Mostrar el registro sencillo del ítem

dc.contributor.advisorTorres Osorio, Javier Ignacio
dc.contributor.advisorZamorano-Montañez, Carolina
dc.contributor.authorVilla Carmona, Elisabed
dc.date.accessioned2023-11-11T14:51:13Z
dc.date.available2023-11-11T14:51:13Z
dc.date.issued2023-11-11
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/19679
dc.descriptionIlustraciones, gráficasspa
dc.description.abstractspa:El tomate es la hortaliza con mayor importancia económica y alimenticia en el mundo. Para satisfacer la demanda creciente, los sistemas productivos deben integrar métodos novedosos con criterios de rentabilidad, sostenibilidad ambiental y bienestar social. El tratamiento magnético de semillas es una técnica de aplicación accesible, bajo costo y puede favorecer el metabolismo vegetal. Este trabajo de tipo explicativo- validatorio, buscó analizar el efecto del tratamiento de semillas con campo magnético estático no homogéneo sobre el desarrollo vegetativo de Solanum lycopersicum L., a través de la evaluación de la fenología y la cinética del crecimiento de la planta. Se evaluaron variables morfométricas y bioquímicas no destructivas dos veces por semana. El área foliar se calculó sobre la tercera hoja verdadera por tratamiento de imagen con la aplicación para dispositivos móviles Easy leaf area free, la altura de la planta se midió con un distanciómetro láser Fluke 480D, el diámetro del tallo se midió con un pie de rey Mitutoyo absolute digimatic (CD-8” CSX-B), el contenido de clorofilas se cuantificó con el clorofilómetro portátil Spad 502 Plus (Konica Minolta INC) en dos hojas por planta. La metodología para el tratamiento magnético de semillas de tomate fue desarrollada experimentalmente por el grupo de investigación en Magnetobiología. Los resultados indicaron que las plantas generadas por tratamiento magnético de semillas presentaron mayor altura, diámetro del tallo, número de hojas, área foliar y contenido de clorofila que las plantas generadas de semillas no tratadas. Las plantas provenientes de semillas tratadas magnéticamente presentaron 21 % más área foliar y 9 % más altura que las plantas germinadas de semillas que no fueron expuestas a campo magnético. Por tanto, se concluye que la exposición de semillas de tomate a campo magnético estático no homogéneo favorece el desarrollo vegetativo de las plantas.spa
dc.description.abstracteng:The tomato is the vegetable with the greatest economic and nutritional importance in the world. To satisfy the increasing demand, the production systems must integrate innovative methods with criteria of profitability, environmental sustainability and social welfare. Magnetic seed treatment is an accessible, low-cost application technique that can promote plant metabolism. This validation-explanatory type work sought to analyze the effect of seed treatment with a non-homogeneous static magnetic field on the vegetative development of Solanum lycopersicum L., through the evaluation of the phenology and the kinetics of plant growth. Non-destructive morphometric and biochemical variables were evaluated twice week. Leaf area was calculated on the third true leaf by image processing with the Easy leaf area free mobile application, plant height was measured with a Fluke 480D laser distance meter, stem diameter was measured with a caliper Mitutoyo absolute digimatic (CD8” CSX-B), the chlorophyll content was quantified with the Spad 502 Plus portable chlorophyllometer (Konica Minolta INC) in two leaves per plant. The methodology for the magnetic treatment of tomato seeds was developed experimentally by the Magnetobiology research group. The results indicated that plants generated by magnetic seed treatment had greater height, stem diameter, number of leaves, leaf area and chlorophyll content than plants generated from untreated seeds. Plants from magnetically treated seeds had 21 % more leaf area and 9 % more height than plants germinated from seeds that were not exposed to a magnetic field. Therefore, it is concluded that the exposure of tomato seeds to a non-homogeneous static magnetic field favors the vegetative development of the plants.eng
dc.description.tableofcontents1. Resumen / 2. Abstract / 3. Introducción / 4. Materiales y métodos / 5. Resultados / 6. Discusión / 7. Conclusiones / 8. Bibliografía / 9. Anexosspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleAnálisis del desarrollo vegetativo de plantas de Solanum lycopersicum L., generadas de semillas tratadas magnéticamente.spa
dc.typeTrabajo de grado - Pregradospa
dc.contributor.researchgroupCampos Electromagnéticos, Medio Ambiente y Salud Pública (Categoría C)spa
dc.description.degreelevelUniversitariospa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placeManizalesspa
dc.relation.referencesAbdel Latef, A. A. H., Dawood, M. F., Hassanpour, H., Rezayian, M., & Younes, N. A. (2020). Impact of the static magnetic field on growth, pigments, osmolytes, nitric oxide, hydrogen sulfide, phenylalanine ammonia-lyase activity, antioxidant defense system, and yield in lettuce. Biology, 9(7), 172. https://doi.org/10.3390/biology9070172spa
dc.relation.referencesAgustrina, R., Nurcahyani, E., Pramono, E., Listiana, I., & Nastiti, E. (2016). The influence of magnetic field on the growth of tomato (Lycopersicum esculentum) infected with Fusarium oxysporum. INSIST, 1(1). https://doi.org/10.23960/ins.v1i1.16.spa
dc.relation.referencesAgustrina, R., Nurcahyani, E., Irawan, B., Pramono, E., Listiani, I., Nastiti, E., & Hadi, S. (2020). The resistance of tomato plants from seed treated with a magnetic field of 0.2 m T against Fusarium sp. Ecology, Environment and Conservation Journal Papers, 26(3), 1036-1042.spa
dc.relation.referencesAladjadjiyan A. (2002). Study of the influence of magnetic field on some biological characteristics of Zea mays.spa
dc.relation.referencesAladjadjiyan, A. (2007). The use of physical methods for plant growing stimulation in Bulgaria. Journal of Central European Agriculture, 8(3), 369-380. https://www.researchgate.net/publication/27203889_The_use_of_physical_methods_fo r_plant_growing_stimulation_in_Bulgariaspa
dc.relation.referencesAladjadjiyan, A. (2010). Influence of stationary magnetic field on lentil seeds. Int. Agrophys, 24(3), 321-324spa
dc.relation.referencesAladjadjiyan, A. & Zahariev, A. (2002). Influence of stationary magnetic field on the absorption spectra of the photosynthetic apparatus of some ornamental perennial species. Bulg. J. Phys, 29(3-4), 179-183.spa
dc.relation.referencesAllen, F., T. Center y E. Mattison. 2012. In situ estimates of water hyacinth leaf tissue nitrogen using a SPAD502 chlorophyll meter. Aquat. Bot. 100, 72-75. https://doi.org/10.1016/j.aquabot.2012.03.005spa
dc.relation.referencesAnand, A., Nagarajan, S., Verma, A. P. S., Joshi, D. K., Pathak, P. C., & Bhardwaj, J. (2012). Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). http://nopr.niscpr.res.in/handle/123456789/13593spa
dc.relation.referencesAnand, A., Kumari, A., Thakur, M., & Koul, A. (2019). Hydrogen peroxide signaling integrates with phytohormones during the germination of magneto primed tomato seeds. Scientific reports. https://doi.org/10.1038/s41598-019-45102-5spa
dc.relation.referencesAzcón-Bieto, J. & Talón, M. (2008). Fundamentos de Fisiología Vegetal. InteramericanaMcGraw-Hill, Madrid.spa
dc.relation.referencesBaghel, L., Kataria, S., & Guruprasad, K. N. (2016). Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics, 37(7), 455-470. https://doi.org/10.1002/bem.21988spa
dc.relation.referencesBaghel, L., Kataria, S., & Guruprasad, K. N. (2018). Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica, 56(2), 718-730. https://doi.org/10.1007/s11099-017-0722-3spa
dc.relation.referencesBaghel, L., Kataria, S., & Jain, M. (2019). Mitigation of adverse effects of salt stress on germination, growth, photosynthetic efficiency and yield in maize (Zea mays L.) through magnetopriming. Acta Agrobotanica, 72(1). https://doi.org/10.5586/aa.1757spa
dc.relation.referencesBelyavskaya, N. A. (2004). Biological effects due to weak magnetic fields on plants. Advances in space Research, 34(7), 1566-1574spa
dc.relation.referencesCastañeda, C. S., Almanza-Merchán, P. J., Pinzón, E. H., CELY-REYES, G. E., & SERRANOCELY, P. A. (2018). Estimación de la concentración de clorofila mediante métodos no destructivos en vid (Vitis vinifera L.) cv. Riesling Becker. Revista Colombiana de Ciencias Hortícolas, 12(2), 329-337. http://repositorio.uptc.edu.co/handle/001/2929spa
dc.relation.referencesCoste, S., Baraloto, C., Leroy, C., Marcon, É., Renaud, A., Richardson, A. D., ... & Hérault, B. (2010). Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana.Annals of Forest Science, 67, 607-607. https://doi.org/10.1051/forest/2010020spa
dc.relation.referencesDhawi, F. (2014). Why magnetic fields are used to enhance a plant’s growth and productivity? Annual Research & Review in Biology, 886-896. https://www.researchgate.net/profile/FatenDhawi/publication/305933673_Why_Magnetic_Fields_are_Used_to_Enhance_a_Plant %27s_Growth_and_Productivity/links/5805893008ae98cb6f2a78b0/Why-MagneticFields-are-Used-to-Enhance-a-Plants-Growth-and-Productivity.pdfspa
dc.relation.referencesDe Souza, A., Garcí, D., Sueiro, L., Gilart, F., Porras, E., & Licea, L. (2006). Pre‐sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 27(4), 247-257. https://doi.org/10.1002/bem.20206spa
dc.relation.referencesDe Souza-Torres, A., Sueiro-Pelegrín, L., Zambrano-Reyes, M., Macías-Socarras, I., GonzálezPosada, M., & García-Fernández, D. (2020). Extremely low frequency non-uniform magnetic fields induce changes in water relations, photosynthesis and tomato plant growth. International Journal of Radiation Biology, 96(7), 951-957. https://doi.org/10.1080/09553002.2020.1748912spa
dc.relation.referencesDíaz Marín, C. (2014). Evaluación del dispositivo portátil SPAD-502 como indicador de la concentración de nitrógeno en plantas de café "Coffea arabica".spa
dc.relation.referencesDziwulska-Hunek, A., Kornarzyńska-Gregorowicz, A., Niemczynowicz, A., & Matwijczuk, A. (2020). Influence of electromagnetic stimulation of seeds on the photosynthetic indicators in Medicago sativa L. leaves at various stages of development. Agronomy, 10(4), 594. https://doi.org/10.3390/agronomy10040594spa
dc.relation.referencesEaslon, H. M., & Bloom, A. J. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in plant sciences, 2(7), 1400033.spa
dc.relation.referencesErcan, I., Tombuloglu, H., Alqahtani, N., Alotaibi, B., Bamhrez, M., Alshamrani, R., ... Kayed, T. S. (2022). Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence, and nutrient content of barley (Hordeum vulgare L.). Plant Physiology and Biochemistry, 170, 36-48. https://doi.org/10.1016/j.plaphy.2021.11.033spa
dc.relation.referencesFatima, A., Kataria, S., Prajapati, R., Jain, M., Agrawal, A. K., Singh, B., ... & Gadre, R. (2021). Magnetopriming effects on arsenic stress‐induced morphological and physiological variations in soybean involving synchrotron imaging. Physiologia Plantarum, 173(1), 88- 99.spa
dc.relation.referencesFAOSTAT. (2023). Food and Agricultural Organization of the United Nations. Naciones Unidas Para La Alimentación y La Agricultura. Disponible en: https://www.fao.org/faostat/es/#data/QCL. Con acceso el 07/07/2023.spa
dc.relation.referencesFischer, G., & Orduz-Rogríguez, J. O. (2012). Ecofisiología en frutales (No. Doc. 26022) COBAC, Bogotá).spa
dc.relation.referencesGallego-Bartolomé, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., ... & Blázquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109(33), 13446-13451. https://doi.org/10.1073/pnas.1119992109spa
dc.relation.referencesGolbaz, G., & Kaviani, B. (2019). Effect of Magnetic Field on Growth and Development Parameters of Rudbeckia hirta L. Seed in Dry and Humid Conditions. Journal of Ornamental Plants. http://jornamental.iaurasht.ac.ir/article_667497_2a6c219af03a733c1af09bf6fff9b2e0.pd fspa
dc.relation.referencesGoogle Earth. (2023). https://earth.google.com/web/search/FINCA+MARTINICA,+Risaralda,+Caldas,+Rep% c3%bablica+de+Colombia/@5.14182399,- 75.74234232,1127.42883701a,559.03947823d,35y,- 38.16107179h,44.99686749t,0r/data=CqQBGnoSdAokMHg4ZTQ3OWQxMWU4ZTg1 MDRmOjB4YjA2YjQ3ODdhYWEwNDNmGbgSy3c6kRRAIfMaYIuC71LAKjpGSU5DQS BNQVJUSU5JQ0EsIFJpc2FyYWxkYSwgQ2FsZGFzLCBSZXDDumJsaWNhIGRlIENvb G9tYmlhGAIgASImCiQJEceDl5goFEAR_uDjJDQUFEAZEei8CsHaUsAhyNYzJdzcUsAspa
dc.relation.referencesHunt, E., & Daughtry, C. S. (2014). Chlorophyll meter calibrations for chlorophyll content using measured and simulated leaf transmittances. Agronomy Journal, 106(3), 931-939.spa
dc.relation.referencesHussain, M. S., Dastgeer, G., Afzal, A. M., Hussain, S., & Kanwar, R. R. (2020). Eco-friendly magnetic field treatment to enhance wheat yield and seed germination growth. Environmental nanotechnology, monitoring & management, 14, 100299. https://doi.org/10.1016/j.enmm.2020.100299spa
dc.relation.referencesnternational Seed Testing Association. (1985). International rules for seed testing. Rules 1985. Seed science and technology, 13(2), 299-513spa
dc.relation.referencesKataria, S., Baghel, L., & Guruprasad, K. N. (2017). Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatalysis and agricultural biotechnology, 10, 83-90. https://doi.org/10.1016/j.bcab.2017.02.010spa
dc.relation.referencesKataria, S., Rastogi, A., Bele, A., & Jain, M. (2020). Role of nitric oxide and reactive oxygen species in static magnetic field pre-treatment induced tolerance to ambient UV-B stress in soybean. Physiology and Molecular Biology of Plants, 26(5), 931-945. https://doi.org/10.1007/s12298-020-00802-5spa
dc.relation.referencesKutby, A. M., Al-Zahrani, H. S., & Hakeem, K. R. (2020). Role of magnetic field and brassinosteroids in mitigating salinity stress in tomato (Lycopersicon esculentum L.). Int. J. Eng. Res. Technol, 9, 306-319. https://www.academia.edu/download/63676670/role-of-magnetic-field-and-brassinosteroids-in-IJERTV9IS06018820200619-130446- 18yei6p.pdfspa
dc.relation.referencesLaksmiari, K. (2021). Analysis Of Extremely Low Frequency (ELF) Magnetic Field Exposure Impact On The Mass Of Great Red Chili Plant (Capsicum annum L). JURNAL PEMBELAJARAN FISIKA, 10(1), 15-21. https://jurnal.unej.ac.id/index.php/JPF/article/download/22372/9675spa
dc.relation.referencesMcMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: one equation, two interpretations. Agricultural and forest meteorology, 87(4), 291-300.spa
dc.relation.referencesNobel, P. S. (1999). Physicochemical & environmental plant physiology. Academic press.spa
dc.relation.referencesNyakane, N. E., Markus, E. D., & Sedibe, M. M. (2019). The effects of magnetic fields on plants growth: a comprehensive review. Int J Food Eng, 5, 79-87. http://www.ijfe.org/uploadfile/2019/0322/20190322032557876.pdfspa
dc.relation.referencesPapadopoulos, A. P., & Ormrod, D. P. (1988). Plant spacing effects on photosynthesis and transpiration of the greenhouse tomato. Canadian Journal of Plant Science, 68(4), 1209- 1218.spa
dc.relation.referencesPinkard, EA, V. Patel y C. Mohammed. 2006. Determinación de clorofila y nitrógeno para Eucalyptus nitens y E. globulus cultivados en plantaciones utilizando un medidor no destructivo. Gestión de la ecología forestal 223: 211 – 217spa
dc.relation.referencesPodleśny, J., Podleśna, A., Gładyszewska, B., & Bojarszczuk, J. (2021). Effect of pre-sowing magnetic field treatment on enzymes and phytohormones in pea (Pisum sativum L.) seeds and seedlings. Agronomy, 11(3), 494. https://doi.org/10.3390/agronomy11030494spa
dc.relation.referencesRăcuciu, M. (2020). Development of tomato (Solanum lycopersicum L.) seedlings under the action of extremely low frequency magnetic field in a controlled environment conditions. In AIP Conference Proceedings (Vol. 2206, No. 1, p. 030003). AIP Publishing LLC. https://doi.org/10.1063/5.0000268spa
dc.relation.referencesRadhakrishnan, R. (2019). Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiology and Molecular Biology of Plants, 25(5), 1107-1119. https://doi.org/10.1007/s12298-019-00699-9spa
dc.relation.referencesRathod, G. R., & Anand, A. (2016). Effect of seed magneto-priming on growth, yield and Na/K ratio in wheat (Triticum aestivum L.) under salt stress. Indian Journal of Plant Physiology, 21, 15-22. https://doi.org/10.1007/s40502-015-0189-9spa
dc.relation.referencesRochalska, M. (2005). Influence of frequent magnetic field on chlorophyll content in leaves of sugar beet plants. Nukleonika, 50, 25-28. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BUJ6- 0005-0019/c/Influence_of_frequent_magnetic_field_on_chlorophyll.pdfspa
dc.relation.referencesRoss, J. J., O'neill, D. P., Wolbang, C. M., Symons, G. M., & Reid, J. B. (2001). Auxin-gibberellin interactions and their role in plant growth. Journal of plant growth regulation, 20(4), 336- 353. https://www.researchgate.net/profile/John-Ross-21/publication/11382927_AuxinGibberellin_Interactions_and_Their_Role_in_Plant_Growth/links/59ee683c458515435 0e8101e/Auxin-Gibberellin-Interactions-and-Their-Role-in-Plant-Growth.pdfspa
dc.relation.referencesSarraf, M., Kataria, S., Taimourya, H., Santos, L. O., Menegatti, R. D., Jain, M., ... & Liu, S. (2020). Magnetic field (MF) applications in plants: An overview. Plants, 9(9), 1139. https://doi.org/10.3390/plants9091139spa
dc.relation.referencesSchlemmer, MR, Francis, DD, Shanahan, JF y Schepers, JS (2005). Medición remota del contenido de clorofila en hojas de maíz con diferentes niveles de nitrógeno y contenido relativo de agua. Revista de agronomía , 97 (1), 106-112. https://doi.org/10.2134/agronj2005.0106spa
dc.relation.referencesShamshiri, R. R., Jones, J. W., Thorp, K. R., Ahmad, D., Man, H. C., & Taheri, S. (2018). Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review. International agrophysics, 32(2), 287-302. http://archive.sciendo.com/INTAG/intag.2018.32.issue2/intag-2017-0005/intag-2017-0005.pdfspa
dc.relation.referencesShine, M. B., Guruprasad, K. N., & Anand, A. (2011). Enhancement of germination, growth, and photosynthesis in soybean by pre‐treatment of seeds with magnetic field. Bioelectromagnetics, 32(6), 474-484. https://doi.org/10.1002/bem.20656spa
dc.relation.referencesSmall, D. P., Hüner, N. P., & Wan, W. (2012). Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics, 33(4), 298-308.spa
dc.relation.referencesSpaninks, K., Lamers, G., van Lieshout, J., & Offringa, R. (2023). Light quality regulates apical and primary radial growth of Arabidopsis thaliana and Solanum lycopersicum. Scientia Horticulturae, 317, 112082. https://doi.org/10.1016/j.scienta.2023.112082spa
dc.relation.referencesTaia, W. K., Al-Zahrani, H., & Kotbi, A. (2007). The effect of static magnetic forces on water contents and photosynthetic pigments in sweet basil Ocimum basilicum L.(Lamiaceae). Saudi J. Biol. Sci, 14, 103-107. https://www.researchgate.net/profile/WafaaTaia/publication/237434805_The_Effect_of_Static_Magnetic_Forces_on_Water_Conte nts_and_Photosynthetic_Pigments_in_Sweet_Basil_Ocimum_basilicum_L_Lamiaceae /links/5ff89e0045851553a02e6989/The-Effect-of-Static-Magnetic-Forces-on-WaterContents-and-Photosynthetic-Pigments-in-Sweet-Basil-Ocimum-basilicum-LLamiaceaespa
dc.relation.referencesTorres, J., Hincapie, E., & Gilart, F. (2018). Characterization of magnetic flux density in passive sources used in magnetic stimulation. Journal of Magnetism and Magnetic Materials, 449, 366–371. https://doi.org/10.1016/j.jmmm.2017.10.037.spa
dc.relation.referencesVashisth, A., Meena, N., & Krishnan, P. (2021). Magnetic field affects growth and yield of sunflower under different moisture stress conditions. Bioelectromagnetics, 42(6), 473- 483. https://doi.org/10.1002/bem.22354spa
dc.relation.referencesVasilevski, G. (2003). Perspectives of the application of biophysical methods in sustainable agriculture. Bulgarian Journal of Plant Physiology, 29(3), 179-186. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a2127d890812cdea d37291ba99f326c15c920ff0spa
dc.relation.referencesWillige, B. C., Isono, E., Richter, R., Zourelidou, M., & Schwechheimer, C. (2011). Gibberellin regulates PIN-FORMED abundance and is required for auxin transport–dependent growth and development in Arabidopsis thaliana. The Plant Cell, 23(6), 2184-2195. https://doi.org/10.1105/tpc.111.086355spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalTomatespa
dc.subject.proposalCampo magnético estático no homogéneospa
dc.subject.proposalCrecimientospa
dc.subject.proposalFenologíaspa
dc.subject.unescoCiencias de la tierra
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.description.degreenameIngeniero(a) Agronómico(a)spa
dc.publisher.programIngeniería Agronómicaspa
dc.description.researchgroupMagnetobiologíaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem