Mostrar el registro sencillo del ítem

dc.contributor.advisorGonzález Correa, Carlos Augusto
dc.contributor.authorChaustre Torres, Linda Adori
dc.contributor.authorMejía Loaiza, Carolina
dc.date.accessioned2023-10-11T00:46:08Z
dc.date.available2023-10-11T00:46:08Z
dc.date.issued2023-10-10
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/19645
dc.descriptionIlustraciones, fotos, gráficasspa
dc.description.abstractspa:La piel es el órgano más grande del cuerpo humano, está permanentemente expuesta a agentes nocivos, muchos de los cuales están asociados al cáncer de piel. A la hora de explorar lesiones dermatológicas, es útil que el médico disponga de información adicional más allá de la que puede obtener a simple vista. Durante este siglo, algunos autores han estado utilizando la espectroscopia de bioimpedancia eléctrica (EBIE) como una herramienta diagnóstica para explorar lesiones cutáneas, existiendo ya un dispositivo comercial para este fin. Aunque con resultados y aceptación aparentemente muy buenos, el equipo y su uso son costosos y están fuera de nuestro medio. Por este motivo, con el objetivo de superar la dificultad que supone para la EBIE la altísima resistividad de la epidermis, proponemos una posible alternativa con el uso de un arreglo hexapolar con agujas de acupuntura utilizadas como electrodos, como una posible alternativa a un mejor costo. En este artículo se presenta el procedimiento de calibración para dicho arreglo, donde son posibles profundidades teóricas de aproximadamente 30 y 66 mm, así como la simetría y el estado metabólico de un volumen explorado. Este procedimiento permite el cálculo de la resistividad aparente de volúmenes de tejido debajo de la piel y así, la exploración de lesiones dermatológicas.spa
dc.description.abstracteng:The skin is the largest organ of the human body, it is permanently exposed to noxious agents, many of which are associated with skin cancer. When exploring dermatological lesions, it is useful for the medical explorer to have additional information beyond what they can obtain with their naked eye. During this century, some authors have been using electrical bioimpedance (EBI) as a diagnostic tool for exploring skin lesions, and there is already a commercial device for this purpose. Although with seemly very good results and acceptance, the equipment and its use are costly and out of the reach of non-wealthy countries. For this reason, as well as with the aim of overcoming the difficulty posed to EBI by the very high resistivity of the epidermis, we propose a possible alternative with the use of a low cost hexagonal array of acupuncture needles attached to a plastic container. In this paper, the calibration procedure for such an array is presented, where theoretical depths of approximately 3.0, 5.2, and 6.5 mm are possible, as well as symmetry and metabolic state of an explored volume containing a skin lesion. This procedure allows the calculation of apparent resistivity of volumes of tissue under the skin and, thus, the exploration of dermatological lesions.eng
dc.description.tableofcontentsAGRADECIMIENTOS / RESUMEN / RESUMEN GRÁFICO / ABSTRACT / 1. INTRODUCCIÓN / 1.1 Marco general / 1.2 La piel / 1.3 Cáncer de piel y cancerización de campo/efecto de campo carcinogénico / 1.3.1 Cáncer de piel / 1.3.2 Campo de cancerización /efecto de campo carcinogénico / 1.4 Espectrometría de bioimpedancia eléctrica / 1.5 Aspectos biológicos de los tejidos y su relación con la EBIE / 1.6 Grosor y resistividad eléctrica de la piel en el área volar del antebrazo / 2. PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACIÓN / 3. PREGUNTA DE INVESTIGACIÓN, HIPÓTESIS Y OBJETIVOS / 3.1 Pregunta de investigación / 3.2 Hipótesis / 3.3.1 Objetivo general / 3.3.2 Objetivos específicos / 4. METODOLOGÍA / 4.1 Tipo de estudio / 4.2 Selección y descripción de participantes / 4.2.1 Características de los participantes / Personas entre 18 y 35 años, sanos, sin lesiones de piel / 4.2.2 Tipo de muestreo / 4.2.3 Criterios de selección / Criterios de inclusión / Criterios de exclusión / 4.3 Aspectos éticos / 4.4 Equipos y materiales / 4.4.1. Equipo de medición de Impedancia Eléctrica / 4.4.2 Arreglo hexapolar en roseta / 4.4.3 Agujas de acupuntura / 11 4.5 Arreglos de electrodos y profundidad de penetración estimada de la corriente / 4.6 Procedimiento / 4.6.1 Etapa I: Ajuste del arreglo hexapolar a tres configuraciones distintas / 4.6.2 Etapa II: Mediciones in vivo en una muestra a conveniencia de adultos jóvenes, sanos / 5. ANÁLISIS ESTADÍSTICO / 6. RESULTADOS Y DISCUSIÓN / 6.1 Soluciones y geles / 6.1.1 Soluciones / 6.1.2 Geles / 6.2 Factores de conversión para los arreglos de electrodos / 6.3 Resultados obtenidos de las mediciones in vivo en una muestra a conveniencia de adultos jóvenes, sanos / 6.3.1 Mediciones / 6.3.2 Valores de referencia provisionales / 7. CONCLUSIONES / REFERENCIAS BIBLIOGRÁFICAS / Conflictos de interés / Apéndice A / Apéndice B / Apéndice Cspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleUso de agujas de acupuntura como electrodos para mediciones de bioimpedancia eléctrica en pielspa
dc.typeTrabajo de grado - Maestríaspa
dc.description.degreelevelEspecialización médico - quirúrgicaspa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias para la Saludspa
dc.publisher.placeManizalesspa
dc.relation.referencesAbe, Y., & Nishizawa, M. (2021). Electrical aspects of skin as a pathway to engineering skin devices. APL Bioengineering, 5(4). https://doi.org/10.1063/5.0064529spa
dc.relation.referencesAberg, P. (2004). Skin Cancer As Seen By Electrical Impedance. In Tesis. https://openarchive.ki.se/xmlui/bitstream/handle/10616/40085/thesis.pdf?sequ ence=1spa
dc.relation.referencesÅberg, P., Nicancer, I., & Ollmar, S. (2003). Minimally invasive electrical impedance spectroscopy of skin exemplified by skin cancer assessments. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 4, 3211–3214. https://doi.org/10.1109/iembs.2003.1280826spa
dc.relation.referencesÅberg, Peter, Nicander, I., Hansson, J., Geladi, P., Holmgren, U., Ollmar, S., & Member, S. (2004). Skin Cancer Identification Using Multifrequency Electrical Impedance.pdf. 51(12), 2097–2102.spa
dc.relation.referencesAcosta, Á., Rueda, X., Sánchez, G., Arévalo, I., Herrera, H. E., Ramírez, A. F., Jiménez, G., Segura, O. D., Cepeda, M., Rodríguez, A. E., Nova, J. A., & Valbuena, M. C. (2015). Guía de atención integral con evaluación económica para la prevención, el diagnóstico, el tratamiento y el seguimiento del cáncer de piel no melanoma: carcinoma basocelular. Revista de La Asociación Colombiana de Dermatología y Cirugía Dermatológica, 23(2), 105–128. https://doi.org/10.29176/2590843x.285spa
dc.relation.referencesAlisen Huang, MS1, Julie K. Nguyen, MD*,1, Evan Austin, BS*,1, Andrew Mamalis, MD, MAS1, Jared Jagdeo, MD, M. (2019). Updates on Treatment Approaches for Cutaneous Field Cancerization Alisen. Curr Dermatol Rep., 176(1), 122– 132. https://doi.org/10.1007/s13671-019-00265-2.Updatesspa
dc.relation.referencesAlvero, C., Correas, G., Ronconi, M., & Fernandez, V. (2011). La bioimpedancia electrica como metodo de estimacion de la composicion corporal. Revista Andaluza de Medicina Del Deporte, 4(1), 17–28. http://www.redalyc.org/articulo.oa?id=323327668006%0Awww.elsevier.es/ram dspa
dc.relation.referencesAristiz, J. C., & Calle, T. R. (2014). Validez de la bioimpedancia para estimar la composición corporal de mujeres entre los 18 y 40 años. Universidad de Antioquia, 16(52), 51–60.spa
dc.relation.referencesBalmer, T. W., Vesztergom, S., Broekmann, P., Stahel, A., & Büchler, P. (2018). Characterization of the electrical conductivity of bone and its correlation to osseous structure. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598- 018-26836-0spa
dc.relation.referencesBernard, J. (2003). Depth of investigation of electrical methods. Source: Google Search, July. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:SHORT+NO TE+ON+THE+DEPTH+OF+INVESTIGATION+OF+ELECTRICAL+METHODS #0spa
dc.relation.referencesBraun, R. P., Mangana, J., Goldinger, S., French, L., Dummer, R., & Marghoob, A. A. (2017). Electrical Impedance Spectroscopy in Skin Cancer Diagnosis. Dermatologic Clinics, 35(4), 489–493. https://doi.org/10.1016/j.det.2017.06.009spa
dc.relation.referencesBrown, B. H., Milnes, P., Abdul, S., & Tidy, J. A. (2005). Detection of cervical intraepithelial neoplasia using impedance spectroscopy: A prospective study. BJOG: An International Journal of Obstetrics and Gynaecology, 112(6), 802– 806. https://doi.org/10.1111/j.1471-0528.2004.00530.xspa
dc.relation.referencesBrown B, Tidy J, Boston K, Blackett A, Smallwood R, & Sharp F. (2000). Relation between tissue structure and imposed electrical current flow in cervical neoplasia. Lancet, 355, 892–895.spa
dc.relation.referencesCarmona-Hernández, J. C., Cabrera-López, J. J., González-Correa, C. H., & Velasco-Medina, J. (2019). Electrical bioimpedance spectroscopy measurement of polyphenols in three Colombian passifloras. Journal of Physics: Conference Series, 1272(1). https://doi.org/10.1088/1742- 6596/1272/1/012016spa
dc.relation.referencesChristensen, S. R. (2018). Recent advances in field cancerization and management of multiple cutaneous squamous cell carcinomas [version 1; referees: 2 approved]. In F1000Research (Vol. 7, pp. 1–11). https://doi.org/10.12688/f1000research.12837.1spa
dc.relation.referencesClark’s, K. &. (2021). Clinical Medicine. In Elsevier (Issue CHAPTER 22). https://doi.org/10.1136/bmj.1.3916.163spa
dc.relation.referencesCurtius, K., Wright, N. A., & Graham, T. A. (2017). An evolutionary perspective on field cancerization. Nature Reviews Cancer, 18(1), 19–32. https://doi.org/10.1038/nrc.2017.102spa
dc.relation.referencesDiGirolamo M, Owens JL. Water content of rat adipose tissue and isolated adipocytes in relation to cell size. Am J Physiol. 1976 Nov;231(5 Pt. 1):1568-72. doi: 10.1152/ajplegacy.1976.231.5.1568.spa
dc.relation.referencesDotto, G. P. (2014). Multifocal epithelial tumors and field cancerization: Stroma as a primary determinant. Journal of Clinical Investigation, 124(4), 1446–1453. https://doi.org/10.1172/JCI72589spa
dc.relation.referencesDragan Jovanović 1, Mirjana Paravina 1, Ljiljana Spalević 1, M. S. 1, & Jelica Tiodorović 1, Ivana Binić 1, Mirjana Milosavljević 1, B. J. (2016). Characteristics of malignant melanoma examined by 20-MHz ultrasound CHARACTERISTICS OF MALIGNANT MELANOMA EXAMINED BY 20-MHz ULTRASOUND. The Scientific Journal Facta Universitatis, 5(February), 58–60.spa
dc.relation.referencesEduardo Calonje, Thomas Brenn, Alexander Lazar, P. H. M. (2012). Mckee’s Pathology Of The Skin. In ELSEVIER SAUNDERS (Vol. 1).spa
dc.relation.referencesFaes TJ, van der Meij HA, de Munck JC, Heethaar RM. The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol Meas. 1999 Nov;20(4):R1-10. doi: 10.1088/0967-3334/20/4/201.spa
dc.relation.referencesFitzmaurice, C., Abate, D., Abbasi, N., Abbastabar, H., Abd-Allah, F., Abdel-Rahman, O., Abdelalim, A., Abdoli, A., Abdollahpour, I., Abdulle, A. S. M., Abebe, N. D., Abraha, H. N., Abu-Raddad, L. J., Abualhasan, A., Adedeji, I. A., Advani, S. M., Afarideh, M., Afshari, M., Aghaali, M., … Murray, C. J. L. (2019). Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-Adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncology, 5(12), 1749–1768. https://doi.org/10.1001/jamaoncol.2019.2996spa
dc.relation.referencesGeselowitz, D. B. (1971). An application of electrodynamic lead theory to impendance plethysmonography. IEEE Transactions on Bio-Medical Engineering, 18(1), 38–41.spa
dc.relation.referencesGladstein S, Damania D, Almassalha LM, Smith LT, Gupta V, Subramanian H, Rex DK, Roy HK, Backman V. Correlating colorectal cancer risk with field carcinogenesis progression using partial wave spectroscopic microscopy. Cancer Med. 2018 May;7(5):2109-2120. doi: 10.1002/cam4.1357.spa
dc.relation.referencesGlickman, Y. A., Filo, O., David, M., Yayon, A., Topaz, M., Zamir, B., Ginzburg, A., Rozenman, D., & Kenan, G. (2003). Electrical impedance scanning: A new approach to skin cancer diagnosis. Skin Research and Technology, 9(3), 262– 268. https://doi.org/10.1034/j.1600-0846.2003.00022.xspa
dc.relation.referencesGonzález-Correa, C. (2018). Clinical Applications of Electrical Impedance Spectroscopy. In Bioimpedance in Biomedical Applications and Research. (Vol. 1).spa
dc.relation.referencesGonzalez-Correa, C. A. (2019). Simplified geometrical adjustment of bioimpedance measured data to the complex plane with just three parameters. Journal of Physics: Conference Series, 1272(1). https://doi.org/10.1088/1742- 6596/1272/1/012018spa
dc.relation.referencesGonzalez-Correa, C. A., Brown, B. H., Smallwood, R. H., Stephenson, T. J., Stoddard, C. J., & Bardhan, K. D. (2003). Low frequency electrical bioimpedance for the detection of inflammation and dysplasia in Barrett’s oesophagus. Physiological Measurement, 24(2), 291–296. https://doi.org/10.1088/0967-3334/24/2/305spa
dc.relation.referencesGonzález-Correa, C. A., Jaimes, S. A., & Cárdenas-Jiménez, J. I. (2022). Preliminary study on parameterization of raw electrical bioimpedance data with 3 frequencies. Scientific Reports, 12(1), 1–14. https://doi.org/10.1038/s41598- 022-13299-7spa
dc.relation.referencesGonzález-Correa, C. A., Mulett-Vásquez, E., Osorio-Chica, M., Dussán-Lubert, C., & Miranda, D. (2019). Rectal electrical bio-impedance spectroscopy in the detection of colorectal anomalies associated with cancer. Journal of Physics: Conference Series, 1272(1). https://doi.org/10.1088/1742-6596/1272/1/012012spa
dc.relation.referencesGonzález, E. F. G., & Jiménez, D. N. P. (2015). Manual para la detección temprana del cáncer de piel y recomendaciones para la disminución de exposición a radiación utravioleta. In Instituto NAcional de Cancerología ESE. http://www.cancer.gov.co/files/libros/archivos/Pielspa
dc.relation.referencesGriss, P., Enoksson, P., Tolvanen-Laakso, H. K., Meriläinen, P., Ollmar, S., & Stemme, G. (2001). Micromachined electrodes for biopotential measurements. Journal of Microelectromechanical Systems, 10(1), 10–16. https://doi.org/10.1109/84.911086spa
dc.relation.referencesHalter, R. J., Schned, A., Heaney, J., Hartov, A., Schutz, S., & Paulsen, K. D. (2008). Electrical Impedance Spectroscopy of Benign and Malignant Prostatic Tissues. Journal of Urology, 179(4), 1580–1586. https://doi.org/10.1016/j.juro.2007.11.043spa
dc.relation.referencesHuang YJ, Huang EY, Cheng KS. The correlation between extracellular resistance by electrical biopsy and the ratio of optical low staining area in irradiated intestinal tissues of rats. Biomed Eng Online. 2013 Mar 19;12:23. doi: 10.1186/1475-925X-12-23.spa
dc.relation.referencesHwang, K., Kim, H., & Kim, D. J. (2016). Thickness Of Skin And Subcutaneous Tissue Of The Free Flap Donor Sites: A Histologic Study. Microsurgery, 36 (1), 54–58. https://doi.org/10.1002/micrspa
dc.relation.referencesJaimes, S. A. (2019). Development and testing of a customizable and portable bioimpedance spectroscopy meter (BioZspectra-v1). Journal of Physics: Conference Series, 1272(1). https://doi.org/10.1088/1742-6596/1272/1/012024spa
dc.relation.referencesJetter, N., Chandan, N., Wang, S., & Tsoukas, M. (2018). Field Cancerization Therapies for Management of Actinic Keratosis: A Narrative Review. American Journal of Clinical Dermatology, 19(4), 543–557. https://doi.org/10.1007/s40257-018-0348-7spa
dc.relation.referencesKaufmann, R. (2010). Adjuvant therapy of melanoma - from chemotherapy and cytokines / interferons , to vaccines of high specificity and immunogenicity The Concept of field cancerization Update on Photodynamic Therapy. Melanoma Research, 20, 13–14.spa
dc.relation.referencesLiao, Z., Chua, D., & Tan, N. S. (2019). Reactive oxygen species: A volatile driver of field cancerization and metastasis. Molecular Cancer, 18(1), 1–10. https://doi.org/10.1186/s12943-019-0961-yspa
dc.relation.referencesLiebich, C., von Bruehl, M. L., Schubert, I., Oberhoffer, R., & Sander, C. (2021). Retrospective evaluation of the performance of the electrical impedance spectroscopy system Nevisense in detecting keratinocyte cancers. Skin Research and Technology, 27(5), 723–729. https://doi.org/10.1111/srt.13007spa
dc.relation.referencesLiu, Y. (2019). Study on Parameters Selection of Oil-Based Mud Formation Imaging Tool (OBIT) Based on FEM. Open Journal of Yangtze Oil and Gas, 04(01), 43– 58. https://doi.org/10.4236/ojogas.2019.41004spa
dc.relation.referencesMaiti R, Gerhardt LC, Lee ZS, Byers RA, Woods D, Sanz-Herrera JA, Franklin SE, Lewis R, Matcher SJ, Carré MJ. In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching. J Mech Behav Biomed Mater. 2016 Sep;62:556-569. doi: 10.1016/j.jmbbm.2016.05.035.spa
dc.relation.referencesMalvehy, J., Hauschild, A., Curiel-Lewandrowski, C., Mohr, P., Hofmann-Wellenhof, R., Motley, R., Berking, C., Grossman, D., Paoli, J., Loquai, C., Olah, J., Reinhold, U., Wenger, H., Dirschka, T., Davis, S., Henderson, C., Rabinovitz, H., Welzel, J., Schadendorf, D., & Birgersson, U. (2014). Clinical performance of the Nevisense system in cutaneous melanoma detection: An international, multicentre, prospective and blinded clinical trial on efficacy and safety. British Journal of Dermatology, 171(5), 1099–1107. https://doi.org/10.1111/bjd.13121spa
dc.relation.referencesMarch, J., Hand, M., & Grossman, D. (2015). Practical application of new technologies for melanoma diagnosis: Part I. Noninvasive approaches. Journal of the American Academy of Dermatology, 72(6), 929–941. https://doi.org/10.1016/j.jaad.2015.02.1138spa
dc.relation.referencesMiranda-Alatriste1, P. V., , Eloísa Colín-Ramírez2, Ximena Atilano-Carsi1, Cristino 57 Cruz Rivera1, Á. E.-C., & 1Department. (2022). Hydration status according to impedance vectors and its association with clinical and biochemical outcomes and mortality in patients with chronic kidney disease. Nutrición Hospitalaria, 39(3), 537–546. https://scielo.isciii.es/pdf/nh/v39n3/0212-1611-nh-39-3-537.pdfspa
dc.relation.referencesMirbeik-Sabzevari, A., Ashinoff, R., & Tavassolian, N. (2018). Ultra-wideband millimeter-wave dielectric characteristics of freshly excised normal and malignant human skin tissues. IEEE Transactions on Biomedical Engineering, 65(6), 1320–1329. https://doi.org/10.1109/TBME.2017.2749371spa
dc.relation.referencesMohr, P., Birgersson, U., Berking, C., Henderson, C., Trefzer, U., Kemeny, L., Sunderkötter, C., Dirschka, T., Motley, R., Frohm-Nilsson, M., Reinhold, U., Loquai, C., Braun, R., Nyberg, F., & Paoli, J. (2013). Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma. Skin Research and Technology, 19(2), 75–83. https://doi.org/10.1111/srt.12008spa
dc.relation.referencesMoqadam, S. M., Grewal, P. K., Haeri, Z., Ingledew, P. A., Kohli, K., Golnaraghi, F., Gonzalez-Correa, C. A., Tapasco-Tapasco, L. O., & Salazar-Gomez, S. (2020). Three electrode arrangements for the use of contralateral body segments as controls for electrical bio-impedance measurements in three medical conditions. IFMBE Proceedings, 72(1), 113–119. https://doi.org/10.2478/joeb-2018-0004spa
dc.relation.referencesMorin, M., Ruzgas, T., Svedenhag, P., Anderson, C. D., Ollmar, S., Engblom, J., & Björklund, S. (2020). Skin hydration dynamics investigated by electrical impedance techniques in vivo and in vitro. Scientific Reports, 10(1), 1–32. https://doi.org/10.1038/s41598-020-73684-yspa
dc.relation.referencesMosquera, V. H., Arregui, A., Bragós, R., & Rengifo, C. F. (2018). Implementation of a Low Cost Prototype for Electrical Impedance Tomography based on the Integrated Circuit for Body Composition Measurement AFE4300. Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies, 121–127. https://doi.org/10.5220/0006554901210127spa
dc.relation.referencesNarayanamurthy, V., Padmapriya, P., Noorasafrin, A., Pooja, B., Hema, K., Firus Khan, A. Y., Nithyakalyani, K., & Samsuri, F. (2018). Skin cancer detection using non-invasive techniques. RSC Advances, 8(49), 28095–28130. https://doi.org/10.1039/c8ra04164dspa
dc.relation.referencesOlarte-echeverri, G., Aristizábal-botero, W., Osorio-g, G. F., & Rojas-díaz, J. (2010). 2010_Impedancia y cancer cuello uterino_Revista Colombiana de Obstetricia y Ginecología. Revisra Colombiana de Obstetricia y Ginecología, 61(1), 28–33.spa
dc.relation.referencesOrjan Martinsen, S. G. (2014). Bioimpedance and Bioelectricity Basics.spa
dc.relation.referencesPhD, P. R. (2013). Community Pharmacy,symptoms, diagnosis and treatment. In THIRD EDITION. ELSEVIER. https://doi.org/10.1201/9781584886884.axbspa
dc.relation.referencesPozzobon, F. C., Acosta, Á. E., & Castillo, J. S. (2018). Cáncer de piel en Colombia: cifras del Instituto Nacional de Cancerología. Revista de La Asociación Colombiana de Dermatología y Cirugía Dermatológica, 26(1), 12–17. https://doi.org/10.29176/2590843x.25spa
dc.relation.referencesRibatti D. An historical note on the cell theory. Exp Cell Res. 2018 Mar 1;364(1):1-4. doi: 10.1016/j.yexcr.2018.01.038.spa
dc.relation.referencesRichter, I., Alajbeg, I., Boras, V. V., Rogulj, A. A., & Brailo, V. (2015). Mapiranje bioimpedancijskog spektra zdrave oralne sluznice: eksperimentalna studija. Acta Stomatologica Croatica, 49(4), 331–339. Https://doi.org/10.15644/asc49/4/9spa
dc.relation.referencesRocha, L., Menzies, S. W., Lo, S., Avramidis, M., Khoury, R., Jackett, L., & Guitera, P. (2017). Analysis of an electrical impedance spectroscopy system in shortterm digital dermoscopy imaging of melanocytic lesions. British Journal of Dermatology, 177(5), 1432–1438. https://doi.org/10.1111/bjd.15595spa
dc.relation.referencesSewon Kang Masayuki Amagai, Anna L. Bruckner, Alexander H. Enk. David J. Margolis, A. J. M. (2019). Fitzpatrick’s Dermatology,9th Edition.spa
dc.relation.referencesSauerheber, R., & Heinz, B. (2015). Temperature Effects on Conductivity of Seawater and Physiologic Saline,Mechanism and Significance. Chemical Science, 2015.spa
dc.relation.referencesShiffman C. Scaling and the frequency dependence of Nyquist plot maxima of the electrical impedance of the human thigh. Physiol Meas. 2017 Nov 30;38(12):2203-2221. doi: 10.1088/1361-6579/aa9470.spa
dc.relation.referencesSchotman JM, van Borren MMGJ, Wetzels JFM, Kloke HJ, Reichert LJM, de Boer H. Assessment of Plasma Resistivity as a Surrogate for Extracellular Fluid Resistivity: Analytical Performance and Impact of Fluid Composition. Ann Biomed Eng. 2019 Jun;47(6):1463-1469. doi: 10.1007/s10439-019-02246-9.spa
dc.relation.referencesSlaughter, D. P., Southwick, H. W., & Smejkal, W. (1953). “Field cancerization” in oral stratified squamous epithelium. Clinical implications of multicentric origin. Cancer, 6(5), 963–968. https://doi.org/10.1002/1097- 0142(195309)6:5<963::AID-CNCR2820060515>3.0.CO;2-Qspa
dc.relation.referencesSvoboda, R. M., Prado, G., Mirsky, R. S., & Rigel, D. S. (2019). Assessment of clinician accuracy for diagnosing melanoma on the basis of electrical impedance spectroscopy score plus morphology versus lesion morphology alone. Journal of the American Academy of Dermatology, 80(1), 285–287. https://doi.org/10.1016/j.jaad.2018.08.048spa
dc.relation.referencesSwann, G. (2010). Journal of Visual Communication in Medicine: Editorial. Journal of Visual Communication in Medicine, 33(4), 148–149. https://doi.org/10.3109/17453054.2010.525439spa
dc.relation.referencesTsai B, Xue H, Birgersson E, Ollmar S, Birgersson U. Dielectrical Properties of Living Epidermis and Dermis in the Frequency Range from 1 kHz to 1 MHz. J Electr Bioimpedance. 2019 Jul 2;10(1):14-23. doi: 10.2478/joeb-2019-0003.spa
dc.relation.referencesVan Mulder, T. J. S., de Koeijer, M., Theeten, H., Willems, D., Van Damme, P., Demolder, M., De Meyer, G., Beyers, K. C. L., & Vankerckhoven, V. (2017). High frequency ultrasound to assess skin thickness in healthy adults. Vaccine, 35(14), 1810–1815. https://doi.org/10.1016/j.vaccine.2016.07.039spa
dc.relation.referencesVelásquez, M. M., & Zuluaga de Cadena, Á. (2012). Primera jornada de detección precoz del cáncer de piel, Asocolderma 2011, reporte de la experiencia en Medellín, Colombia. Revista de La Asociación Colombiana de Dermatología y Cirugía Dermatológica, 20(2), 135–146. https://doi.org/10.29176/2590843x.223spa
dc.relation.referencesWaller, J. M., & Maibach, H. I. (2005). Age and skin structure and function, a quantitative approach (I): Blood flow, pH, thickness, and ultrasound echogenicity. Skin Research and Technology, 11(4), 221–235. https://doi.org/10.1111/j.0909-725X.2005.00151.xspa
dc.relation.referencesWang, S., Yu, R. X., Fan, W., Li, C. X., Fei, W. M., Li, S., Zhou, J., Hu, R., Liu, M., Xu, F., Xu, J., & Cui, Y. (2022). Detection of skin thickness and density in healthy Chinese people by using high-frequency ultrasound. Skin Research and Technology, March 2022. https://doi.org/10.1111/srt.13219spa
dc.relation.referencesWatts, C. G., McLoughlin, K., Goumas, C., Van Kemenade, C. H., Aitken, J. F., Soyer, H. P., Fernandez Peñas, P., Guitera, P., Scolyer, R. A., Morton, R. L., Menzies, S. W., Caruana, M., Kang, Y. J., Mann, G. J., Chakera, A. H., Madronio, C. M., Armstrong, B. K., Thompson, J. F., & Cust, A. E. (2021). Association between Melanoma Detected during Routine Skin Checks and Mortality. JAMA Dermatology, 157(12), 1425–1436. https://doi.org/10.1001/jamadermatol.2021.3884spa
dc.relation.referencesZink, M. D., Weyer, S., Pauly, K., Napp, A., Dreher, M., Leonhardt, S., Marx, N., Schauerte, P., & Mischke, K. (2015). Feasibility of bioelectrical impedance spectroscopy measurement before and after thoracentesis. BioMed Research International, 2015. https://doi.org/10.1155/2015/810797spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalAgujas de acupunturaspa
dc.subject.proposalEspectroscopia de bioimpedancia eléctrica (EBIS)spa
dc.subject.proposalGuías de electrodosspa
dc.subject.proposalPielspa
dc.subject.proposalDermatologíaspa
dc.subject.unescoCiencias médicas
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.description.degreenameEspecialista en Dermatologíaspa
dc.publisher.programEspecialización en Dermatologíaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem