-referenced relative radiometric normalization (RRN) [Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/10095020.2020.1785958]. Geo-spatial Information Science, 23(3), 237-247. https://doi.org/10.1080/ 10095020.2020.1785958spa
dc.relation.referencesYu, K., Leufen, G., Hunsche, M., Noga, G., Chen, X. & Bareth, G. (2014). Investigation of Leaf Diseases and Estimation of Chlorophyll Concentration in Seven Barley Varieties Using Fluorescence and Hyperspectral Indices [Number: 1 Publisher: Multidisciplinary Digital Publishing Institute]. Remote Sensing, 6(1), 64-86. https://doi.org/10.3390/rs6010064spa
dc.relation.referencesLin, A. Y., Zhang, M. & Selpi, S. (2017). Combining Support Vector Regression with Scaling Methods for Highway Tollgates Travel Time and Volume Predictions [ISBN: 9788417293017]. Proceedings of International Work-Conference on Time Series Analysis (ITISE 2017), Granada, 18-20 September 2017, 1, 411-421. Consultado el 22 de mayo de 2021, desde https://research.chalmers. se/en/publication/251312spa
dc.relation.referencesOlah, C. (2015). Understanding LSTM Networks. Consultado el 17 de diciembre de 2020, desde https://colah.github.io/posts/2015-08-Understanding-LSTMs/spa
dc.relation.referencesLi, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. & Talwalkar, A. (2018). Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization [arXiv: 1603.06560]. arXiv:1603.06560 [cs, stat]. Consultado el 4 de mayo de 2021, desde http://arxiv.org/abs/1603.06560spa
dc.relation.referencesRamachandran, P., Zoph, B. & Le, Q. V. (2017). Searching for Activation Functions [arXiv: 1710.05941]. arXiv:1710.05941 [cs]. Consultado el 12 de mayo de 2021, desde http://arxiv.org/abs/1710.05941spa
dc.relation.referencesKingma, D. P. & Ba, J. (2017). Adam: A Method for Stochastic Optimization [arXiv: 1412.6980]. arXiv:1412.6980 [cs]. Consultado el 12 de mayo de 2021, desde http://arxiv.org/abs/1412.6980spa
dc.relation.referencesAbadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems [arXiv: 1603.04467]. arXiv:1603.04467 [cs]. Consultado el 5 de mayo de 2021, desde http://arxiv.org/abs/1603.04467spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.lembEnergía
dc.subject.lembGases naturales
dc.subject.proposalEficiencia energíaspa
dc.subject.proposalConsumo gas natural industrialspa
dc.subject.proposalPredicción consumospa
dc.subject.proposalRedes neuronales recurrentesspa
dc.subject.proposalLSTMspa
dc.subject.proposalDeep learningspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
dc.description.degreenameMagister en Ingeniería Computacionalspa
dc.publisher.programMaestría en Ingeniería Computacionalspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem