Mostrar el registro sencillo del ítem

dc.contributor.advisorNaranjo Sierra, Edwin
dc.contributor.authorVivas Coral, Dalis
dc.date.accessioned2023-09-27T20:11:10Z
dc.date.available2023-09-27T20:11:10Z
dc.date.issued2023-09-27
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/19616
dc.descriptionIlustraciones, mapas, gráficasspa
dc.description.abstractspa:El depósito vetiforme Cordero se encuentra localizado al interior del Distrito Minero El Bagre, al Este del sistema de fallas Otú-Pericos, en la región del Bajo Cauca del departamento de Antioquia, Colombia. La mineralización vetiforme está hospedada en rocas graníticas carboníferas del stock de El Carmen. Tres etapas de mineralización fueron definidas: Etapa I está dominada por cuarzo masivo (Qz1), pirita de grano grueso (Py1), pirita arseniosa (PyA), sericita (Ser1) y cantidades menores de oro libre (Au1). La etapa II, es la principal etapa mineralizante y está caracterizada por cuarzo recristalizado (Qz2) y con textura comb (Qz3), calcopirita (Ccp), galena (Gn), oro (Au2), telururos de oro y plata (Clv, Kre, Syl, Hess), telururos de plomo (Alt), telururos de Hg (Cld), calcita (Cal1), sericita (Ser2), clorita (Chl) y contenidos menores de anatasa (Ant) y pirita finogranular (Py2). La etapa III de mineralización está dominada por venillas de calcita (Cal2) y cuarzo (Qz4). Los análisis químicos permitieron definir las asociaciones de metales Au-Te, Au-Ag, Au-Ag-Te (Bi) y Au-Te-Pb al interior de la veta. Los análisis microtermométricos revelaron la presencia de tres tipos de inclusiones fluidas. Inclusiones fluidas primarias (tipo I) H2O-NaCl±CH4±N2 , reportadas por primera vez para las vetas al interior del Distrito Minero de El Bagre, están atrapadas en cuarzo masivo (Qz1) y están caracterizadas por la presencia de clatratos (CH4 ±N2), salinidades entre 0.57 - 5.23 % wt NaCl equiv y homogenización (a liquido) entre 300 - 363°C. Inclusiones primarias acuo-salinas (tipo IIA) atrapadas en cuarzo reactivado (Qz2) con salinidades entre 1.7 y 7.8% wt NaCl equiv y temperaturas de homogenización entre 145 y 203°C. Inclusiones secundarias acuo salinas (tipo IIB) atrapadas en cuarzo masivo (Qz1) con salinidades entre 0.7 y 8.1 %wt NaCl equiv y homogenización (a líquido) entre 148 y 257°C. Inclusiones primarias acuo-salinas (tipo IIC) atrapadas en calcita masiva (Cal1) con salinidades entre 2.5 y 6.45 %wt NaCl equiv y temperaturas de homogenización entre 147 y 220°C. Inclusiones secundarias acuo-salinas (tipo IID) atrapadas en calcita masiva (Cal1) con salinidades entre 1.7 y 6.1 %wt NaCl equiv y homogenización (a liquido) entre 120 y 127°C. Inclusiones primarias tardías (tipo III) atrapadas en venillas de calcita (Cal2) con bajas salinidades (4.8 %wt NaCl equiv.) y baja temperatura de homogenización (105 a 107°C). Sericita y sericita-clorita son las alteraciones dominantes al interior de la veta. Los fluidos hidrotermales fueron de naturaleza neutra a ligeramente alcalina, como lo indica los ensambles minerales y de condiciones relativamente reducidas de acuerdo a la ausencia de hematita y la coexistencia de pirita-clorita. En consecuencia, el complejo Au(HS)2- fue probablemente el medio de trasporte del oro. El depósito vetiforme de Cordero presenta características similares a los depósitos de oro orogénico.spa
dc.description.abstracteng: Cordero lode type deposit is located within the El Bagre Mining District to the East of the Otú Pericos fault system, in the Bajo Cauca region of Antioquia department, Colombia Lode gold type mineralization is hosted within Carboniferous granite rocks from the El Carmen stock. Three mineralization stages were defined: Stage I is dominated by massive quartz (Qz1), course-grained pyrite (Py1), arsenic-pyrite (PyA), sericite (Ser1) and minor content of free gold (Au1). Stage II is the main mineralization stage and is characterized by recrystallization of massive quartz (Qz2) and comb quartz (Qz3), chalcopyrite (Ccp), galena (Gn), gold (Au2), Au and Ag tellurides (Clv, Kre, Syl and Hess), Pb-tellurides (Alt), Hg-tellurides (Cld), calcite (Cal1), sericite (Ser2), chlorite (Chl) and minor content of anatase (Ant) and fine-grained pyrite (Py2). Late mineralization stage III, is dominated by cross cutting quartz (Qz4) – calcite (Cal2) veins. Geochemical analysis allowed to define Au-Te, Au Ag, Au-Ag-Te (Bi) and Au-Te-Pb as the main metals associations within the vein. Microthermometric analysis revealed the presence of three types of fluid inclusions. Primary H2O-NaCl±CH4±N2 fluid inclusion (type I,) reported for the first time for lode gold type mineralization within the El Bagre Mining District, trapped in massive quartz (Qz1), and characterized by the presence of clathrates (CH4 ±N2), salinities between 0.57 and 5.23 % wt NaCl equiv. and homogenization (to liquid) between 300 and 363°C. Primary aqueous-saline (type IIA) inclusions trapped in reactivated quartz (Qz2) with salinities ranging between 1.7 and 7.8% wt NaCl equiv. and homogenization (to liquid) between 145 and 203°C. Cross-graining secondary aqueous saline (type IIB) inclusions trapped in massive quartz (Qz1) with salinities between 0.7 and 8.1 %wt NaCl equiv. and homogenization (to liquid) between 148 and 257°C. Primary aqueous-saline (type IIC) inclusions trapped in massive calcite (Cal1) with salinities between 2.5 and 6.45 %wt NaCl equiv. and homogenization temperatures (to liquid) ranging between 147 and 220°C. Cross-graining secondary aqueous-saline (type IID) inclusions trapped in massive calcite (Cal1) with salinities between 1.7 and 6.1 %wt NaCl equiv. and homogenization (to liquid) between 120 and 127°C. Late cross-graining primary fluid inclusion trapped in calcite veins (Cal2) with low salinities (4.8 %wt NaCl equiv.) and low homogenization temperatures (105 to 107°C). Sericite and sericite-chlorite are the main hydrothermal alteration within the vein. The ore-forming fluid were neutral to slightly alkaline, as indicated by the mineral assemblages and relatively reduced according to absence of hematite and the coexistence of pyrite and chlorite. In consequence, Au (HS)2- was likely the gold transporting complex. Cordero lode gold type deposits share similar characteristics with orogenic gold deposits.eng
dc.description.tableofcontents1. Introducción / 2. Antecedentes / 3. Justificación / 4. Objetivos / 4.1 General / 4.2 Específicos / 5. Metodología / 5.1 Etapa de Campo / 5.2 Petrografía y Metalografía / 5.3 Litogeoquímica / 5.4 Geoquímica Multielemental / 5.5 Microtermometría / 5.6 Espectroscopía Raman / 6. Marco Geológico / 7. Geología Local / 8. Mineralización / 9. Alteraciones Hidrotermales / 9.1 Petrografía / 9.2 Litogeoquímica de Alteración Hidrotermal / 10. Texturas de Cuarzo y Texturas de Mena / 10.1 Texturas de Cuarzo / 10.2 Texturas de Mena / 11. Secuencia Paragenética / 12. Caracterización y Ocurrencia del Oro / 12.1 Tamaño y Morfología / 12.2 Ocurrencia / 13. Geoquímica Multielemental / 14. Inclusiones Fluidas / 14.1 Petrografía de las Inclusiones Fluidas / 14.2 Microtermometría de las Inclusiones Fluidas / 15. Discusión / 15.1 Naturaleza y Evolución del Fluido Hidrotermal / 15.2 Transporte y Depositación del Oro / 15.3 Modelo Genético para el depósito / 16. Conclusiones / 17. Referenciaseng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleAnálisis metalográfico, petrográfico y microtermométrico de la mineralización vetiforme presente en el el proyecto Cordero, Distrito Minero El Bagre, Antioquia-Colombiaspa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelUniversitariospa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesArcher, D.G. (1992). Thermodynamic properties of the NaCl + H2O system: II. Thermodynamic properties of NaCl (aq), NaCl. 2H2O (cr), and phase equilibria. Journal of physical and chemical reference data, 28,1 – 17.spa
dc.relation.referencesÁvila-Vallejo, H. (2015). Actualización de la cartografía geológica del distrito minero el Bagre, Antioquia [Tesis de pregrado, Universidad de Caldas].spa
dc.relation.referencesBakker, R. J. (1997). Clathrates: Computer programs to calculate fluid inclusion V-X properties using clathrate melting temperatures. Computers & Geosciences, 23, 1-18.spa
dc.relation.referencesBakker, R. J. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1-3), 3-23.spa
dc.relation.referencesBakker, R. J., & Brown, P. E. (2003). Computer modelling in fluid inclusion research. In: I. M. Samson, A. J. Anderson, & D. D. Marshall (Eds.), Fluid Inclusions, Analysis and Interpretation Short Course (175-212). Mineralogical Association of Canada.spa
dc.relation.referencesBenning, L. G., & Seward, T. M. (1996). Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150–400 C and 500–1500 bar. Geochimica et Cosmochimica Acta, 60(11), 1849-1871spa
dc.relation.referencesBodnar, R. J. (1993). Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica acta, 57(3), 683-684.spa
dc.relation.referencesBodnar, R. J., Lecumberri-Sanchez, P., Moncada, D. & Steele-MacInnis M. (2014). Fluid Inclusions in Hydrothermal Ore Deposits. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry Second Edition (119-142). Oxford: Elsevierspa
dc.relation.referencesBorisenko, A. S. (1977). Study of the salt composition of solutions in gas-liquid inclusions in minerals by the cryometric method. Soviet Geol. Geophys., 18, 11-19.spa
dc.relation.referencesCárdenas, O., Galindo, P., & Vicente-Villardón, J.L. (2007). Los métodos Biplot: evolución y aplicaciones. Revista Venezolana de Análisis de Coyuntura, 13(1), 279-303.spa
dc.relation.referencesCorbett, G. J., & Leach, T. M. (1998). Southwest Pacific Rim gold-copper systems: structure, alteration, and mineralization. Society of Economic Geologists.spa
dc.relation.referencesCraig, J.R. & Vaughan, D.J. (1994). Ore mineral textures. En Ore Microscopy and Ore Petrography (p.p 120-163). John Wiley & Sons Inc.spa
dc.relation.referencesCuadros, F. A. (2012). Caracterização geoquímica e geocronológica do embasamento mesoproterozóico da parte norte da Serrania de San Lucas (Colômbia) [MSc. Thesis, Universidade de Brasília].spa
dc.relation.referencesDong, G., Morrison, G., & Jaireth, S. (1995). Quartz textures in epithermal veins, Queensland; classification, origin and implication. Economic geology, 90(6), 1841-1856.spa
dc.relation.referencesDowling, K., & Morrison, G. (1989). Application of quartz textures to the classification of gold deposits using North Queensland examples. Economic Geology Monograph, 6, 342- 355.spa
dc.relation.referencesDuan, Z., Møller, N., & Weare, J. H. (1996). A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties. Geochimica et Cosmochimica Acta, 60(7), 1209-1216.spa
dc.relation.referencesFeininger, T., Barrero, D., & Castro, N. (1972). Geología de parte de los departamentos de Antioquia y Caldas (sub-zona II-B). Boletín geológico, 20(2), 1-173.spa
dc.relation.referencesFrezzotti, M. L., Tecce, F., & Casagli, A. (2012). Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1-20.spa
dc.relation.referencesGoldfarb, R. J., & Groves, D. I. (2015). Orogenic gold: Common or evolving fluid and metal sources through time. Lithos, 233, 2-26.spa
dc.relation.referencesGoldfarb, R. J., Baker, T., Dube, B., Groves, D., Hart, C., & Gosslein, P. (2005). Distribution, character and genesis of gold deposits in metamorphic terranes. In J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, & J. P. Richards (Eds.), Economic Geology One Hundredth Anniversary Volume (pp. 407-450). Society of Economic Geologists.spa
dc.relation.referencesGoldstein, R. H. (2003). Petrographic analysis of fluid inclusions. In I. M. Samson, A. J. Anderson, & D. D. Marshall (Eds.), Fluid Inclusions, Analysis and Interpretation (9- 53). Mineralogical Association of Canada.spa
dc.relation.referencesGómez-Tapias, J., Montes-Ramírez, N.E., Nivia-Guevara, A. & Diederix, H., compiladores. (2015). Mapa Geológico de Colombia 2015. Escala 1:1 000 000. Servicio Geológico Colombiano. https://doi.org/10.32685/10.143.2015.935spa
dc.relation.referencesGroves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G., & Robert, F. (1998). Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore geology reviews, 13(1-5), 7-27.spa
dc.relation.referencesGroves, D. I., Goldfarb, R. J., Robert, F., & Hart, C. J. (2003). Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Economic geology, 98(1), 1-29.spa
dc.relation.referencesHagemann, S., & Cassidy, K. F. (2000). Archean orogenic lode gold deposits. In S. G. Hagemann, & P. E. Brown (Eds.), Gold in 2000 (Vol. 13, pp. 9-68). (Reviews in Economic Geology). Society of Economic Geologists.spa
dc.relation.referencesHalley, S. (2020). Mapping magmatic and hydrothermal processes from routine exploration geochemical analyses. Economic Geology, 115(3), 489-503.spa
dc.relation.referencesKlein, E. L., Harris, C., Giret, A., Moura, C. A., & Angélica, R. S. (2005). Geology and stable isotope (O, H, C, S) constraints on the genesis of the Cachoeira gold deposit, Gurupi Belt, northern Brazil. Chemical Geology, 221(3-4), 188-206.spa
dc.relation.referencesLarge R, Huston D, McGoldrich P, McArthur G, Ruxton P (1988). Gold distribution and genesis in Paleozoic volcanogenic massive sulphide systems. In: Bicentenn Gold 88. Geol Soc Aust Abst Ser 22:121-12spa
dc.relation.referencesLeal-Mejía, H. (2011). Phanerozoic gold metallogeny in the colombian Andes: a tectonomagmatic approach (Doctoral dissertation, Universitat de Barcelona).spa
dc.relation.referencesLondoño, C., Montoya, J. C., Ordóñez, O., & Restrepo, J. J. (2009). Características de las mineralizaciones vetiformes en el Distrito Minero Bagre-Nechí, Antioquia. Boletín de Ciencias de la Tierra, (26), 29-38.spa
dc.relation.referencesMcCuaig, T. C., & Kerrich, R. (1998). P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geology Reviews, 12(6), 381-453.spa
dc.relation.referencesMikucki, E. J. (1998). Hydrothermal transport and depositional processes in Archean lode-gold systems: a review. Ore geology reviews, 13(1-5), 307-321.spa
dc.relation.referencesMikucki, E. J., & Ridley, J. R. (1993). The hydrothermal fluid of Archaean lode-gold deposits at different metamorphic grades: compositional constraints from ore and wallrock alteration assemblages. Mineralium Deposita, 28, 469-481.spa
dc.relation.referencesMontes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198, 102903.spa
dc.relation.referencesMoreno-Sánchez, M., Gómez-Cruz, A. & Buitrago-Hincapié, J. (2020). Paleozoic of Colombian Andes: New paleontological data and regional stratigraphic review. In: Gómez, J. & Mateus–Zabala, D. (Eds). The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales (35, 37 p). https://doi.org/10.32685/pub.esp.35.2019.09spa
dc.relation.referencesMoritz, R. (2000). What have we learn about orogenic lode gold deposits over the past 20 years. Scientific Communication. Section des Sciences de la Terre. University of Geneva.spa
dc.relation.referencesNaranjo-Sierra, E., Alvarán-Echeverri, M., & Zapata-Cardona, E. (2016). Análisis metalogenético preliminar del depósito vetiforme en la mina La Ye, Antoquia, Colombia: características geológicas, isotópicas y estructurales. Revista mexicana de ciencias geológicas, 33(3), 316-328.spa
dc.relation.referencesNaranjo-Sierra, E., & Alvarán-Echeverri, M. (2018). Características geológicas, isotópicas y estructurales del depósito vetiforme Los Mangos, Antioquia-Colombia. Boletín de Geología, 40(1), 93-108.spa
dc.relation.referencesNaranjo-Sierra, E. (2019). Estudio metalogénetico de los depósitos vetiformes La Ye, Los Mangos y el prospecto Cordero-Balvina en la zona norte del distrito minero El Bagre, Antioquia-Colombia [ MSc. Thesis, University of Caldas].spa
dc.relation.referencesNaranjo-Sierra, E., & Alvaran Echeverri, M. (2020). Fluid inclusion study of shear zone hosted lode gold type deposits: El Bagre mining district, Antioquia-Colombia. Earth Sciences Research Journal, 24(3), 245-257.spa
dc.relation.referencesNash, J. T. (1976). Fluid-inclusion petrology: Data from porphyry copper deposits and applications to exploration (No. 907). US Government Printing Office.spa
dc.relation.referencesOakes, C. S., Bodnar, R. J., & Simonson, J. M. (1990). The system NaCl-CaCl2-H2O: I. The ice liquidus at 1 atm total pressure. Geochimica et Cosmochimica Acta, 54(3), 603-610.spa
dc.relation.referencesOrdóñez-Carmona, O., Pimentel, M. M., de Moraes, R., & Restrepo, J. J. (1999). Rocas grenvillianas en la región de Puerto Berrio-Antioquia. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 23(87), 225+.spa
dc.relation.referencesOrdóñez-Carmona, O., Valencia, M., Álvarez, M., Sánchez, L.H., Castaño, L.C. & Echeverri, B. (2005). Metalogenia y evolución tectonomagmática del distrito minero SegoviaRemedios, primera aproximación. Memorias X Congreso Colombiano de Geología, p.252.spa
dc.relation.referencesOrdóñez-Carmona, O., Frantz, J. C., Chemale, F., & Londoño, C. (2009). Serranía de San Lucas: mineralizaciones auríferas, intrusiones de 1500 Ma, metamorfismo Grenville y magmatismo Jurásico [ Sesión de Congreso]. XII Congreso Colombiano de Geología.spa
dc.relation.referencesOwona, S., Ondoa, J. M., & Ekodeck, G. E. (2013). Evidence of quartz, feldspar and amphibole crystal plastic deformations in the paleoproterozoic Nyong Complex Shear Zones under Amphibolite to Granulite conditions (west Central African Fold Belt, SW Cameroon). Journal of Geography and Geology, 5(3), 186.spa
dc.relation.referencesPhillips, G. N., & Powell, R. (2010). Formation of gold deposits: a metamorphic devolatilization model. Journal of Metamorphic geology, 28(6), 689-718.spa
dc.relation.referencesPirajno, F. (1992). Hydrothermal Solutions. In: Hydrothermal Mineral Deposits. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75671-9_3spa
dc.relation.referencesPracejus, B. (2015). The ore minerals under the microscope: an optical guide. Elsevierspa
dc.relation.referencesRamdohr, P. (1980). The ore minerals and their intergrowths. Pergamon Press.spa
dc.relation.referencesRestrepo, J. J., & Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes Journal of International Geoscience, 11(3), 189-193.spa
dc.relation.referencesRincón-Alape, J. (2022). Propuesta de mapeo y petrografía de facies plutónicas para las rocas carboníferas del plutón El Carmen, noreste de la Cordillera Central de Colombia [Tesis de pregrado, Universidad de Caldas].spa
dc.relation.referencesRodríguez C., C. J., & Pernet M., A. (1983). Recursos minerales de Antioquia. Boletín Geológico, 26(3), 2–117. https://doi.org/10.32685/0120-1425/bolgeol26.3.1983.247spa
dc.relation.referencesRoedder, E. (1984). Fluid inclusions. Mineralogical Society of America,12, 644 p.spa
dc.relation.referencesSaunders, J. A., Hofstra, A. H., Goldfarb, R. J., & Reed, M. H. (2014). Geochemistry of hydrothermal gold deposits. Elsevier.spa
dc.relation.referencesSeward, T. M. (1973). Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochimica et Cosmochimica Acta, 37(3), 379-399.spa
dc.relation.referencesSeward, T. M. (1974). Determination of the first ionization constant of silicic acid from quartz solubility in borate buffer solutions to 350 C. Geochimica et Cosmochimica Acta, 38(11), 1651-1664.spa
dc.relation.referencesShaw, R. P., Leal-Mejía, H., & Melgarejo i Draper, J. C. (2019). Phanerozoic metallogeny in the Colombian Andes: a tectono-magmatic analysis in space and time. Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction, 411-549. Springer.spa
dc.relation.referencesStarling, A. (2014). Structural Review of La Ye Mine and District, Colombia (Internal Field Report, 01-2014). Mineros S.A and Operadora Minera S.A.S.spa
dc.relation.referencesStarling, A. (2015). Structural Review of La Ye and Icacales-Los Mangos Mines, Colombia (Internal Field Report, 12-2014). Mineros S.A and Operadora Minera S.A.S.spa
dc.relation.referencesThompson J. F. H. Thompson A. J. B. Allen R. L. Geological Association of Canada Mineral Deposits Division & University of British Columbia Department of Earth and Ocean Sciences Mineral Deposit Research Unit. (1996). Atlas of alteration: a field and petrographic guide to hydrothermal alteration minerals. Geological Association of Canada Mineral Deposits Division.spa
dc.relation.referencesToussaint, J.F. & Restrepo, J.J. (2020). Tectonostratigraphic terranes in Colombia: An update. Second part: Oceanic terranes. In: Gómez, J. & Pinilla–Pachon, A.O. (Eds). The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 24 p.spa
dc.relation.referencesVarona-Bravo, D. S., Naranjo-Sierra, E., & Toro, L. M. (2016). Características geoquímicas y petrográficas del stock El Carmen en el distrito minero El Bagre (Reporte Interno preparado para Operadora Minera S.A.S. 10p).spa
dc.relation.referencesVinasco, C. J., Cordani, U. G., González, H., Weber, M. A., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355-371.spa
dc.relation.referencesWhitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American mineralogist, 95(1), 185-187.spa
dc.relation.referencesWilkinson, J. J. (2001). Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4), 229- 272.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.proposalMetalografíaspa
dc.subject.proposalDistrito Minero El Bagrespa
dc.subject.proposalProyecto Corderospa
dc.subject.proposalMicrotermometríaspa
dc.subject.proposalPetrografíaspa
dc.subject.proposalInclusiones fluidasspa
dc.subject.unescoCiencias de la tierra
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
dc.description.degreenameGeólogo(a)spa
dc.publisher.programGeologíaspa
dc.description.researchgroupYacimientos Mineralesspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem