Mostrar el registro sencillo del ítem

dc.contributor.advisorOsorio Ocampo, Susana
dc.contributor.advisorMurcia, Hugo
dc.contributor.advisorMonsalve, María Luisa
dc.contributor.authorAlvarez-Silva, Juan David
dc.date.accessioned2022-12-14T19:34:51Z
dc.date.available2022-12-14T19:34:51Z
dc.date.issued2022-12-14
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/18217
dc.descriptionIlustraciones, gráficas, mapasspa
dc.description.abstractspa:Con una extensión aproximada de 1000 km2 —entre los municipios de San Agustín y La Plata— y espesores de hasta 230 m, la Formación Guacacallo es uno de los registros más extensos y mejor conservados de actividad volcánica tipo caldera del Plio-Pleistoceno en el SW colombiano. A partir de la construcción de siete columnas estratigráficas (secciones I – VII) levantadas entre los municipios de San Agustín y La Argentina (Huila), el análisis de 11 secciones delgadas y nueve análisis químicos, se encontró que las secciones I (29 m), II (161 m) y VI (56 m) tienen litofacies masivas no soldadas, con algunas ricas en fragmentos de pómez. En las secciones III (32 m), IV (237 m), V (185 m) y VII (111 m) el depósito se caracteriza por tener una zona soldada de litofacies eutaxíticas hacia la base y otra no soldada hacia la parte superior. Al microscopio, las litofacies soldadas del depósito tienen textura eutaxítica y los fragmentos juveniles (i.e. trizas vítreas y fragmentos de pómez) tienen diferentes grados de aplastamiento y están completamente desvitrificados. En las litofacies no soldadas, las trizas vítreas se disponen de forma aleatoria y no están deformadas ni desvitrificadas. Los análisis químicos indican una composición riolítica, alta en potasio, de afinidad calcoalcalina. Con base en esto, se determinó que la Formación Guacacallo corresponde a una ignimbrita de composición riolítica, con espesores entre 29 y 230 m, constituida por fragmentos de pómez y líticos, embebidos en una matriz compuesta por trizas vítreas y cristales de plagioclasa, cuarzo y biotita. Este depósito representa probablemente una única unidad de flujo, compuesta por una zona soldada hacia la base y otra no soldada en la parte superior, ambas, descritas por una asociación litofacial compuesta por al menos 12 litofacies. La ignimbrita de la Formación Guacacallo se habría formado por la depositación de una CDP sostenida, con altos flujos de masa, generada por una erupción de gran magnitud junto con la Formación Popayán, ubicada al E de la Cordillera Central. En conjunto, los depósitos de ambas formaciones, constituirían la misma unidad estratigráfica y se podrían clasificar como ignimbritas grandes asociadas a la formación de calderas, en este caso a la de Paletará.spa
dc.description.abstracteng:With an approximate extension of 1000 km2 —between the municipalities of San Agustín and La Plata— and thicknesses of up to 230 m, the Guacacallo Formation is one of the most extensive and best preserved records of Plio-Pleistocene caldera-type volcanic activity in the SW Colombian. From the construction of seven stratigraphic columns (sections I - VII) raised between the municipalities of San Agustín and La Argentina (Huila), the analysis of 11 thin sections and nine chemical analyses, it was found that sections I (29 m) , II (161 m) and VI (56 m) have massive unwelded lithofacies, with some rich in pumice fragments. In sections III (32 m), IV (237 m), V (185 m) and VII (111 m), the deposit is characterized by having a welded zone of eutaxitic lithofacies towards the base and another non-welded zone towards the top. Microscopically, the welded lithofacies of the deposit have a eutaxitic texture and the juvenile fragments (i.e. glassy shreds and pumice fragments) have different degrees of crushing and are completely devitrified. In unwelded lithofacies, the vitreous chips are randomly arranged and are not deformed or devitrified. Chemical analyzes indicate a rhyolitic composition, high in potassium, with calc-alkaline affinity. Based on this, it was determined that the Guacacallo Formation corresponds to an ignimbrite of rhyolitic composition, with thicknesses between 29 and 230 m, made up of pumice and lithic fragments, embedded in a matrix composed of vitreous fragments and plagioclase crystals, quartz and biotite. This deposit probably represents a single flow unit, composed of a welded zone towards the base and another non-welded zone at the top, both described by a lithofacial association composed of at least 12 lithofacies. The ignimbrite of the Guacacallo Formation would have been formed by the deposition of a sustained CDP, with high mass flows, generated by a large-magnitude eruption together with the Popayán Formation, located to the E of the Central Cordillera. As a whole, the deposits of both formations would constitute the same stratigraphic unit and could be classified as large ignimbrites associated with the formation of calderas, in this case that of Paletará.eng
dc.description.tableofcontentsResumen 1. Introducción / 1.1. Objetivos/ 1.1.1. Objetivo general/ 1.1.2. Objetivos específicos/ 2. Marco geológico y estructural / 2.1 Geología local / 2.1.1. Paleozoico/ 2.1.2. Mesozoico/ 2.1.3. Cenozoico / 3. Marco Teórico/3.1. Descripción litofacial de las ignimbritas en campo /3.2. Soldamiento de las ignimbritas/ 3.3. Clasificación y tipos de ignimbrita / 3.4. Corrientes de Densidad Piroclástica (CDPs) / 3.5. Sedimentación y depositación de las ignimbritas/ 3.5.1 Zona límite de flujo/ 4. Metodología / 4.1. Revisión bibliográfica/ 4.2. Trabajo de campo/ 4.3. Trabajo de laboratorio/ 4.4. Trabajo de oficina / 5. Resultados/ 5.1. Estratigrafía/ 5.1.1. Sección I: Tres Chorros / 5.1.2. Sección II: Junín–Isnos/ 5.1.3. Sección III: Cámbulos–Isnos/ 5.1.4. Sección IV: Salto de Bordones/ 5.1.5. Sección V: Laguna–Bordones/ 5.1.6. Sección VI: Guacacallo/ 5.1.7. Sección VII: La Argentina / 5.2. Petrografía./ 5.2.1. Sección II: Junín–Isnos / 5.2.2. Sección III: Cámbulos–Isnos / 5.2.3. Sección IV: Salto de Bordones/ 5.2.4. Sección V: Laguna–Bordones/ 5.2.5. Sección VI: Guacacallo/ 5.2.6. Sección VII: La Argentina/ 5.3. Química de roca total/ 5.3.1. Elementos mayores/ 5.3.2. Elementos traza/ 6. Discusión/ 6.1. Interpretación de las litofacies/ 6.2. Petrografía/ 6.2.1. Grado de soldamiento / 6.3. Origen de la Formación Guacacallo / 6.4. Correlación de la Formación Guacacallo con la Formación Popayán/ 7. Conclusiones./ Anexos / Bibliografía .spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleAnálisis litofacial y composicional de la Formación Guacacallo al SW del Huila (Colombia)spa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelUniversitariospa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/mydspacespa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesAguirre, G., 2008. Types of collapse calderas. IOP Conf. Ser.: Earth Environ. Sci. 3, 012021. https://doi.org/10.1088/1755-1307/3/1/012021spa
dc.relation.referencesBayona, G., Silva, C., Rapalini, A.E., Costanzo-Álvarez, V., Aldana, M., Roncancio, J., 2005. Paleomagnetismo Y Mineralogía Magnética En Rocas De La Formación Saldaña Y Unidades Cretácicas Suprayacentes En La Parte Norte Del Valle Superior Del Magdalena, Colombia. Boletín de Geología 27, 69–85spa
dc.relation.referencesBernet, M., Mesa Garcia, J., Chauvel, C., Ramírez Londoño, M.J., Marín-Cerón, M.I., 2020. Thermochronological, petrographic and geochemical characteristics of the Combia Formation, Amagá basin, Colombia. Journal of South American Earth Sciences 104, 102897. https://doi.org/10.1016/j.jsames.2020.102897spa
dc.relation.referencesBird, P., 2003. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems 4. https://doi.org/10.1029/2001GC000252spa
dc.relation.referencesBranney, M.J., Kokelaar, P., 2002. Pyroclastic Density Currents and the Sedimentation of Ignimbrites. https://doi.org/10.1144/GSL.MEM.2003.027spa
dc.relation.referencesBranney, M.J., Kokelaar, P., 1992. A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull Volcanol 54, 504–520. https://doi.org/10.1007/BF00301396spa
dc.relation.referencesBranney, M. J., & Sparks, R. S. J.,1990. Fiamme formed by diagenesis and burial-compaction in soils and subaqeuous sediments. Journal of the Geological Society, 147(6), 919-922.spa
dc.relation.referencesBreitkreuz, C., Götze, J., Weißmantel, A., 2021. Mineralogical and geochemical investigation of megaspherulites from Argentina, Germany, and the USA. Bull Volcanol 83, 14. https://doi.org/10.1007/s00445-021-01434-7spa
dc.relation.referencesBrown, R.J., Andrews, G., 2015. Chapter 36 - Deposits of Pyroclastic Density Currents, in: Sigurdsson, H. (Ed.), The Encyclopedia of Volcanoes (Second Edition). Academic Press, Amsterdam, pp. 631–648. https://doi.org/10.1016/B978-0-12-385938-9.00036-5spa
dc.relation.referencesBull, K.F., McPhie, J., 2007. Fiamme textures in volcanic successions: Flaming issues of definition and interpretation. Journal of Volcanology and Geothermal Research 164, 205–216. https://doi.org/10.1016/j.jvolgeores.2007.05.005spa
dc.relation.referencesBustamante, C., Archanjo, C.J., Cardona, A., Vervoort, J.D., 2016. Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long-term arc maturity. GSA Bulletin 128, 1762–1779. https://doi.org/10.1130/B31307.1spa
dc.relation.referencesBustamante, C., Cardona, A., Bustamante, A., Vanegas, J., 2019. Comment on ‘Petrotectonic characteristics, geochemistry, and UPb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes’ by Rodríguez et al. (2018). Journal of South American Earth Sciences 95, 101987. https://doi.org/10.1016/j.jsames.2018.08.015spa
dc.relation.referencesBustos, E., Báez, W. A., Bardelli, L., McPhie, J., Sola, A., Chiodi, A., ... & Arnosio, M., 2020. Genesis of megaspherulites in El Viejo Rhyolitic Coulee (Pleistocene), Southern Puna, Argentina. Bulletin of Volcanology, 82(6), 1-16spa
dc.relation.referencesCárdenas, J., Núñez-Tello, A., Fuquen, J., 2003. Geología de la plancha 388 Pitalito (Memoria Explicativa). Servicio Geológico Colombiano.spa
dc.relation.referencesCas, R.A.F., Wright, J.V., 1988. Transport and deposition of subaerial pyroclastic flows and surges. Volcanic Successions Modern and Ancient: A geological approach to processes, products and successions.spa
dc.relation.referencesCediel, F., Mojica, J., Macía, C., 1980. Definición estratigráfica del Triásico en Colombia, Suramérica - Formaciones Luisa, Payandé y Saldaña. Newsletters on Stratigraphy 73–104. https://doi.org/10.1127/nos/9/1980/73spa
dc.relation.referencesDellino, P., Dioguardi, F., Isaia, R., Sulpizio, R., Mele, D., 2021. The impact of pyroclastic density currents duration on humans: the case of the AD 79 eruption of Vesuvius. Sci Rep 11, 4959. https://doi.org/10.1038/s41598-021-84456-7spa
dc.relation.referencesDuarte, E., 2018. Provenance and diagenesis from two stratigraphic sections of the lower cretaceous Caballos formation in the upper Magdalena valley: Geological and reservoir quality implications. https://doi.org/10.29047/01225383.88spa
dc.relation.referencesFolkes, C. B., Wright, H. M., Cas, R. A., de Silva, S. L., Lesti, C., & Viramonte, J. G., 2011. A reappraisal of the stratigraphy and volcanology of the Cerro Galán volcanic system, NW Argentina. Bulletin of Volcanology, 73(10), 1427-1454.spa
dc.relation.referencesFisher, R.V., 1966. Mechanism of deposition from pyroclastic flows. American Journal of Science 264, 350–363. https://doi.org/10.2475/ajs.264.5.350spa
dc.relation.referencesFisher, R.V., Schmincke, H.-U., 1984a. Pyroclastic Flow Deposits, in: Fisher, R.V., Schmincke, H.-U. (Eds.), Pyroclastic Rocks. Springer, Berlin, Heidelberg, pp. 186–230. https://doi.org/10.1007/978-3-642-74864-6_8spa
dc.relation.referencesFisher, R.V., Schmincke, H.-U., 1984b. Pyroclastic Fragments and Deposits, in: Fisher, R.V., Schmincke, H.-U. (Eds.), Pyroclastic Rocks. Springer, Berlin, Heidelberg, pp. 89–124. https://doi.org/10.1007/978-3-642-74864-6_5spa
dc.relation.referencesFurque, C., Lucía, A., 2019. Geoquímica y geocronología del volcanismo jurásico al norte del Desierto de la Tatacoa (Formación Saldaña). instname:Universidad de los Andesspa
dc.relation.referencesGeshi, N., Ruch, J., Acocella, V., 2014. Evaluating volumes for magma chambers and magma withdrawn for caldera collapse. Earth and Planetary Science Letters 396, 107–115. https://doi.org/10.1016/j.epsl.2014.03.059spa
dc.relation.referencesGeyer, A., Folch, A., Martí, J., 2006. Relationship between caldera collapse and magma chamber withdrawal: An experimental approach. Journal of Volcanology and Geothermal Research 157, 375–386. https://doi.org/10.1016/j.jvolgeores.2006.05.001spa
dc.relation.referencesGeyer, A., Martí, J., 2008. The new worldwide collapse caldera database (CCDB): A tool for studying and understanding caldera processes. Journal of Volcanology and Geothermal Research 175, 334–354. https://doi.org/10.1016/j.jvolgeores.2008.03.017spa
dc.relation.referencesGifkins, C. C., Allen, R. L., & McPhie, J., 2005. Apparent welding textures in altered pumice-rich rocks. Journal of Volcanology and Geothermal Research, 142(1-2), 29-47.spa
dc.relation.referencesGiordano, G., Cas, R.A.F., 2021. Classification of ignimbrites and their eruptions. Earth-Science Reviews 220, 103697. https://doi.org/10.1016/j.earscirev.2021.103697spa
dc.relation.referencesGómez, J., Montes, N.E., 2020. The Geology of Colombia. Servicio Geológico Colombiano.spa
dc.relation.referencesGoto, Y., Suzuki, K., Shinya, T., Yamauchi, A., Miyoshi, M., Danhara, T., & Tomiya, A., 2018. Stratigraphy and lithofacies of the Toya Ignimbrite in southwestern Hokkaido, Japan: Insights into the caldera-forming eruption at Toya caldera. Journal of Geography (Chigaku Zasshi), 127(2), 191-227spa
dc.relation.referencesGudmundsson, A., 1998. Formation and development of normal-fault calderas and the initiation of large explosive eruptions. Bull Volcanol 60, 160–170. https://doi.org/10.1007/s004450050224spa
dc.relation.referencesHanson, S. L., 2020. Word to the Wise: Spherulites and Lithophysae. Rocks & Minerals, 95(2), 183-187spa
dc.relation.referencesHubach, E., 1.957. Contribución a las unidades estratigráficas de Colombia. Informe No. 1212. Ingeominas. Bogotá. p, 3-9.spa
dc.relation.referencesIrvine, T. N., & Baragar, W. R. A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8(5), 523-548.spa
dc.relation.referencesKay, S.M., Coira, B., Wörner, G., Kay, R.W., Singer, B.S., 2011. Geochemical, isotopic and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán ignimbrites. Bull Volcanol 73, 1487–1511. https://doi.org/10.1007/s00445-010-0410-7spa
dc.relation.referencesKroonenberg, S., Pichler, H., Schmitt, C., 1987. Young alkalibasaltic to nephelinitic volcanism in the Southern Colombian Andes - Origin by subduction of a spreading rift? Zbl. Geol. Palaeont. Teil I. (1987) 919-936spa
dc.relation.referencesKroonenberg, S., Pitcher, H., Diederix, H., 1982. Cenozoic alkalibasaltic to ultrabasic volcanism in the upermost Magdalena Valley, Southern Huila Department, Columbia. Geologia Norandina 5 Mayo (1982) 19–26.spa
dc.relation.referencesKroonenberg, S., Silvestre, L., Pastana, J., Pessoa, M., 1981. Ignimbritas Pliopleistocénicas en el suroeste del Huila, Colombia y su influencia en el desarrollo morfológico. Revista CIAF (Bogotá) 293–314.spa
dc.relation.referencesKusky, T.M., 2022. Déjà vu: Might Future Eruptions of Hunga Tonga-Hunga Ha’apai Volcano be a Repeat of the Devastating Eruption of Santorini, Greece (1650 BC)? J. Earth Sci. 33, 229–235. https://doi.org/10.1007/s12583-022-1624-2spa
dc.relation.referencesLe Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P. (Eds.), 2002. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd ed. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511535581spa
dc.relation.referencesLindsay, J.M., de Silva, S., Trumbull, R., Emmermann, R., Wemmer, K., 2001. La Pacana caldera, N. Chile: a re-evaluation of the stratigraphy and volcanology of one of the world’s largest resurgent calderas. Journal of Volcanology and Geothermal Research 106, 145–173. https://doi.org/10.1016/S0377-0273(00)00270-5spa
dc.relation.referencesLipman, P. W., 1997. Subsidence of ash-flow calderas: relation to caldera size and magmachamber geometry. Bulletin of volcanology, 59(3), 198-218.spa
dc.relation.referencesLópez, S., Cañola, E., Toro, G., Pulgarín, B., Hermelín, M., 2011. Geología Del Miembro Chagarton De La Formación Coconucos. Boletín de Geología 33, 101–116spa
dc.relation.referencesMarquínez, G., Rodriguez, Y., Fuquen, J., 2003. Plancha 365 Coconuco (Memoria Explicativa). Servicio Geológico Colombiano, Bogotá.spa
dc.relation.referencesMarshall, P., 1935. Acid rocks of the Taupo-Rotorua volcanic district. Trans. Roy. Soc. NZ 64, 81–131.spa
dc.relation.referencesMartí, J., Ernst, G.G., 2005. Volcanoes and the Environment. Cambridge University Pressspa
dc.relation.referencesMartí, J., Geyer, A., Folch, A., 2009. A genetic classification of collapse calderas based on field studies, and analogue and theoretical modelling. Volcanology: the Legacy of GPL Walker. IAVCEI-Geological Society of London, London 249–266.spa
dc.relation.referencesMarti, A., Folch, A., Costa, A., & Engwell, S., 2016. Reconstructing the plinian and co-ignimbrite sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite. Scientific reports, 6(1), 1-11.spa
dc.relation.referencesMartí, J., Groppelli, G., Brum da Silveira, A., 2018. Volcanic stratigraphy: A review. Journal of Volcanology and Geothermal Research 357, 68–91. https://doi.org/10.1016/j.jvolgeores.2018.04.006spa
dc.relation.referencesMartínez, L., Valencia, R., Ceballos, J., Narváez, M., Pulgarín, B., Correa, T., ... & Pardo, N., 2014. Geología y estratigrafía del complejo volcánico Nevado del Ruiz. Informe final, Bogotá–Manizales–Popayán. Servicio Geológico Colombiano, 94-381spa
dc.relation.referencesMcPhie, J., Doyle, M., Allen, R.L., Deposit, U. of T.C. for O., Studies, E., 1993. Volcanic Textures: A Guide to the Interpretation of Textures in Volcanic Rocks. Centre for Ore Deposit and Exploration Studies, University of Tasmania.spa
dc.relation.referencesMiller, C.F., Wark, D.A., 2008. Supervolcanoes and their explosive supereruptions. Elements 4, 11–15. https://doi.org/10.2113/GSELEMENTS.4.1.11spa
dc.relation.referencesMojica, J., Macía, C., 1988. Nota preliminar sobre la ocurrencia de improntas de vertebrados (Batrachopus sp.) en sedimentitas de la Formación Saldaña, región de Prado-Dolores, Valle Superior del Magdalena, Colombia. Geología Colombiana 16, 89–94.spa
dc.relation.referencesMojica, J., Prinz-Grimm, P., 2000. La fauna de Amonitas del Triásico Tardío en el Miembro Chicalá (=parte baja de la Formación Saldaña) en Payandé, Tolima, Colombia. Geología Colombiana 25, 13–23.spa
dc.relation.referencesMonsalve, M.L., 2000. Catálogo de las volcanitas Neógenas de Colombia, Fascículo Formación Coconucos. INGEOMINAS.spa
dc.relation.referencesMonsalve, M.L., Gómez, J., Núñez-Tello, A., 2020. Rear arc small–volume basaltic volcanism in Colombia: Monogenetic volcanic fields, in: The Geology of Colombia. Servicio Geológico Colombianospa
dc.relation.referencesMonsalve, M. L., & Pulgarín, B., 1997. Evidences of calderic megastructure in the southern Colombian Andes. IAVCEI General Assembly. Abstracts, 15p. Puerto Vallarta, Méxicospa
dc.relation.referencesMonsalve, M.L., Pulgarín, B., 1995. Cadena volcánica de Los Coconucos (Colombia): centros eruptivos y productos recientes. Boletín Geológico 37, 16–51.spa
dc.relation.referencesMora, A., Gaona, T., Kley, J., Montoya, D., Parra, M., Quiroz, L.I., Reyes, G., Strecker, M.R., 2009. The role of inherited extensional fault segmentation and linkage in contractional orogenesis: a reconstruction of Lower Cretaceous inverted rift basins in the Eastern Cordillera of Colombia. Basin Research 21, 111–137. https://doi.org/10.1111/j.1365- 2117.2008.00367.xspa
dc.relation.referencesMora, A., Venegas, D., Vergara, L., 1998. Estratigrafía del Cretácico Superior y Terciario Inferior en el Sector Norte de la Cuenca del Putumayo, Departamento del Caquetá, Colombia. Geología Colombiana 23, 31–77.spa
dc.relation.referencesMoreno, M., Gómez Cruz, A. de J., Castillo González, H., 2008. Graptolitos del Ordovícico y geología de los afloramientos del río Venado (norte del departamento del Huila). Boletín de Geología 30, 9–19.spa
dc.relation.referencesMurcia, H., Borrero, C., Németh, K., 2019. Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes’ volcanic province. Journal of Volcanology and Geothermal Research, Maar and environmental change - monogenetic volcanism in changing environments 383, 77–87. https://doi.org/10.1016/j.jvolgeores.2018.06.013spa
dc.relation.referencesMurcia, H., Borrero, C., Pardo, N., Alvarado, G.E., Arnosio, M., Scolamacchia, T., 2013. Depósitos volcaniclásticos: términos y conceptos para una clasificación en español. Revista Geológica de América Central 15–39.spa
dc.relation.referencesMurcia, A., & Pichler, H., 1986. Geoquímica y dataciones radiométricas de las ignimbritas cenozoicas del SW de Colombia.spa
dc.relation.referencesNewhall, C.G., Self, S., 1982. The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research: Oceans 87, 1231– 1238. https://doi.org/10.1029/JC087iC02p01231spa
dc.relation.referencesNewhall, C., Self, S., & Robock, A., 2018. Anticipating future Volcanic Explosivity Index (VEI) 7 eruptions and their chilling impacts. Geosphere, 14(2), 572-603spa
dc.relation.referencesOrrego, A., París, G., Ibañez, D., Vásques, E., 1996. Geología y geoquímica de la Plancha 387- Bolívar (Memoria Explicativa). Servicio Geológico Colombiano.spa
dc.relation.referencesPacheco-Hoyos, J. G., Aguirre-Díaz, G. J., & Dávila-Harris, P., 2018. Boiling-over dense pyroclastic density currents during the formation of the~ 100 km3 Huichapan ignimbrite in Central Mexico: Stratigraphic and lithofacies analysis. Journal of Volcanology and Geothermal Research, 349, 268-282.spa
dc.relation.referencesPatarroyo, P., 2011. Sucesión de amonitas del Cretácico Superior (Cenomaniano – Coniaciano) de la parte más alta de la Formación Hondita y de la Formación Loma Gorda en la quebrada Bambucá, Aipe - Huila (Colombia, s. a.). Bol. Geol. 33spa
dc.relation.referencesPorta, J.D., 1965. La estratigrafía del Cretácico Superior y Terciario en el Extremo S del valle Medio del Magdalena. Bol. Geol. 5–50.spa
dc.relation.referencesQuane, S.L., Russell, J.K., 2005. Ranking welding intensity in pyroclastic deposits. Bull Volcanol 67, 129–143. https://doi.org/10.1007/s00445-004-0367-5spa
dc.relation.referencesRodríguez, G., 2018. Caracterización petrográfica, química y edad Ar-Ar de cuerpos porfídicos intrusivos en la formación Saldaña. Boletín Geológico 5–23. https://doi.org/10.32685/0120-1425/boletingeo.44.2018.5spa
dc.relation.referencesRodríguez, G., 2018. Caracterización petrográfica, química y edad Ar-Ar de cuerpos porfídicos intrusivos en la formación Saldaña. Boletín Geológico 5–23. https://doi.org/10.32685/0120-1425/boletingeo.44.2018.5spa
dc.relation.referencesRodríguez, G., Arango, M.I., Zapata, G., Bermúdez, J.G., 2018a. Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes. Journal of South American Earth Sciences 81, 10–30. https://doi.org/10.1016/j.jsames.2017.10.012spa
dc.relation.referencesRodríguez, G., Arango, M.I., Zapata, G., Bermúdez, J.G., 2018b. Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes. Journal of South American Earth Sciences 81, 10–30. https://doi.org/10.1016/j.jsames.2017.10.012spa
dc.relation.referencesRodríguez, G., Mejía, M., G., G., Bermúdez, J., 2015. Características petrográficas, geoquímicas y edad u-pb de los plutones Jurásicos del Valle Superior del Magdalena.spa
dc.relation.referencesRodríguez, G., Zapata, G., Arango, M.I., Bermúdez, J.G., 2017. Caracterización petrográfica, geoquímica y geocronología de rocas granitoides pérmicas al occidente de La Plata y Pacarní - Huila, Valle Superior del Magdalena - Colombia. Boletín de Geología 39, 41–68. https://doi.org/10.18273/revbol.v39n1-2017002spa
dc.relation.referencesRoverato, M., Giordano, D., Echeverri-Misas, C. M., & Juliani, C., 2016. Paleoproterozoic felsic volcanism of the Tapajós Mineral Province, Southern Amazon Craton, Brazil. Journal of Volcanology and Geothermal Research, 310, 98-106spa
dc.relation.referencesRuiz, S., Marquínez, G., 2003. Geología de la plancha 343 Silvia (Memoria Explicativa). Servicio Geológico Colombiano.spa
dc.relation.referencesSamacá, W., 2016. Análisis morfométrico y Geomorfológico de la Caldera de Paletará (Cauca), Colombia.spa
dc.relation.referencesSamacá, W., Sánchez, J.J., 2018. Morphometry of volcanic features associated with Los Coconucos Volcanic Chain (CVLC), Colombia. Boletín de Geología 40, 15–28. https://doi.org/10.18273/revbol.v40n3-2018001spa
dc.relation.referencesSchmitt, C., 1983. Petrologische untersuchugen junger vulcanite in sudkolumbien. EberhardKarls-Universitat Tubingenspa
dc.relation.referencesSchmitt, C., Pichler, H., 1988. Cenozoic ignimbrites of the central andes: A new genetic model, in: Bahlburg, H., Breitkreuz, C., Giese, P. (Eds.), The Southern Central Andes: Contributions to Structure and Evolution of an Active Continental Margin, Lecture Notes in Earth Sciences. Springer, Berlin, Heidelberg, pp. 183–197. https://doi.org/10.1007/BFb0045182spa
dc.relation.referencesSchwabe, E., Toro, G., Kairuz, C., P. Ferreira, 2001. Edades por trazas de fisión de circones provenientes de la Formación Saldaña, Valle Superior del Magdalena. Bol. Geol. 23, 31– 40spa
dc.relation.referencesScott, W., Hoblitt, R., Torres, R., Self, S., Martinez, M., Nilos, T., 1996. Pyroclastic Flows of the June 15, 1991, Climactic Eruption of Mount Pinatubo, in: Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines.spa
dc.relation.referencesSmith, R.L., 1960. Zones and zonal variations in welded ash flows (USGS Numbered Series No. 354- F), Zones and zonal variations in welded ash flows, Professional Paper. U.S. Geological Survey, Washington, D.C. https://doi.org/10.3133/pp354Fspa
dc.relation.referencesSmithsonian Institution, 2013. Volcanoes of the World, v. 4.10.6 Venzke, E.spa
dc.relation.referencesSparks, R.S.J., 1976. Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23, 147–188. https://doi.org/10.1111/j.1365- 3091.1976.tb00045.xspa
dc.relation.referencesSparks, R.S.J., Blundy, J.D., Cashman, K.V., Jackson, M., Rust, A., Wilson, C.J.N., 2021. Large silicic magma bodies and very large magnitude explosive eruptions. Bull Volcanol 84, 8. https://doi.org/10.1007/s00445-021-01510-yspa
dc.relation.referencesSparks, R.S.J., Self, S., Walker, G.P.L., 1973. Products of Ignimbrite Eruptions. Geology 1, 115– 118. https://doi.org/10.1130/0091-7613(1973)1<115:POIE>2.0.CO;2spa
dc.relation.referencesSulpizio, R., Dellino, P., 2008. Chapter 2 Sedimentology, Depositional Mechanisms and Pulsating Behaviour of Pyroclastic Density Currents, in: Gottsmann, J., Martí, J. (Eds.), Developments in Volcanology, Caldera Volcanism: Analysis, Modelling and Response. Elsevier, pp. 57–96. https://doi.org/10.1016/S1871-644X(07)00002-2spa
dc.relation.referencesSulpizio, R., Dellino, P., Doronzo, D.M., Sarocchi, D., 2014. Pyroclastic density currents: state of the art and perspectives. Journal of Volcanology and Geothermal Research 283, 36–65. https://doi.org/10.1016/j.jvolgeores.2014.06.014spa
dc.relation.referencesSun, S. -s, McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19spa
dc.relation.referencesTaboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J., Rivera, C., 2000. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics 19, 787–813. https://doi.org/10.1029/2000TC900004spa
dc.relation.referencesTerry, R.D., Chilingar, G.V., 1955. Summary of “Concerning some additional aids in studying sedimentary formations,” by M. S. Shvetsov. Journal of Sedimentary Research 25, 229– 234. https://doi.org/10.1306/74D70466-2B21-11D7-8648000102C1865Dspa
dc.relation.referencesTorres, M.P., 2010. Petrografía, geocronología y geoquímica de las ignimbritas de la Formación Popayán, en el contexto del vulcanismo del suroccidente de Colombia (Master Thesis). Universidad EAFIT.spa
dc.relation.referencesTorres, M.P., Monsalve, M.L., Pulgarín, B., Cepeda, H., 1999. Caldera de Paletará: aproximación a la fuente de las Ignimbritas del Cauca y Huila (Colombia). Boletín Geológico 37, 1–15.spa
dc.relation.referencesTrenkamp, R., Kellogg, J.N., Freymueller, J.T., Mora, H.P., 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences 15, 157–171. https://doi.org/10.1016/S0895- 9811(02)00018-4spa
dc.relation.referencesTricart, J., Trautmann, J., 1974. Queles aspects de l’evolution geomorphologique Quaternary du haut bassin du Magdalena. Bull. Inst. Fr. Et. And 3, 37–58.spa
dc.relation.referencesValderrama, O., Cardona, C., Gil-Cruz, F., 2016. Erupción sub-pliniana del Volcán Calbuco (Chile), Abril de 2015, un ejemplo de erupciones intempestivas con pocos premonitorios.spa
dc.relation.referencesVelandia, F., Acosta, J., Terraza, R., Villegas, H., 2005. The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia. Tectonophysics, Andean Geodynamics: 399, 313–329. https://doi.org/10.1016/j.tecto.2004.12.028spa
dc.relation.referencesVelandia, F., Ferreira, P., Rodriguez, G., Núñez-Tello, A., 2001a. Levantamiento geológico de la plancha 366 Garzón (Memoria Explicativa). Servicio Geológico Colombiano.spa
dc.relation.referencesVelandia, F., Núñez-Tello, A., Marquínez, G., 2001b. Mapa Geológico del Huila (Memoria Explicativa). Servicio Geológico Colombiano, Bogotáspa
dc.relation.referencesVelandia, F., Terraza, R., Villegas, H., 2001c. El Sistema de Fallas de Algeciras hacia el suroeste de Colombia y la actual transpresión de los Andes del Norte, in: VIII Congreso Colombiano de Geología. Memorias, Manizales.spa
dc.relation.referencesVergara, L.S., 1997. Stratigraphy, foraminiferal assemblages and paleoenvironments in the Late Cretaceous of the Upper Magdalena Valley, Colombia (part I). Journal of South American Earth Sciences 10, 111–132. https://doi.org/10.1016/S0895-9811(97)00010-2spa
dc.relation.referencesWalker, G.P.L., 1983. Ignimbrite types and ignimbrite problems. Journal of Volcanology and Geothermal Research, Explosive Volcanism 17, 65–88. https://doi.org/10.1016/0377- 0273(83)90062-8spa
dc.relation.referencesWalker, G.P.L., 1981. Plinian eruptions and their products. Bull Volcanol 44, 223. https://doi.org/10.1007/BF02600561spa
dc.relation.referencesWalker, G.P.L., 1973. Explosive volcanic eruptions — a new classification scheme. Geol Rundsch 62, 431–446. https://doi.org/10.1007/BF01840108spa
dc.relation.referencesWalker, G.P.L., 1971. Grain-Size Characteristics of Pyroclastic Deposits. The Journal of Geology 79, 696–714.spa
dc.relation.referencesWenyan, S., & Xueyi, Z., 2013. Review of characteristics and genesis of lithophysae. Acta Geol. Sinica, 87, 57-59.spa
dc.relation.referencesWiel, A.M. van der, 1991. Uplift and volcanism of the SE Colombian Andes in relation to Neogene sedimentation in the Upper Magdalena Valley (phd). S.l.spa
dc.relation.referencesWilson, C.J.N., 1986. Pyroclastic flows and ignimbrites. Science Progress (1933- ) 70, 171–207.spa
dc.relation.referencesWilson, C.J.N., Cooper, G.F., Chamberlain, K.J., Barker, S.J., Myers, M.L., Illsley-Kemp, F., Farrell, J., 2021. No single model for supersized eruptions and their magma bodies. Nat Rev Earth Environ 2, 610–627. https://doi.org/10.1038/s43017-021-00191-7spa
dc.relation.referencesYu, Q.-Y., Bagas, L., Yang, P.-H., Zhang, D., 2019. GeoPyTool: A cross-platform software solution for common geological calculations and plots. Geoscience Frontiers 10, 1437– 1447. https://doi.org/10.1016/j.gsf.2018.08.001spa
dc.relation.referencesZuluaga, I., Borrero, C., 2011. Definición del campo volcánico monogenético de San Agustín (CVSA), Huila, Colombia. s.n., Manizales.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.lembEstratigrafía
dc.subject.lembVolcanes
dc.subject.lembGeodinámica
dc.subject.proposalIgnimbritaspa
dc.subject.proposalLitofaciesspa
dc.subject.proposalCorrientes de densidad piroclástica (CDPs)spa
dc.subject.proposalGuacacallospa
dc.subject.proposalErupciónspa
dc.subject.proposalCalderaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
dc.description.degreenameGeólogo(a)spa
dc.publisher.programGeologíaspa
dc.description.researchgroupVulcanologíaspa
dc.description.researchgroupEstratigrafíaspa
dc.description.researchgroupSedimentologíaspa
dc.description.researchgroupPetrografíaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem