Mostrar el registro sencillo del ítem

dc.contributor.advisorPeters, Graciela
dc.contributor.authorCano Bedoya, Santiago
dc.date.accessioned2021-08-19T14:26:26Z
dc.date.available2021-08-19T14:26:26Z
dc.date.issued2021-08-18
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/16972
dc.descriptionIlustraciones, gráficasspa
dc.description.abstractspa: El concepto “frente húmedo” hace referencia al lugar que divide la zona saturada del suelo de la que no está; es decir la zona por encima del nivel freático en donde la saturación se debe a la infiltración de agua posterior a un episodio de precipitación (Organización Meteorológica Mundial, 2012), este ocasiona fenómenos de inestabilidad de laderas, en especial cuando se encuentran superficies de contacto entre suelos. Hasta ahora en la ciudad, se ha considerado al nivel de aguas freáticas (NAF) como el único responsable del problema; sin embargo, aunque claramente el NAF influye en la inestabilidad de las laderas, no es el único factor contribuyente de movimientos en masa. Específicamente, en la microcuenca de la quebrada El Perro existen contactos entre suelos residuales tanto de depósitos de caída piroclástica, como de la Formación Manizales y el Complejo Quebradagrande, lo que permite hacer comparaciones entre diferentes superficies de contacto, por lo que se presenta un análisis de la influencia del frente húmedo en la generación de movimientos en masa tomando en cuenta las diferentes superficies de contacto posibles. La metodología comprendió la caracterización geológica y geotécnica de los suelos de caída piroclástica y los suelos residuales de las unidades litoestratigráficas de la microcuenca de la quebrada El Perro de Manizales, específicamente en las superficies de contacto ceniza volcánica – suelo residual, ceniza volcánica – ceniza volcánica y suelo residual – roca fresca. Además, se incluye la definición de la pluviosidad precedente y la tasa de infiltración que ocasiona que el frente húmedo alcance las superficies de contacto. Se obtuvieron resultados relacionados con las propiedades geomecánicas de los materiales, el mapa de unidades de geología para ingeniería, la caracterización de la lluvia, el cálculo de velocidades de infiltración y las lluvias precedentes para movimientos en masa. La discusión se orienta a determinar la influencia del frente húmedo en la inestabilidad de laderas con base en las superficies de contacto identificadas lo que permitió una orientación a mejorar los sistemas de alerta temprana por movimientos en masa en Manizales. Se observó que, en orden, las superficies de contacto más inestables son: Depósitos de caída piroclástica – suelo residual de la Formación Casabianca, suelo residual del Complejo Quebradagrande – Complejo Quebradagrande, depósitos de caída piroclástica – suelo residual del Complejo Quebradagrande, depósitos de caída piroclástica – suelo residual de la Formación Manizales. Con base en lo anterior se han recomendado nuevos umbrales de lluvia que sirvan alerta temprana con base en el tipo de cobertura y el tipo de suelo que se encuentre más superficial.spa
dc.description.abstracteng: The concept "wetting front" refers to the place that divides the saturated area of the soil from the one that is not there; that is, the area above the water table where saturation is due to water infiltration after an episode of precipitation (World Meteorological Organization, 2012), this causes phenomena of slope instability, especially when there are contact surfaces between strata. So far in the city, the groundwater level (NAF, by its spanish abreviation) has been considered the only responsible for the problem; however, although NAF clearly influences slope instability, it is not the only factor contributing to mass movements. Specifically, in the El Perro micro-basin there are contacts between residual soils of both pyroclastic deposits, as well as the Manizales Formation and the Quebradagrande Complex, which allows comparisons between different contact surfaces, for which an analysis of the influence of the wetting front in the generation of mass movements is presented taking into account the different possible contact surfaces. The methodology included the geological and geotechnical characterization of the soils of pyroclastic deposits and the residual soils of the lithostratigraphic units of the El Perro micro-basin, specifically in the contact surfaces of volcanic ash - residual soil, residual soil – residual soil and residual soil – parental rock. In addition, it includes the definition of the preceding rainfall and the infiltration rate that causes the wetting front to reach the contact surfaces. Results were obtained related to the geomechanical properties of the materials, the map of geology units for engineering, the characterization of the rainfall, the calculation of infiltration speeds and the preceding rains for mass movements. The discussion is aimed at determining the influence of the wetting front on slope instability based on the contact surfaces identified, which allowed an orientation to improve early warning systems for mass movements in Manizales. It was observed that, in order, the most unstable contact surfaces are: Pyroclastic fall deposits - residual soil from the Casabianca Formation, residual soil from the Quebradagrande Complex - Quebradagrande Complex, pyroclastic fall deposits - residual soil from the Quebradagrande Complex, fall deposits pyroclastic - residual soil of the Manizales Formation. Based on the above, new rain thresholds have been recommended to serve early warning based on the type of cover and the type of soil that is more superficial.eng
dc.description.tableofcontentsContenido 1. Introducción/ 1.1. Objetivos / 1.1.1. General/ 1.1.2. Específicos / 2. Marco geológico/ 2.1. Geología regional/ 2.2. Geología local / 2.2.1. Geología Estructural/ 2.2.2. Descripción litológica/3. Marco geomorfológico/ 3.1. Geomorfoestructura / 3.2. Provincia geomorfológica/ 3.3. Región geomorfológica / 3.4. Unidad Geomorfológica/ 3.4.1. Unidad geomorfológica estructural / 3.4.2. Unidad geomorfológica denudacional/ 3.4.3. Unidad geomorfológica fluvial/ 3.5. Subunidad Geomorfológica/ 3.5.1. Subunidades geomorfológicas estructurales / 3.5.2. Subunidades geomorfológicas denudacionales / 3.5.3. Subunidades geomorfológicas fluviales/ 3.6. Componente Geomorfológico / 3.6.1. Componentes geomorfológicos estructurales/ 3.6.2. Componentes geomorfológicos denudacionales / 3.6.3. Componentes geomorfológicos fluviales / 3.7. Mapa geomorfológico/ 4. Marco hidrológico-hidráulico / 5. Fundamento teórico / 5.1. Frente húmedo/ 5.1.1. Definición y consideraciones generales/ 5.1.2. Conceptos elementales para la comprensión del comportamiento del frente húmedo / 5.1.3. Factores que gobiernan la estabilidad del frente húmedo / 5.1.4. Modelos que estiman el comportamiento del frente húmedo / 5.1.5. Pruebas para analizar las características del frente húmedo / 5.2. Inestabilidad de laderas por efecto del agua/ 5.2.1. Efectos de la vegetación/ 5.3. Inestabilidad de laderas en suelos piroclásticos / 5.4. Inestabilidad de laderas en suelos residuales/ 6. Metodología / 6.1. Etapa 1: Caracterización geológico-geotécnica de los materiales involucrados/ 6.1.1. Extracción de muestras / 6.1.2. Ensayos de laboratorio / 6.1.3. Complemento de los ensayos de laboratorio/ 6.1.4. Mapa de Unidades de Geología para Ingeniería (UGI) / 6.1.5. Modelo geológico-geotécnico / 6.2. Etapa 2: Análisis pluviométricos para la identificación de velocidades de infiltración que potencialmente ocasionan inestabilidad de laderas/ 6.2.1. Análisis multitemporal de movimientos en masa / 6.2.2. Procesamiento y análisis de información pluviométrica/ 6.2.3. Cálculo y análisis de la infiltración / 6.2.4. Análisis del frente húmedo / 6.2.5. Cálculo de factores de seguridad/7. Resultados / 7.1. Conceptualización geotécnica/ 7.1.1. Propiedades geomecánicas de los materiales / 7.1.2. Mapa de unidades de geología para ingeniería/ 7.2. Conceptualización hidrológica/ 7.2.1. Caracterización de la lluvia/ 7.2.2. Cálculo de las velocidades de infiltración / 7.2.3. Lluvias precedentes para los movimientos en masa / 8. Discusión/ 8.1. Análisis de la influencia del frente húmedo / 8.2. Aplicación en la gestión del riesgo de desastres de Manizales/ 8.2.1. Amenaza por movimientos en masa/ 8.2.2. Alertas tempranas/ 8.2.3. Estado en Manizales / 9. Conclusiones/ Referencias .eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleInfluencia de la posición del frente húmedo en la generación de movimientos en masa en formaciones superficiales de la microcuenca de la quebrada El Perro del municipio de Manizales, Colombia.spa
dc.typeTrabajo de grado - Maestríaspa
dc.description.degreelevelMaestríaspa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesAcebedo, L. (21 de abril de 2018). La quebrada El Perro, incubación de una catástrofe. Periódico La Patria. Recuperado de: https://www.lapatria.com/opinion/columnas/luis-acebedo/la-quebrada-elperro-incubacion-de-una-catastrofespa
dc.relation.referencesAcharya, G., Cochrane, T., Davies, T., & Bowman, E. (2011). Quantifying and modeling post-failure sediment yields from laboratory-scale soil erosion and shallow landslide experiments with silty loess. Geomorphology, 129(1-2), 49-58.spa
dc.relation.referencesAggelides, S., & Youngs, E. G. (1978). The dependence of the parameters in the Green and Ampt infiltration equation on the initial water content in draining and wetting states. Water Resources Research, 14(5), 857-862.spa
dc.relation.referencesAhmadi-Adli, M., Toker, N. K., & Huvaj, N. (2014). Prediction of seepage and slope stability in a flume test and an experimental field case. Procedia Earth and Planetary Science, 9, 189-194.spa
dc.relation.referencesAlcaldía de Manizales. (2017). Plan de Ordenamiento Territorial de Manizales 2017- 2031. Manizales: Alcaldía de Manizales.spa
dc.relation.referencesAlfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F., & Thielen, J. (2012). Operational early warning systems for water-related hazards in Europe. Environmental Science & Policy, 21, 35-49.spa
dc.relation.referencesÁlvarez, A., & Michael, N. (1995). Geología del Complejo Ofiolítico de Pácora y secuencias relacionadas a Arco de Islas (Complejo Quebradagrande), Colombia. Boletin Geológico.spa
dc.relation.referencesÁlvarez, J. (1983). Geología de la Cordillera Central y el occidente colombiano y petroquímica de los intrusivos granitoides Meso-Cenozoicos. Boletín Geológico INGEOMINAS, 26(2), 1-175spa
dc.relation.referencesAmare, S., Keesstra, S., van der Ploeg, M., Langendoen, E., Steenhuis, T., & Tilahun, S. (2019). Causes and controlling factors of Valley bottom Gullies. Land, 8(9), 141.spa
dc.relation.referencesAnbalagan, R., & Singh, B. (1996). Landslide hazard and risk assessment mapping of mountainous terrains—a case study from Kumaun Himalaya, India. Engineering Geology, 43(4), 237-246.spa
dc.relation.referencesAnderson, M. G., & Kemp, M. J. (1991). Towards an improved specification of slope hydrology in the analysis of slope instability problems in the tropics. Progress in Physical Geography, 15(1), 29-52.spa
dc.relation.referencesAndreu, V., Khuder, H., Mickovski, S., Spanos, I., Norris, J., Dorren, l., Nicoll, B., Achim, A., Rubio, J., Jouneau, L., & Berger, F. (2008). Ecotechnological solutions for unstable slopes: ground bio-and eco-engineering techniques and strategies. 211-275. En Norris, J. E., Stokes, A., Mickovski, S. B., Cammeraat, E., van Beek, R., Nicoll, B. C., & Achim, A. (Eds.). (2008). Slope stability and erosion control: ecotechnological solutions. Springer Science & Business Media.spa
dc.relation.referencesAudru, J. C., Bitri, A., Desprats, J. F., Dominique, P., Eucher, G., Hachim, S., Jossor, O., Mathon, C., Nédellec, J., Sabourault, P.,& Sedan, O. (2010). Major natural hazards in a tropical volcanic island: A review for Mayotte Island, Comoros archipelago, Indian Ocean. Engineering geology, 114(3-4), 364- 381.spa
dc.relation.referencesBarden, L., McGown, A., & Collins, K. (1973). The collapse mechanism in partly saturadated soil. Engineering Geology, 7(1), 49-60.spa
dc.relation.referencesBarry, D. A., Parlange, J. Y., Li, L., Jeng, D. S., & Crapper, M. (2005). Green–Ampt approximations. Advances in Water Resources, 28(10), 1003-1009.spa
dc.relation.referencesBarry, D. A., Parlange, J. Y., Sander, G. C., & Sivapalan, M. (1995). Comment on “Explicit Expressions for Green‐Ampt (Delta Function Diffusivity) Infiltration Rate and Cumulative Storage by GD Salvucci and D. Entekhabi. Water Resources Research, 31(5), 1445-1446spa
dc.relation.referencesBenito, E., Santiago, J. L., De Blas, E., & Varela, M. E. (2003). Deforestation of water‐repellent soils in Galicia (NW Spain): effects on surface runoff and erosion under simulated rainfall. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 28(2), 145- 155.spa
dc.relation.referencesBernadiner, M. G. (1998). A capillary microstructure of the wetting front. Transport in porous media, 30(3), 251-265.spa
dc.relation.referencesBezak, N., Auflič, M. J., & Mikoš, M. (2019). Application of hydrological modelling for temporal prediction of rainfall-induced shallow landslides. Landslides, 16(7), 1273-1283.spa
dc.relation.referencesBinley, A., Cassiani, G., Middleton, R., & Winship, P. (2002). Vadose zone flow model parameterisaturadoion using cross-borehole radar and resistivity imaging. Journal of Hydrology, 267(3-4), 147-159.spa
dc.relation.referencesBlum, W. E., de Baerdemaeker, J., Finkl, C. W., Horn, R., Pachepsky, Y., Shein, E. V., & Grundas, S. (2011). En Glinski, J., Horabik, J., & Lipiec, J. (Eds.). Encyclopedia of agrophysics. Berlin, Germany: Springer. 264-267.spa
dc.relation.referencesBodman, G. B. & Colman, E. A. (1943). Moisture and energy conditions during downward entry of water into soils. Soil Science Society of America Procedures. 8(c), 116–122.spa
dc.relation.referencesBordoni, M., Meisina, C., Vercesi, A., Bischetti, G. B., Chiaradia, E. A., Vergani, C., Chersich, S., Valentino, R., Bittelli, M., Comolli, R., Persichillo, M. G., & Cislaghi, A. (2016). Quantifying the contribution of grapevine roots to soil mechanical reinforcement in an area susceptible to shallow landslides. Soil and Tillage Research, 163, 195-206.spa
dc.relation.referencesBorja-Baeza, R. C., Esteban-Chávez, O., Marcos-López, J., Peña-Garnica, R. J., & Alcántara-Ayala, I. (2006). Slope instability on pyroclastic deposits: landslide distribution and risk mapping in Zacapoaxtla, Sierra Norte de Puebla, Mexico. Journal of Mountain Science, 3(1), 1-19.spa
dc.relation.referencesBorrero, C., & Naranjo, J. (1990). Casabianca Formation: a colombian example of volcanism induced aggradation in a fluvial basion. Journal of Volcanology and Geothermal Research, 41(1-4) 253-267.spa
dc.relation.referencesBotero, G. (1963). Contribución al conocimiento de la geología de la zona central de Antioquia. Medellín: Anuales Facultad de Minas No. 57.spa
dc.relation.referencesBouma, N. A., & Imeson, A. C. (2000). Investigation of relationships between measured field indicators and erosion processes on badland surfaces at Petrer, Spain. Catena, 40(2), 147-171.spa
dc.relation.referencesBouwer, H. (1978). Groundwater hydrology. México D.F.: McGraw-Hill Series in Water Resources and Environmental Engineering Seriesspa
dc.relation.referencesBrunetti, M. T., Peruccacci, S., Rossi, M., Luciani, S., Valigi, D., & Guzzetti, F. (2010). Rainfall thresholds for the possible occurrence of landslides in Italy. Natural Hazards & Earth System Sciences, 10(3), 447-458.spa
dc.relation.referencesButenuth, C., Frey, M. L., de Freitas, M. H., Passas, N., & Forero-Duenas, C. (1998). Silica gels: a possible explanation for slope failures in certain rocks. Geological Society, London, Engineering Geology Special Publications, 15(1), 185-191.spa
dc.relation.referencesCampbell, G. S. (2005). Measuring specific surface of soil with the WP4 Application. Nota, Recuperado de: http://www. decagon. com/appnotes/SpecificSurface. pdf.:spa
dc.relation.referencesCaris, J. P. T., & Van Asch, T. W. (1991). Geophysical, geotechnical and hydrological investigations of a small landslide in the French Alps. Engineering Geology, 31(3-4), 249-276.spa
dc.relation.referencesCarrillo, L. E. J. (1995). Creating a GIS database for seismic and geotechnical microzonation of the metropolitan area of Bucaramanga-Colombia (Doctoral dissertation, M. Sc. thesis ITC).spa
dc.relation.referencesCarvajal, J. (2008). Primeras aproximaciones a la estandarización de la geomorfología en Colombia. Documento inédito en preparación. Bogotá, Colombia. 30spa
dc.relation.referencesCasagrande, A. (1948). Clasification and Identification of Soils. Transactions, Asce, 113, 901-991.spa
dc.relation.referencesCerdà, A. (1999). Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions. Water Resources Research, 35(1), 319-328.spa
dc.relation.referencesCerda, A. (2002). The effect of season and parent material on water erosion on highly eroded soils in eastern Spain. Journal of Arid Environments, 52(3), 319-337.spa
dc.relation.referencesCerdà, A., & García-Fayos, P. (1997). The influence of slope angle on sediment, water and seed losses on badland landscapes. Geomorphology, 18(2), 77- 90.spa
dc.relation.referencesChang, P. Y., Alumbaugh, D., Brainard, J., & Hall, L. (2004). The application of ground penetrating radar attenuation tomography in a vadose zone infiltration experiment. Journal of Contaminant Hydrology, 71(1-4), 67-87.spa
dc.relation.referencesChen, H., Crosta, G. B., & Lee, C. F. (2006). Erosional effects on runout of fast landslides, debris flows and avalanches: a numerical investigation. Geotechnique, 56(5), 305-322.spa
dc.relation.referencesCheung, R. W., & Tang, W. H. (2005). Realistic assessment of slope reliability for effective landslide hazard mangement. Geotechnique, 55(1), 85-94.spa
dc.relation.referencesChinkulkijniwat, A., Yubonchit, S., Horpibulsuk, S., Jothityangkoon, C., Jeeptaku, C., & Arulrajah, A. (2016). Hydrological responses and stability analysis of shallow slopes with cohesionless soil subjected to continuous rainfall. Canadian Geotechnical Journal, 53(12), 2001-2013.spa
dc.relation.referencesCho, S. E. (2009). Infiltration analysis to evaluate the surficial stability of two-layered slopes considering rainfall characteristics. Engineering Geology, 105(1-2), 32-43.spa
dc.relation.referencesChow, V. (1994). Hidráulica de canales abiertos. California: California Spanish Books.spa
dc.relation.referencesChung, C. J. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451-472.spa
dc.relation.referencesCoduto, D. (1999). Geotechnical Engineering: Principles and Practices. California: Pearson.spa
dc.relation.referencesCorominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., Catani. F., van Den Eeckhaut., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani. V., Hervás, J., & Smith, J. T. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of engineering geology and the environment, 73(2), 209-263spa
dc.relation.referencesCorrales, C. C. A., Valencia, C., Calderon, O. J., Guapacha, A. M., Shammir, A. D., & Patiño, J. (s. f.). Análisis Retrospectivo Del Deslizamiento Barrio La Sultana. Leer más: https://estabilidad-detaludes7.webnode.es/contactanos/. Estabilidad de Taludes. Recuperado 25 de junio de 2020, de https://estabilidad-detaludes7.webnode.es/news/marco-teorico/spa
dc.relation.referencesCorrea, A., Pimentel, M., Restrepo, J., Nilson, A., Ordoñez, O., Martens, U., Laux, J., & Junges, S. (2006). U-Pb zircon ages and Nd-Sr isotopes of the Altavista stock and the San Diego gabbro: new insights on Cretaceous arc magmatism in the Colombian Andes. In V South American Symposium on Isotope Geology. 84-86.spa
dc.relation.referencesCrosta, G. (1998). Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environmental Geology, 35(2-3), 131-145.spa
dc.relation.referencesCruden, D. M., & Varnes, D. J. (1996). Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation research board special report, (247), 36-75.spa
dc.relation.referencesCuomo, S., & Della Sala, M. (2013). Rainfall-induced infiltration, runoff and failure in steep unsaturadated shallow soil deposits. Engineering Geology, 162, 118- 127.spa
dc.relation.referencesDahan, O., Shani, Y., Enzel, Y., Yechieli, Y., & Yakirevich, A. (2007). Direct measurements of floodwater infiltration into shallow alluvial aquifers. Journal of Hydrology, 344(3-4), 157-170.spa
dc.relation.referencesDai, F. C., & Lee, C. F. (2001). Frequency–volume relation and prediction of rainfallinduced landslides. Engineering geology, 59(3-4), 253-266spa
dc.relation.referencesDamiano, E., Olivares, L., & Picarelli, L. (2012). Steep-slope monitoring in unsaturadated pyroclastic soils. Engineering Geology, 137, 1-12.spa
dc.relation.referencesDe La Ville, N., Diaz, A. C., & Ramirez, D. (2002). Remote sensing and GIS technologies as tools to support sustainable management of areas devastated by landslides. Environment, development and sustainability, 4(2), 221-229.spa
dc.relation.referencesDel Potro, R., & Hürlimann, M. (2008). Geotechnical classification and characterisaturadoion of materials for stability analyses of large volcanic slopes. Engineering Geology, 98(1-2), 1-17.spa
dc.relation.referencesDi Biagio, E., & Kjekstad, O. (2007). Early warning, instrumentation and monitoring landslides. 2nd Regional Training Course, RECLAIM II, 29th January–3rd February.spa
dc.relation.referencesDickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. Dreide Company, 333-361.spa
dc.relation.referencesDiment, G. A., & Watson, K. K. (1983). Stability analysis of water movement in unsaturadated porous materials: 2. Numerical studies. Water Resources Research, 19(4), 1002-1010.spa
dc.relation.referencesDiment, G. A., & Watson, K. K. (1985). Stability analysis of water movement in unsaturadated porous materials: 3. Experimental Studies. Water Resources Research, 21(7), 979-984.spa
dc.relation.referencesDiment, G. A., Watson, K. K., & Blennerhassett, P. J. (1982). Stability analysis of water movement in unsaturadated porous materials: 1. Theoretical considerations. Water Resources Research, 18(4), 1248-1254.spa
dc.relation.referencesDripps, W. R., & Bradbury, K. R. (2007). A simple daily soil–water balance model for estimating the spatial and temporal distribution of groundwater recharge in temperate humid areas. Hydrogeology Journal, 15(3), 433-444.spa
dc.relation.referencesDunin, F. (1976). Infiltration: Its simulation for field conditions. Facets Hydrology, 199-227.spa
dc.relation.referencesEl-Hames, A. S., & Al-Wagdany, A. S. (2013). Investigation of wetting front behavior due to rainfall and ponding head effects in arid region wadi alluvium. Arabian Journal of Geosciences, 6(5), 1499-1507.spa
dc.relation.referencesEnciso-Medina, J., Martin, D., & Eisenhauer, D. (1998). Infiltration model for furrow irrigation. Journal Of Irrigation And Drainage Engineering, 124(2), 73-80.spa
dc.relation.referencesEstrada, W. (2018). Comportamiento de Laderas en la Cuenca de la Quebrada el Perro de la Ciudad de Manizales. (Tesis de maestría) Manizales: Universidad Nacional de Colombia.spa
dc.relation.referencesEvangelista, A., Nicotera, M. V., & Scotto di Santolo, A. (2003). Experimental and theoretical validation of matric suction measurements in pyroclastic soils. In Proc Int Conf on Fast Slope Movements-Prediction and Prevention for Risk Mitigation. Napoli 1(1), 173-177.spa
dc.relation.referencesFell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). On behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes, (2008), Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102(3-4), 85- 98.spa
dc.relation.referencesFepuleai, A., & Németh, K. (2019). Volcanic Geoheritage of Landslides and Rockfalls on a Tropical Ocean Island (Western Samoa, SW Pacific). Geoheritage, 11(2), 577-596.spa
dc.relation.referencesFreyberg, D. L., Reeder, J. W., Franzini, J. B., & Remson, I. (1980). Application of the Green‐Ampt model to infiltration under time‐dependent surface water depths. Water Resources Research, 16(3), 517-528.spa
dc.relation.referencesFuquen, J., Núñez, A., & Betancourt, A. (1989). Mapa geológico generalizado del Departamento del Huila: geología, recursos minerales y amenazas: Memoria explicativa 1989; Escala: 1:400.000. Manizales: Universidad de Caldas.spa
dc.relation.referencesGardner, W. R., & Hsieh, J. C. (1959). Water movement in soil, report, Dept. of Agron. Wash. State Univ., Pullman.spa
dc.relation.referencesGaskin, G. J., & Miller, J. D. (1996). Measurement of soil water content using a simplified impedance measuring technique. Journal of Agricultural Engineering Research, 63(2), 153-159.spa
dc.relation.referencesGatto, L. W. (2000). Soil freeze–thaw-induced changes to a simulated rill: Potential impacts on soil erosion. Geomorphology, 32(1-2), 147-160.spa
dc.relation.referencesGayen, A., Pourghasemi, H. R., Saha, S., Keesstra, S., & Bai, S. (2019). Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Science of the total environment, 668, 124-138.spa
dc.relation.referencesGevaert, A. I., Teuling, A. J., Uijlenhoet, R., DeLong, S. B., Huxman, T. E., Pangle, L. A., & Zeng, X. (2014). Hillslope-scale experiment demonstrates the role of convergence during two-step saturadation. Hydrology and Earth System Sciences, 18(9), 3681.spa
dc.relation.referencesGhodrati, M., & Jury, W. A. (1990). A field study using dyes to characterize preferential flow of water. Soil Science Society of America Journal, 54(6), 1558-1563.spa
dc.relation.referencesGil, E., & Jiménez, C. (2018). Análisis en la relación desarrollo-riesgo-desastre, en la zona urbana del municipio de Manizales. (Tesis de pregrado). Manizales: Universidad Católica de Manizales.spa
dc.relation.referencesGlass, R. J., Parlange, J. Y., & Steenhuis, T. S. (1989a). Wetting front instability: 1. Theoretical discussion and dimensional analysis. Water Resources Research, 25(6), 1187-1194.spa
dc.relation.referencesGlass, R. J., Steenhuis, T. S., & Parlange, J. Y. (1989b). Wetting front instability: 2. Experimental determination of relationships between system parameters and two‐dimensional unstable flow field behavior in initially dry porous media. Water Resources Research, 25(6), 1195-1207.spa
dc.relation.referencesGonzález, H. (1977). Conceptos de metamorfismo dinámico y su aplicación a la zona de falla de Romeral. Ciencias de la Tierra, 81-106.spa
dc.relation.referencesGonzález, H. (1980). Geología de las Planchas 167 (sonsón) y 187 (Salamina) del Mapa Geológico de Colombia. Ingeominas, Boletín Geológico, 23(1), 1-174.spa
dc.relation.referencesGonzález, H. (1993). Mapa geológico generalizado del departamento de Caldas. Bogotá D.C: Instituto de Investigaciones en Geociencias, Minería y Química.spa
dc.relation.referencesGonzález, H. (2001). Memoria explicativa de las planchas 206 y 225. Manizales - Nevado del Ruiz. Bogotá D.C.: Ingeominas.spa
dc.relation.referencesGonzález, H., & Núñez, A. (1991). Mapa geológico generalizado del Departamento del Quindío (Escala 1:100000). Geología y Recursos Natuales. Memoria Explicativa., 142.spa
dc.relation.referencesGonzalez-Ollauri, A., & Mickovski, S. B. (2017). Plant-soil reinforcement response under different soil hydrological regimes. Geoderma, 285, 141-150.spa
dc.relation.referencesGovindaraju, R. S., Kavvas, M. L., Jones, S. E., & Rolston, D. E. (1996). Use of Green-Ampt model for analyzing one-dimensional convective transport in unsaturadated soils. Journal of Hydrology, 178(1-4), 337-350.spa
dc.relation.referencesGreen, W. H., & Ampt, G. A. (1911). The flow of air and water through soils. Journal of Agriculture Science, 4(1), 1-24.spa
dc.relation.referencesGuzmán, J. (1991). Evidencia de actividad neotectonica en el area de Manizales Colombia. Manizales: Universidad de Caldas.spa
dc.relation.referencesGuzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, I., Rossi, M., & Melillo, M. (2020). Geographical landslide early warning systems. EarthScience Reviews, 200, 102973.spa
dc.relation.referencesGuzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 98(3-4), 239-267.spa
dc.relation.referencesGuzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity– duration control of shallow landslides and debris flows: an update. Landslides, 5(1), 3-17.spa
dc.relation.referencesGvirtzman, H., Shalev, E., Dahan, O., & Hatzor, Y. H. (2008). Large-scale infiltration experiments into unsaturadated stratified loess sediments: Monitoring and modeling. Journal of Hydrology, 349(1-2), 214-229.spa
dc.relation.referencesHill, D. E., & Parlange, J. Y. (1972). Wetting front inestability in layered soils. Soil Science Society of America, 36(5), 697-702.spa
dc.relation.referencesHill, D. E., & Parlange, J. Y. (1972). Wetting front instability in layered soils. Soil Science Society of America Journal, 36(5), 697-702spa
dc.relation.referencesHillel, D. (1987). Unstable flow in layered soils: A review. Hydrological Processes, 1(2), 143-147.spa
dc.relation.referencesHopp, L., & McDonnell, J. J. (2009). Connectivity at the hillslope scale: Identifying interactions between storm size, bedrock permeability, slope angle and soil depth. Journal of Hydrology, 376(3-4), 378-391.spa
dc.relation.referencesHorton, R. E. (1933). The role of infiltration in the hydrologic cycle. Eos, Transactions American Geophysical Union, 14(1), 446-460.spa
dc.relation.referencesHouston, S. L., Houston, W. N., & Spadola, D. J. (1988). Prediction of field collapse of soils due to wetting. Journal of Geotechnical Engineering, 114(1), 40-58.spa
dc.relation.referencesHuggel, C., Khabarov, N., Obersteiner, M., & Ramírez, J. M. (2010). Implementation and integrated numerical modeling of a landslide early warning system: a pilot study in Colombia. Natural Hazards, 52(2), 501-518.spa
dc.relation.referencesHürlimann, M., Ledesma, A., & Martı, J. (2001). Characterisaturadoion of a volcanic residual soil and its implications for large landslide phenomena: application to Tenerife, Canary Islands. Engineering Geology, 59(1-2), 115-132.spa
dc.relation.referencesInstituto Geográfico Agustín Codazzi. (08 de Marzo de 2020). Zonificación Hidrográfica de Colombia. Datos abiertos Colombia. Manizales, Caldas, Colombia: IGAC.spa
dc.relation.referencesINVIAS. (2013). Normas de Ensayo para materiales de Carretera. Bogotá D.C: INVIAS.spa
dc.relation.referencesIsraelson, O., & West, F. (1922). Water holding capacity of irrigated soils. Utah State Agricultural Experiment Station Bull, 1-24.spa
dc.relation.referenceslUGS 1997. Quantitative risk assessment for slopes and landslides- the state of the art. In: Cruden, D. & Fell, R. (eds) Landslide Risk Assessment. Proceedings of the International Workshop on Landslide Risk Assessment, Honolulu, Hawaii. Balkema, Rotterdam, 3-12.spa
dc.relation.referencesIvanov, V. Y., Fatichi, S., Jenerette, G. D., Espeleta, J. F., Troch, P. A., & Huxman, T. E. (2010). Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation. Water Resources Research, 46(9), 1- 15.spa
dc.relation.referencesJiang, F. S., Huang, Y. H., Wang, M. K., Lin, J. S., Zhao, G., & Ge, H. L. (2014). Effects of rainfall intensity and slope gradient on steep colluvial deposit erosion in southeast China. Soil Science Society of America Journal, 78(5), 1741-1752.spa
dc.relation.referencesJiongxin, X. (1996). Benggang erosion: the influencing factors. Catena, 27(3-4), 249- 263.spa
dc.relation.referencesKale, R. V., & Sahoo, B. (2011). Green-Ampt infiltration models for varied field conditions: A revisit. Water Resources Management, 25(14), 3505.spa
dc.relation.referencesKENANOĞLU, M. B., Ahmadi-Adli, M., Toker, N. K., & Huvaj, N. E. J. A. N. (2019). Effect of Unsaturadated Soil Properties on the Intensity-Duration Threshold for Rainfall Triggered Landslides. Teknik Dergi, 30(2), 9009-9027.spa
dc.relation.referencesKim, J., Jeong, S., Park, S., & Sharma, J. (2004). Influence of rainfall-induced wetting on the stability of slopes in weathered soils. Engineering Geology, 75(3-4), 251-262.spa
dc.relation.referencesKostiakov, A. N. (1932). On the dynamics of the coefficients of water percolation in soils. Sixth Commission, International Society of Soil Science, Part A, 15- 21.spa
dc.relation.referencesKowalsky, M. B., Finsterle, S., & Rubin, Y. (2004). Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements during transient flow in the vadose zone. Advances in Water Resources, 27(6), 583-599.spa
dc.relation.referencesLaio, F. (2006). A vertically extended stochastic model of soil moisture in the root zone. Water Resources Research, 42(2), 1-10.spa
dc.relation.referencesLan H, Zhou C., C.F. Lee, Wang S. y WU F. (2003). “Rainfall-induced landslide stability analysis in response to transient pore pressure”. Science in China Ser. E Technological Sciences. Vol. 46, pp 52-68.spa
dc.relation.referencesLenormand, R. (1990). Liquids in porous media. Journal of Physics: Condensed Matter, 2(S), SA79.spa
dc.relation.referencesLeroueil, S., & Vaughan, P. R. (1990). The congruent effects of structure on the behavior of natural soils. Géotechnique, 40(3), 467-488.spa
dc.relation.referencesLevia, D. F., & Germer, S. (2015). A review of stemflow generation dynamics and stemflow‐environment interactions in forests and shrublands. Reviews of Geophysics, 53(3), 673-714.spa
dc.relation.referencesLi, A. G., Yue, Z. Q., Tham, L. G., Lee, C. F., & Law, K. T. (2005). Field-monitored variations of soil moisture and matric suction in a saprolite slope. Canadian Geotechnical Journal, 42(1), 13-26.spa
dc.relation.referencesLi, P., Vanapalli, S., & Li, T. (2016). Review of collapse triggering mechanism of collapsible soils due to wetting. Journal of Rock Mechanics and Geotechnical Engineering, 8(2), 256-274.spa
dc.relation.referencesLi, W. C., Lee, L. M., Cai, H., Li, H. J., Dai, F. C., & Wang, M. L. (2013). Combined roles of saturadated permeability and rainfall characteristics on surficial failure of homogeneous soil slope. Engineering Geology, 153, 105-113.spa
dc.relation.referencesLiang, W. L., Kosugi, K. I., & Mizuyama, T. (2011). Soil water dynamics around a tree on a hillslope with or without rainwater supplied by stemflow. Water Resources Research, 47(2)spa
dc.relation.referencesLiberato, M. L., Ramos, A. M., Trigo, R. M., Trigo, I. F., Durán-Quesada, A. M., Nieto, R., & Gimeno, L. (2012). Moisture sources and large-scale dynamics associated with a flash flood event. Lagrangian Modeling Of The Atmosphere, 200,111-126.spa
dc.relation.referencesLiberato, M. L., Ramos, A. M., Trigo, R. M., Trigo, I. F., Durán-Quesada, A. M., Nieto, R., & Gimeno, L. (2012). Moisture sources and large-scale dynamics associated with a flash flood event. Lagrangian Modeling Of The Atmosphere, 200,111-126.spa
dc.relation.referencesLiu, W., Luo, X., Fu, M., & Huang, J. (2016). Experiment and Modeling of Soil-Water Characteristic Curve of Unsaturadated Soil in Collapsing Erosion Area. Polish Journal of Environmental Studies, 25(6) 2509-2517.spa
dc.relation.referencesLiu, W., Ouyang, G., Luo, X., Luo, J., Hu, L., & Fu, M. (2020). Moisture content, porewater pressure and wetting front in granite residual soil during collapsing erosion with varying slope angle. Geomorphology, 362(1), 107210.spa
dc.relation.referencesLiu, X., Qiu, J., & Zhang, D. (2018). Characteristics of slope runoff and soil water content in benggang colluvium under simulated rainfall. Journal Of Soils And Sediments, 18(1), 39-48.spa
dc.relation.referencesLlorens, P., & Domingo, F. (2007). Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. Journal Of Hydrology, 335(1-2), 37-54.spa
dc.relation.referencesLRAmbiental, & Corpocaldas. (2014). Plan de Ordenación y Manejo Ambiental de la subzona hidrográfica del río Tapias y otros directos al Cauca. Manizales: Corpocaldas.spa
dc.relation.referencesLu, N., & Godt, J. W. (2013). Hillslope hydrology and stability. Cambridge University Press.spa
dc.relation.referencesLu, N., & Griffiths, D. V. (2004). Profiles of steady-state suction stress in unsaturadated soils. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1063-1076.spa
dc.relation.referencesLu, N., & Likos, W. J. (2004). Unsaturadated Soil Mechanics. Wiley.spa
dc.relation.referencesLu, N., Godt, J. W., & Wu, D. T. (2010). A closed‐form equation for effective stress in unsaturadated soil. Water Resources Research, 46(5). 1-14spa
dc.relation.referencesLu, T. X., Biggar, J. W., & Nielsen, D. R. (1994). Water movement in glass bead porous media: 2. Experiments of infiltration and finger flow. Water Resources Research, 30(12), 3283-3290.spa
dc.relation.referencesLuk, S. H., & Liu, X. Z. (1997). Water and sediment yield from a small catchment in the hilly granitic region, South China. Catena, 29(2), 177-189.spa
dc.relation.referencesMahmoodabadi, M., & Sajjadi, S. A. (2016). Effects of rain intensity, slope gradient and particle size distribution on the relative contributions of splash and wash loads to rain-induced erosion. Geomorphology, 253, 159-167.spa
dc.relation.referencesMailapalli, D. R., Wallender, W. W., Singh, R., & Raghuwanshi, N. S. (2009). Application of a nonstandard explicit integration to solve Green and Ampt infiltration equation. Journal of Hydrologic Engineering, 14(2), 203-206.spa
dc.relation.referencesMalheiro, A. (2006). Geological hazards in the Azores archipelago: volcanic terrain instability and human vulnerability. Journal of Volcanology and Geothermal Research, 156(1-2), 158-171.spa
dc.relation.referencesMarin, R. J., & Velásquez, M. F. (2020). Influence of hydraulic properties on physically modelling slope stability and the definition of rainfall thresholds for shallow landslides. Geomorphology, 351, 106976.spa
dc.relation.referencesMartínez-Murillo, J. F., Nadal-Romero, E., Regüés, D., Cerdà, A., & Poesen, J. (2013). Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review. Catena, 106, 101-112.spa
dc.relation.referencesMaya, M., & González, H. (1995). Unidades litodémicas en la Cordillera Central de Colombia. Boletín Geológico INGEOMINAS, 35(2-3), 44-57spa
dc.relation.referencesMedina-Cetina, Z., & Nadim, F. (2008). Stochastic design of an early warning system. Georisk, 2(4), 223-236.spa
dc.relation.referencesMein, R. G., & Larson, C. L. (1973). Modeling infiltration during a steady rain. Water Resources Research, 9(2), 384-394.spa
dc.relation.referencesMickovski, S. B., Hallett, P. D., Bransby, M. F., Davies, M. C., Sonnenberg, R., & Bengough, A. G. (2009). Mechanical reinforcement of soil by willow roots: impacts of root properties and root failure mechanism. Soil Science Society of America Journal, 73(4), 1276-1285spa
dc.relation.referencesMinisterio de Ambiente, Vivienda y Desarrollo Territorial. (2008). Decreto 4065 de 2008. Bogotá D.C.: MinVivienda.spa
dc.relation.referencesMinisterio de Ambiente, Vivienda y Desarrollo Territorial (2010). Reglamento colombiano de construcción sismo resistente. Bogotá D.C.: MinViviendaspa
dc.relation.referencesMitra, K., & Van Duijn, C. J. (2019). Wetting fronts in unsaturadated porous media: The combined case of hysteresis and dynamic capillary pressure. Nonlinear Analysis: Real World Applications, 50, 316-341.spa
dc.relation.referencesMorel‐Seytoux, H. J., & Khanji, J. (1974). Derivation of an equation of infiltration. Water Resources Research, 10(4), 795-800.spa
dc.relation.referencesMoreno, M., & Pardo, A. (2003). Stratigraphical and sedimentological constrains on western Colombia: implications on the evolution of Caribbean Plate. American Association of Petroleum Geologist, 891-924.spa
dc.relation.referencesMoreno, M., Gómez, A., & Toro, L. (2008). Proveniencia del material clástico del Complejo Quebradagrande y su relación con los complejos estructurales adyacentes. Boletín de Ciencias de la Tierra, (22), 27-38.spa
dc.relation.referencesMori, Y., Hopmans, J. W., Mortensen, A. P., & Kluitenberg, G. J. (2005). Estimation of vadose zone water flux from multi-functional heat pulse probe measurements. Soil Science Society of America Journal, 69(3), 599-606.spa
dc.relation.referencesMousavi, S. M. (2017). Landslide susceptibility in cemented volcanic soils, ask region, Iran. Indian Geotechnical Journal, 47(1), 115-130spa
dc.relation.referencesMusso, L., & Olivares, L. (2003). Flowslides in pyroclastic soils: transition from “static liquefaction” to “fluidization”. In IW-Flows2003 1(1), 117-127.spa
dc.relation.referencesNachaev, V., & Ipshording, W. (1993). Heavy-mineral assemblage of continental margins as indicators of plate tectonics enviroments. Journal of Sedimentary Petrology, 63(3), 1110-1117.spa
dc.relation.referencesNanía, L., & Gómez, V. (2004). Ingeniería hidrológica. México D.F.: Grupo Editorial Universitario.spa
dc.relation.referencesNaranjo, J., & Ríos, P. (1989). Geología de Manizales y sus alrededores y su influencia en los riesgos geológicos. Universidad de Caldas, 10(1-3), 113.spa
dc.relation.referencesNearing, M. A., Bradford, J. M., & Parker, S. C. (1991). Soil detachment by shallow flow at low slopes. Soil Science Society of America Journal, 55(2), 339-344.spa
dc.relation.referencesNefeslioglu, H. A., Gokceoglu, C., Sonmez, H., & Gorum, T. (2011). Medium-scale hazard mapping for shallow landslide initiation: the Buyukkoy Catchment Area (Cayeli, Rize, Turkey). Landslides, 8(4), 459-483.spa
dc.relation.referencesNelson, J. D., Overton, D. D., & Durkee, D. B. (2001). Depth of wetting and the active zone. In Expansive clay soils and vegetative influence on shallow foundations. American Society of Civil Engineers. 95-109.spa
dc.relation.referencesNie, W., Huang, R. Q., Zhang, Q. G., Xian, W., Xu, F. L., & Chen, L. (2015). Prediction of experimental rainfall-eroded soil area based on S-shaped growth curve model framework. Applied Sciences, 5(3), 157-173.spa
dc.relation.referencesNivia, A., Marriner, G., Kerr, A., & Tarrey, J. (2006). The Quebradagrande Complex: a Lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombian Andes. Journal of South American Earth Sciences, 21(4), 423- 436.spa
dc.relation.referencesNocentini, M., Tofani, V., Gigli, G., Fidolini, F., & Casagli, N. (2015). Modeling debris flows in volcanic terrains for hazard mapping: the case study of Ischia Island (Italy). Landslides, 12(5), 831-846.spa
dc.relation.referencesOlivares, L., & Damiano, E. (2007). Postfailure mechanics of landslides: laboratory investigation of flowslides in pyroclastic soils. Journal Of Geotechnical And Geoenvironmental Engineering, 133(1), 51-62.spa
dc.relation.referencesOlivares, L., & Picarelli, L. (2003). Shallow flowslides triggered by intense rainfalls on natural slopes covered by loose unsaturadated pyroclastic soils. Géotechnique, 53(2), 283-287.spa
dc.relation.referencesOlivares, L., Andreozzi, L., Damiano, E., Lampitiello, S., & Picarelli, L. (2003). Hydrological response of a steep slope in unsaturadated pyroclastic soils. In International Conference su Fast Slope Movements-Prediction and Prevention for Risk Mitigation 1(1), 391-397.spa
dc.relation.referencesOlivares, L., Damiano, E., & Picarelli, L. (2003). Wetting and flume tests on a volcanic ash. Fast Slope Movements. In Fast Slope Movements 1(1), 399-404.spa
dc.relation.referencesOrganización Meteorológica Mundial. (2012). Glosario Internacional de Hidrología. Ginebra: UNESCO.spa
dc.relation.referencesPachón Gómez, J. A., Mejía Fernández, F., & Zambrano Nájera, J. D. C. (2007). Sistema Integrado de Monitoreo Ambiental de Caldas–SIMAC. Red de estaciones meteorológicas e hidrometeorológicas automáticas de Manizales Estaciones para la gestión del riesgo ante desastres por deslizamientos. Primera Parte. Instituto de Estudios Ambientales (IDEA).spa
dc.relation.referencesPagano, L., Picarelli, L., Rianna, G., & Urciuoli, G. (2010). A simple numerical procedure for timely prediction of precipitation-induced landslides in unsaturadated pyroclastic soils. Landslides, 7(3), 273-289.spa
dc.relation.referencesPagano, L., Zingariello, M. C., & Vinale, F. (2008, June). A large physical model to simulate flowslides in pyroclastic soils. In Proceedings of the 1st European Conference on Unsaturadated Soils, E-UNSATURADO, 111-115.spa
dc.relation.referencesPatterson, B. M., & Bekele, E. B. (2011). A novel technique for estimating wetting front migration rates through the vadose zone based on changes in groundwater velocity. Journal Of Hydrology, 409(1-2), 538-544.spa
dc.relation.referencesPereira, S., Ramos, A. M., Rebelo, L., Trigo, R. M., & Zêzere, J. L. (2018). A centennial catalogue of hydro-geomorphological events and their atmospheric forcing. Advances In Water Resources, 122, 98-112.spa
dc.relation.referencesPereira, S., Santos, P. P., Zêzere, J. L., Tavares, A. O., Garcia, R. A. C., & Oliveira, S. C. (2020). A landslide risk index for municipal land use planning in Portugal. Science of The Total Environment, 139463.spa
dc.relation.referencesPeruccacci, S., Brunetti, M. T., Gariano, S. L., Melillo, M., Rossi, M., & Guzzetti, F. (2017). Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology, 290, 39-57.spa
dc.relation.referencesPeruccacci, S., Brunetti, M. T., Luciani, S., Vennari, C., & Guzzetti, F. (2012). Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology, 139, 79-90.spa
dc.relation.referencesPhilip, J. R. (1957). The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil science, 84(3), 257-264.spa
dc.relation.referencesPhilip, J. R. (1969). Theory of infiltration. In Advances In Hydroscience 5(1), 215- 296.spa
dc.relation.referencesPhilip, J. R. (1975). The growth of disturbances in unstable infiltration flows. Soil Science Society of America Journal, 39(6), 1049-1053.spa
dc.relation.referencesPicarelli, L., Olivares, L., Comegna, L., & Damiano, E. (2008). Mechanical aspects of flow-like movements in granular and fine grained soils. Rock Mechanics and Rock Engineering, 41(1), 179.spa
dc.relation.referencesPiciullo, L., Calvello, M., & Cepeda, J. M. (2018). Territorial early warning systems for rainfall-induced landslides. Earth-Science Reviews, 179, 228-247.spa
dc.relation.referencesPlazas, J. M. (2010). Caracterización petrográfica y termobarométrica del Stock Tonalítico-Granodiorítico de Manizales. Trabajo de Grado. Universidad Nacional de Colombia. Sede Bogotá, 1-21.spa
dc.relation.referencesPresidencia de la República de Colombia. (2007). Decreto 3600 de 2007. Bogotá D.C.: Presidencia de Colombia.spa
dc.relation.referencesPromper, C., Gassner, C., & Glade, T. (2015). Spatiotemporal patterns of landslide exposure–a step within future landslide risk analysis on a regional scale applied in Waidhofen/Ybbs Austria. International Journal of Disaster Risk Reduction, 12, 25-33.spa
dc.relation.referencesQuintero, J. (2013). Diagnóstico de la gestión integral del riesgo por inundaciones y avenidas torrenciales en los ríos urbanos del Departamento de Caldas. Manizales: Universidad Católica de Manizales.spa
dc.relation.referencesRaats, P. (1973). Unstable wetting fronts in uniform and nonunifom soil. Soil Science Society of America, 37(5), 681-685.spa
dc.relation.referencesRaats, P. A. C. (1973). Unstable Wetting Fronts in Uniform and Nonuniform Soils 1. Soil Science Society of America Journal, 37(5), 681-685.spa
dc.relation.referencesRamirez, I. (21 de Agosto de 2018). Agenda Manizales - Radio Online. Obtenido de Más obras de estabilidad para mitigar el riesgo en Manizales: http://islenramirez.com/mas-obras-de-estabilidad-para-mitigar-el-riesgo-enmanizales/spa
dc.relation.referencesRamos, H. (2007). A non-standard explicit integration scheme for initial-value problems. Applied Mathematics and Computation, 189(1), 710-718spa
dc.relation.referencesRao, M. D., Raghuwanshi, N. S., & Singh, R. (2006). Development of a physically based 1D-infiltration model for irrigated soils. Agricultural water management, 85(1-2), 165-174spa
dc.relation.referencesRawls, W., Brakensick, D., & Miller, N. (1982). Green-Ampt infiltration parameters from soils data. Journal of Hydraulic Engineering, 109(1), 62-70.spa
dc.relation.referencesRemondo, J., Bonachea, J., & Cendrero, A. (2008). Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology, 94(3-4), 496-507.spa
dc.relation.referencesRestrepo, J. (1986). Metamorfismo en el sector norte de la Cordillera Central de Colombia. Informe para promoción a profesor titular. Medellín: Universidad Nacional de Colombia, Sede Medellín. 1-276.spa
dc.relation.referencesRichards, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1(5), 318-333.spa
dc.relation.referencesRichards, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1(5), 318-333.spa
dc.relation.referencesRobinson, J. D., Vahedifard, F., & AghaKouchak, A. (2017). Rainfall-triggered slope instabilities under a changing climate: comparative study using historical and projected precipitation extremes. Canadian Geotechnical Journal, 54(1), 117-127.spa
dc.relation.referencesRodríguez, G., & Arango, M. (2013). Reinterpretación geoquímica y radiométrica de las metabasitas del Complejo Arquía. Boletín de Geología. 35(2), 65-81.spa
dc.relation.referencesRodríguez-Iturbe, I., & Porporato, A. (2007). Ecohydrology of water-controlled ecosystems: soil moisture and plant dynamics. Cambridge University Press.spa
dc.relation.referencesRosete Vergés, F. A., Enríquez Hernández, G., & Aguirre von Wobeser, E. (2013). El componente del riesgo en el Ordenamiento Ecológico del Territorio: el caso del Ordenamiento Ecológico Regional y Marino del Golfo de México y Mar Caribe. Investigaciones Geográficas, (80), 07-20.spa
dc.relation.referencesRushton, K. (1997). Recharge of Phreatic Aquifers in (Semi-) Arid Areas. IAH Publication, (19), 215-277.spa
dc.relation.referencesSánchez, V., García, C. M., & Guzmán, C. A. (2012). Aspectos petrográficos, diagenéticos y de procedencia tectónica de las unidades aflorantes en la Cuenca neógena de Palestina, Caldas. Geología colombiana, 37, 6-7.spa
dc.relation.referencesSantoso, A. M., Phoon, K. K., & Quek, S. T. (2011). Effects of soil spatial variability on rainfall-induced landslides. Computers & Structures, 89(11-12), 893-900.spa
dc.relation.referencesSegoni, S., Piciullo, L., & Gariano, S. L. (2018a). Preface: Landslide early warning systems: monitoring systems, rainfall thresholds, warning models, performance evaluation and risk perception. Natural Hazards Earth System Sciences, 18, 3179–3186.spa
dc.relation.referencesSegoni, S., Piciullo, L., & Gariano, S. L. (2018b). A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides, 15(8), 1483-1501.spa
dc.relation.referencesSegoni, S., Rosi, A., Fanti, R., Gallucci, A., Monni, A., & Casagli, N. (2018). A regional-scale landslide warning system based on 20 years of operational experience. Water, 10(10), 1297.spa
dc.relation.referencesSegura, S. R. y M. Regueiro. (2009). Mapas de riesgos naturales en la ordenación territorial y urbanística, Ministerio de Vivienda, Universidad Complutense de Madrid.spa
dc.relation.referencesSelby, M. J. (1993). Hillslope Materials and Processes Oxford Univ. Pressspa
dc.relation.referencesSelker, J., Parlange, J. Y., & Steenhuis, T. (1992). Fingered flow in two dimensions: 2. Predicting finger moisture profile. Water Resources Research, 28(9), 2523-2528.spa
dc.relation.referencesSerrano, S. E. (2001). Explicit solution to Green and Ampt infiltration equation. Journal of Hydrologic Engineering, 6(4), 336-340.spa
dc.relation.referencesSerrano, S. E. (2003). Improved decomposition solution to Green and Ampt equation. Journal of Hydrologic Engineering, 8(3), 158-160.spa
dc.relation.referencesServicio Geológico Colombiano. (2012). Propuesta Metodológica Sistémica Para La Generación de Mapas Geomorfológicos Analíticos Aplicados a La Zonificación De Amenaza Por Movimientos En Masa Escala 1:100.000. Bogotá, Colombia: Ministerio de Minas y Energía.spa
dc.relation.referencesServicio Geológico Colombiano. (2016). Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa. Bogotá D.C.: MinMinas.spa
dc.relation.referencesServicio Geológico Colombiano (2017). Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimiento en masa. Bogotá D.C.: MinMinasspa
dc.relation.referencesShen, H., Zheng, F., Wen, L., Lu, J., & Jiang, Y. (2015). An experimental study of rill erosion and morphology. Geomorphology, 231, 193-201.spa
dc.relation.referencesSimon, A., & Collison, A. J. (2002). Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth surface processes and landforms, 27(5), 527-546.spa
dc.relation.referencesSingh, D. K., Rajput, T. B. S., Sikarwar, H. S., Sahoo, R. N., & Ahmad, T. (2006). Simulation of soil wetting pattern with subsurface drip irrigation from line source. Agricultural water management, 83(1-2), 130-134.spa
dc.relation.referencesSmith, R. E. (1972). The infiltration envelope: results from a theoretical infiltrometer. Journal of Hydrology, 17(1-2), 1-22.spa
dc.relation.referencesSmith, R. E., & Parlange, J. Y. (1978). A parameter‐efficient hydrologic infiltration model. Water Resources Research, 14(3), 533-538.spa
dc.relation.referencesSorbino, G., & Nicotera, M. V. (2013). Unsaturadated soil mechanics in rainfallinduced flow landslides. Engineering Geology, 165, 105-132.spa
dc.relation.referencesSpringman, S. M., Thielen, A., Kienzler, P., & Friedel, S. (2013). A long-term field study for the investigation of rainfall-induced landslides. Géotechnique, 63(14), 1177-1193.spa
dc.relation.referencesSridharan, A. (1990). General report: engineering properties of tropical soils. In International Conference On Geomechanics In Tropical Soils. 2, 527-540.spa
dc.relation.referencesStokes, A., Douglas, G. B., Fourcaud, T., Giadrossich, F., Gillies, C., Hubble, T., Kim, J. H., Loades, K. W., Mao, Z., Mclvor, I. R., Mickovski, S. B., Mitchell, S., Osman, N., Phillips, C., Poesen, J., Polster, D., Preti, F., Raymond, P., Rey, F., Schwarz, M., Walker, L. R. (2014). Ecological mitigation of hillslope instability: ten key issues facing researchers and practitioners. Plant and Soil, 377(1-2), 1-23.spa
dc.relation.referencesSun, H. W., Wong, H. N., & Ho, K. K. S. (1998). Analysis of infiltration in unsaturadated ground. In Proceedings Of The Annual Seminar On Slope Engineering In Hong Kong. 101-109.spa
dc.relation.referencesTamai, N., Asaeda, T., & Jeevaraj, C. G. (1987). Fingering in two-dimensional, homogeneous, unsaturadated porous media. Soil science, 144(2), 107-112.spa
dc.relation.referencesTamayo, J., & Correa, V. (2010). Petrografía y datación de circones detríticos en las facies cuarzosas del complejo Quebradagrande (Cretácico Inferior) de la Cordillera Central. Manizales: Universidad de Caldas.spa
dc.relation.referencesTarhan, F. (1991). Dogu Karadeniz heyelanlarina genel bir bakis. 1. Ulusal Heyelan Sempozyumu Bildiriler Kitabi, Trabzon, 38-63.spa
dc.relation.referencesTerlien, M. T. (1997). Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia). Geomorphology, 20(1), 165-175spa
dc.relation.referencesTerzaghi, K. (1950). Mechanism of landslides. Application of geology to engineering practice, Geological Society of America, 83-123.spa
dc.relation.referencesToro, L., Hincapié, G., & Mesa, C. (2010). Petrografía y geoquímica de los metagabros del río Olivares sector NNW de Manizales (Caldas). Boletín de Geología, 32(2), 73-83.spa
dc.relation.referencesToussaint, J. (1996). Evolución Geológica de Colombia, Cretácico. Medellín: Universidad Nacional de Colombia. Medellín, 142.spa
dc.relation.referencesToussaint, J., & Restrepo, J. (1974). Algunas consideraciones sobre la evolución de los Andes Colombianos. Publicación especial geológica, (4).spa
dc.relation.referencesToussaint, J., & Restrepo, J. (1978). Edad K/Ar de dos rocas básicas del flanco noroccidental de la cordillera Central. Boletín de Ciencias de la Tierra Nº15. Universidad Nacional de Colombia. Medellín.spa
dc.relation.referencesTrandafir, A. C., Sidle, R. C., Gomi, T., & Kamai, T. (2008). Monitored and simulated variations in matric suction during rainfall in a residual soil slope. Environmental Geology, 55(5), 951-961.spa
dc.relation.referencesTu, X. B., Kwong, A. K. L., Dai, F. C., Tham, L. G., & Min, H. (2009). Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides. Engineering Geology, 105(1-2), 134-150.spa
dc.relation.referencesTullis, B. P., & Wright, S. J. (2007). Wetting front instabilities: a three-dimensional experimental investigation. Transport in Porous Media, 70(3), 335-353.spa
dc.relation.referencesTurner, A.K. (2018). Impactos sociales y ambientales de los deslizamientos de tierra. Soluciones de Infraestructuras Innovadoras, 3(1), 70.spa
dc.relation.referencesUNISDR, 2009. Terminology on disaster risk reduction. United Nations, Geneve.spa
dc.relation.referencesUniversidad Nacional de Colombia - Sede Manizales & Corpocaldas. (2012). Insumos técnicos para el ajuste del Plan de Ordenamiento Territorial de Manizales con base en las evaluaciones ad hoc de amenaza, vulnerabilidad y riesgo por deslizamientos, inundaciones y eventos sísmicos. Manizales: Universidad Nacional de Colombia.spa
dc.relation.referencesUniversidad Nacional de Colombia - Sede Manizales. (2014). Plan de Ordenamiento y Manejo Ambiental de la Cuenca del río Chinchiná. Manizales: Universidad Nacional de Colombiaspa
dc.relation.referencesUriel, S., & Serrano, A. A. (1975). Geotechnical properties of two collapsible volcanic soils of low bulk density at the site of two dams in Canary Islands-Spain: Conference. Session four. 12F, 2T, 9R. Procces Eighth International Conference on Soil Mechanics foundation Engineering Moscow, 2(2) 257- 264. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 12 (4) 54spa
dc.relation.referencesUyeturk, C. E., Huvaj, N., Bayraktaroglu, H., & Huseyinpasaoglu, M. (2020). Geotechnical characteristics of residual soils in rainfall-triggered landslides in Rize, Turkey. Engineering Geology, 264, 105318.spa
dc.relation.referencesValadao, P., Gaspar, J. L., Queiroz, G., & Ferreira, T. (2002). Landslides density map of S. Miguel Island, Azores archipelago.spa
dc.relation.referencesValencia, J., & Buitrago. (2002). Estudio macrogeotectónico de la ladera norte del río Pocito (Microcuenca de la quebrada del Uvito y parte baja de la quebrada Las Brujas) y estudio macrogeotectónico de la red de distribución del acueducto al sur del municipio de Salamina (Caldas). Manizales: Universidad de Caldas.spa
dc.relation.referencesVan Westen, C. J., Van Asch, T. W., & Soeters, R. (2006). Landslide hazard and risk zonation—why is it still so difficult?. Bulletin of Engineering geology and the Environment, 65(2), 167-184.spa
dc.relation.referencesVan Zuidam, R. A. (1985). Aerial photo-interpretation in terrain analysis and geomorphic mapping. International Institute for Aerospace Survey and Earth Science (ITC)spa
dc.relation.referencesVan Zuidman, R. (1985). Aerial photo interpretation in terrain analysis and geomorphical. The Hauge: International Institute for Aerospace Survey ad Earth Science. ITC. Smith Publishers.spa
dc.relation.referencesVanapalli, S. K., Fredlund, D. G., Pufahl, D. E., & Clifton, A. W. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal, 33(3), 379-392.spa
dc.relation.referencesVarnes, D. J. (1984). Landslide hazard zonation: a review of principles and practice. Ed. 3. Naciones Unidas.spa
dc.relation.referencesVasu, N. N., Lee, S. R., Pradhan, A. M. S., Kim, Y. T., Kang, S. H., & Lee, D. H. (2016). A new approach to temporal modelling for landslide hazard assessment using an extreme rainfall induced-landslide index. Engineering Geology, 215, 36-49.spa
dc.relation.referencesVaughan, P. R., Maccarini, M., & Mokhtar, S. M. (2009). Indexing the engineering properties of residual soil. In Selected papers on geotechnical engineering by PR Vaughan. Thomas Telford Publishing.196-211.spa
dc.relation.referencesVaz, T., Zêzere, J. L., Pereira, S., Oliveira, S. C., Garcia, R. A., & Quaresma, I. (2018). Regional rainfall thresholds for landslide occurrence using a centenary database. Natural Hazards & Earth System Sciences, 18(4), 1037-1054.spa
dc.relation.referencesVélez, J. (22 de Mayo de 2016). Distribuciones estadísticas en hidrología. Hidrología aplicada. Manizales, Caldas, Colombia: Universidad Nacional de Colombia.spa
dc.relation.referencesVinasco, C., Cordani, U., & Vasconcelos, P. (2001). 40Ar/39Ar dates in Central Cordillera of Colombia: Evidence for an Upper Triassic regional tectonomagmatic event. SSAGI, 638-641.spa
dc.relation.referencesVizika, O. (1989). Parametric experimental study of forced imbibition in porous media. Physico Chemical Hydrodynamics, 11(2), 187-204.spa
dc.relation.referencesWang, Z., Feyen, J., Nielsen, D. R., & van Genuchten, M. T. (1997). Two‐phase flow infiltration equations accounting for air entrapment effects. Water Resources Research, 33(12), 2759-2767.spa
dc.relation.referencesWeber, J., & Apestegui, L. (2013). Parámetros del modelo de infiltración de Green y Ampt en suelos de la ciudad de Córdoba, Argentina. Cuadernos del CURIHAM, 19, 87-103.spa
dc.relation.referencesWeir, G. J., & Kissling, W. M. (1992). The influence of airflow on the vertical infiltration of water into soil. Water resources research, 28(10), 2765-2772.spa
dc.relation.referencesWelle, T., & Birkmann, J. (2015). The World Risk Index–An approach to assess risk and vulnerability on a global scale. Journal of Extreme Events, 2(1), 1550003.spa
dc.relation.referencesWesley, L. D. (1988). Engineering classification of residual soils. In International Conference On Geomechanics In Tropical Soils. 2(1), 77-84spa
dc.relation.referencesWhite, I. D., & Mottershead, D. N. (1998). Environmental systems: an introductory text. Psychology Press.spa
dc.relation.referencesWhite, I., Colombera, P. M., & Philip, J. R. (1977). Experimental studies of wetting front instability induced by gradual change of pressure gradient and by heterogeneous porous media. Soil Science Society of America Journal, 41(3), 483-489.spa
dc.relation.referencesWood, W. W., & Sanford, W. E. (1995). Chemical and isotopic methods for quantifying ground‐water recharge in a regional, semiarid environment. Groundwater, 33(3), 458-468.spa
dc.relation.referencesWu, J., Zhang, R., & Yang, J. (1996). Analysis of rainfall-recharge relationships. Journal of Hydrology, 177(1-2), 143-160.spa
dc.relation.referencesWu, L. Z., Zhang, L. M., Zhou, Y., Xu, Q., Yu, B., Liu, G. G., & Bai, L. Y. (2018). Theoretical analysis and model test for rainfall-induced shallow landslides in the red-bed area of Sichuan. Bulletin of Engineering Geology and the Environment, 77(4), 1343-1353.spa
dc.relation.referencesWu, L. Z., Zhou, Y., Sun, P., Shi, J. S., Liu, G. G., & Bai, L. Y. (2017). Laboratory characterization of rainfall-induced loess slope failure. Catena, 150, 1-8.spa
dc.relation.referencesWu, T. H., McKinnell III, W. P., & Swanston, D. N. (1979). Strength of tree roots and landslides on Prince of Wales Island, Alaska. Canadian Geotechnical Journal, 16(1), 19-33.spa
dc.relation.referencesXu, G., Zhang, T., Li, Z., Li, P., Cheng, Y., & Cheng, S. (2017). Temporal and spatial characteristics of soil water content in diverse soil layers on land terraces of the Loess Plateau, China. Catena, 158, 20-29.spa
dc.relation.referencesYeh, H. F., Lee, C. C., & Lee, C. H. (2008). A rainfall-infiltration model for unsaturadated soil slope stability. Sustainable Environment Research, 18(2), 271-278.spa
dc.relation.referencesYu, L., & Wardlaw, N. C. (1986). The influence of wettability and critical pore-throat size ratio on snap—off. Journal of Colloid and Interface Science, 109(2), 461-472.spa
dc.relation.referencesZehe, E., Gräff, T., Morgner, M., Bauer, A., & Bronstert, A. (2010). Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains. Hydrology and Earth System Sciences, 14(6), 873.spa
dc.relation.referencesZêzere, J. L., Oliveira, C., Pereira, S., Garcia, R. A., Melo, R., Vaz, T., Tavares, A., Bateira, C., Santos, P., Meneses, B., & Quaresma, I. (2018). Construction of a National Landslide Susceptibility Map for Portugal. In EGU General Assembly Conference Abstracts. 20(1), 4541.spa
dc.relation.referencesZhang, Q. G., Huang, R. Q., Liu, Y. X., Su, X. P., Li, G. Q., & Nie, W. (2016). A physically—based geometry model for transport distance estimation of rainfall-eroded soil sediment. Applied Sciences, 6(2), 34.spa
dc.relation.referencesZhang, X., Li, P., Li, Z. B., Yu, G. Q., & Li, C. (2018). Effects of precipitation and different distributions of grass strips on runoff and sediment in the loess convex hillslope. Catena, 162, 130-140.spa
dc.relation.referencesZhong, B., Peng, S., Zhang, Q., Ma, H., & Cao, S. (2013). Using an ecological economics approach to support the restoration of collapsing gullies in southern China. Land Use Policy, 32, 119-124.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.lembMovimiento de tierras
dc.subject.lembGeología
dc.subject.lembGeomorfología
dc.subject.proposalFrente húmedospa
dc.subject.proposalWetting fronteng
dc.subject.proposalMovimientos en masaspa
dc.subject.proposalMass movementseng
dc.subject.proposalFormaciones superficialesspa
dc.subject.proposalShallow formationseng
dc.subject.proposalInfiltraciónspa
dc.subject.proposalInfiltrationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
dc.description.degreenameMagister en Ciencias de la Tierraspa
dc.publisher.programMaestría en Ciencias de la Tierraspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem