Mostrar el registro sencillo del ítem

dc.contributor.advisorRodríguez-Rey, Ghennie T
dc.contributor.authorMarín Zúñiga, Daniela
dc.date.accessioned2022-10-27T19:46:35Z
dc.date.available2023-10-28
dc.date.available2022-10-27T19:46:35Z
dc.date.issued2022-10-27
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/18157
dc.descriptionIlustracionesspa
dc.description.abstractspa:Las relaciones filogenéticas en cetáceos han sido ampliamente analizadas empleando múltiples enfoques, desde el uso de datos morfológicos y secuencias de ADNmt o ADN nuclear hasta el uso del genoma. Además, la recuperación de fósiles y datos secundarios ha permitido comprender la historia evolutiva y los tiempos de divergencia de estos gigantes del mar. Combinados, estos estudios mejoran la comprensión del origen de los cetáceos; su adaptación y procesos de especiación. Aunque las señales acústicas son de gran importancia en cetáceos, pocos estudios evolutivos se han hecho sobre el origen y la variación de sus rasgos acústicos. En el presente estudio comparativo, analizamos los sonidos sociales de catorce especies de misticetos y evaluamos cuantitativamente su variabilidad acústica incorporando de forma integrada datos moleculares y acústicos. Primero discutimos los resultados del análisis filogenético y las implicaciones de los tiempos de divergencia inferidos en nuestra comprensión de la evolución de Cetacea y luego, empleamos un método comparativo basado en movimiento browniano para dilucidar la historia evolutiva de los sonidos sociales en Mysticeti, a partir del cual se evidenció que los sonidos sociales son específicos para cada especie de misticetos y cada taxón posee un conjunto único de variables acústicas.spa
dc.description.abstracteng:Phylogenetic relationships in cetaceans have been extensively analyzed using multiple approaches, from the use of morphological data and mtDNA or nuclear DNA sequences to the use of the genome. In addition, the recovery of fossils and secondary data has made it possible to understand the evolutionary history and divergence times of these giants of the sea. Combined, these studies improve understanding of the origin of cetaceans; their adaptation and speciation processes. Although acoustic signals are of great importance in cetaceans, few evolutionary studies have been done on the origin and variation of their acoustic features. In this comparative study, we analyze the social sounds of fourteen species of baleen whales and quantitatively evaluate their acoustic variability incorporating molecular and acoustic data in an integrated manner. We first discuss the results of the phylogenetic analysis and the implications of the inferred divergence times for our understanding of Cetacea evolution, and then employ a comparative method based on Brownian motion to elucidate the evolutionary history of social sounds in Mysticeti, from the which showed that social sounds are specific to each baleen whale species and each taxon has a unique set of acoustic variables.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleHistoria evolutiva de las señales acústicas en ballenas barbadas (Cetartiodactyla: Mysticeti)spa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelUniversitariospa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesAdam, O., Cazau, D., Gandilhon, N., Fabre, B., Laitman, J. T., & Reidenberg, J. S. (2013). New acoustic model for humpback whale sound production. Applied Acoustics, 74(10). https://doi.org/10.1016/j.apacoust.2013.04.007spa
dc.relation.referencesAide, T. M., Corrada-Bravo, C., Campos-Cerqueira, M., Milan, C., Vega, G., & Alvarez, R. (2013). Real-time bioacoustics monitoring and automated species identification. PeerJ, 2013(1). https://doi.org/10.7717/peerj.103spa
dc.relation.referencesÁrnason, Ú., Lammers, F., Kumar, V., Nilsson, M. A., & Janke, A. (2018). Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow. Science Advances, 4(4). https://doi.org/10.1126/sciadv.aap9873spa
dc.relation.referencesAu, W., & Lammers, M. (2014). Cetacean Acoustics. Biological and Medical Acoustics, 805–837.spa
dc.relation.referencesBallance, L. T. (2018). Cetacean Ecology. Encyclopedia of Marine Mammals, 1991, 172–180. https://doi.org/10.1016/b978-0-12-804327-1.00087-xspa
dc.relation.referencesBell, M. A. (2015). Package ‘ geoscale .’spa
dc.relation.referencesBlomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57(4), 717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.xspa
dc.relation.referencesBrown, A., Garg, S., & Montgomery, J. (2020). AcoustiCloud: A cloud-based system for managing large-scale bioacoustics processing. Environmental Modelling and Software, 131(June), 104778. https://doi.org/10.1016/j.envsoft.2020.104778spa
dc.relation.referencesBurnham, R. E., & Duffus, D. A. (2020). The use of passive acoustic monitoring as a census tool of gray whale (Eschrichtius robustus) migration. Ocean and Coastal Management, 188(December 2019), 105070. https://doi.org/10.1016/j.ocecoaman.2019.105070spa
dc.relation.referencesBurnham, R. E., Duffus, D. A., & Malcolm, C. D. (2021). Towards an enhanced management of recreational whale watching : The use of ecological and behavioural data to support evidence-based management actions. Biological Conservation, 255(February), 109009. https://doi.org/10.1016/j.biocon.2021.109009spa
dc.relation.referencesCabrera, A. A., Bérubé, M., Lopes, X. M., Louis, M., Oosting, T., Rey-Iglesia, A., Rivera-León, V. E., Székely, D., Lorenzen, E. D., & Palsbøll, P. J. (2021). A Genetic Perspective on Cetacean Evolution. Annual Review of Ecology, Evolution, and Systematics, 52(November), 131–151. https://doi.org/10.1146/annurev-ecolsys-012021-105003spa
dc.relation.referencesChen, Z., & Wiens, J. J. (2020). The origins of acoustic communication in vertebrates. Nature Communications, 11(1), 1–8. https://doi.org/10.1038/s41467-020-14356-3spa
dc.relation.referencesChurchill, M., Martinez-Caceres, M., de Muizon, C., Mnieckowski, J., & Geisler, J. H. (2016). The Origin of High-Frequency Hearing in Whales. Current Biology, 26(16), 2144–2149. https://doi.org/10.1016/j.cub.2016.06.004spa
dc.relation.referencesClark, C. W. (1990). Acoustic Behavior of Mysticete Whales. Sensory Abilities of Cetaceans, 571– 583. https://doi.org/10.1007/978-1-4899-0858-2_40spa
dc.relation.referencesCornwell, W., & Nakagawa, S. (2017). Phylogenetic comparative methods. Current Biology, 27(9), R333–R336. https://doi.org/10.1016/j.cub.2017.03.049spa
dc.relation.referencesCunha, H. A., Moraes, L. C., Medeiros, B. V., Lailson-Brito, J., da Silva, V. M. F., Solé-Cava, A. M., & Schrago, C. G. (2011). Phylogenetic status and timescale for the diversification of Steno and Sotalia dolphins. PLoS ONE, 6(12), 1–7. https://doi.org/10.1371/journal.pone.0028297spa
dc.relation.referencesde Mello Bezerra, A., Potsch de Carvalho-e-Silva, S., & Pedreira Gonzaga, L. (2021). Evolution of acoustic signals in Neotropical leaf frogs. Animal Behaviour, 181, 41–49. https://doi.org/10.1016/j.anbehav.2021.08.014spa
dc.relation.referencesDeméré, T. A., McGowen, M. R., Berta, A., & Gatesy, J. (2008). Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Systematic Biology, 57(1), 15–37. https://doi.org/10.1080/10635150701884632spa
dc.relation.referencesDréo, R., Bouffaut, L., Leroy, E., Barruol, G., & Samaran, F. (2019). Baleen whale distribution and seasonal occurrence revealed by an ocean bottom seismometer network in the Western Indian Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 161(April 2018), 132–144. https://doi.org/10.1016/j.dsr2.2018.04.005spa
dc.relation.referencesEspregueira Themudo, G., Alves, L. Q., Machado, A. M., Lopes-Marques, M., da Fonseca, R. R., Fonseca, M., Ruivo, R., & Castro, L. F. C. (2020). Losing Genes: The Evolutionary Remodeling of Cetacea Skin. Frontiers in Marine Science, 7(October). https://doi.org/10.3389/fmars.2020.592375spa
dc.relation.referencesFordyce, R. E. (2018). Cetacean Evolution. Encyclopedia of Marine Mammals, 1851, 180–185. https://doi.org/10.1016/b978-0-12-804327-1.00088-1spa
dc.relation.referencesGaramszegi, L. Z. (2014). Modern phylogenetic comparative methods and their application in evolutionary biology. In Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology. https://doi.org/10.1007/978-3-662-43550-2spa
dc.relation.referencesGatesy, J., & McGowen, M. R. (2021). Higher level phylogeny of baleen whales. In The Bowhead Whale. INC. https://doi.org/10.1016/b978-0-12-818969-6.00001-7spa
dc.relation.referencesHasegawa, M., Kishino, H., & Yano, T. aki. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160–174. https://doi.org/10.1007/BF02101694spa
dc.relation.referencesHusson, A. F., Josse, J., Le, S., Mazet, J., & Husson, M. F. (2022). Package ‘ FactoMineR .’spa
dc.relation.referencesIsler, M. L., Isler, P. R., & Whitney, B. M. (1998). Use of vocalizations to establish species limits in antbirds (Passeriformes: Thamnophilidae). Auk, 115(3), 577–590. https://doi.org/10.2307/4089407spa
dc.relation.referencesIvkovich, T., Filatova, O. A., Burdin, A. M., Sato, H., & Hoyt, E. (2010). The social organization of resident-type killer whales (Orcinus orca) in Avacha Gulf, Northwest Pacific, as revealed through association patterns and acoustic similarity. Mammalian Biology, 75(3), 198–210. https://doi.org/10.1016/j.mambio.2009.03.006spa
dc.relation.referencesJiang, J., Wang, X., Duan, F., Liu, W., Bu, L., Li, F., Li, C., Sun, Z., Ma, S., & Deng, C. (2019). Study of the relationship between pilot whale (Globicephala melas) behaviour and the ambiguity function of its sounds. Applied Acoustics, 146, 31–37. https://doi.org/10.1016/j.apacoust.2018.10.032spa
dc.relation.referencesKamilar, J. M., & Cooper, N. (2013). Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1618). https://doi.org/10.1098/rstb.2012.0341spa
dc.relation.referencesMatthews, J. N., Gordon, J. C. D., Macdonald, D. W., & Rendell, L. E. (1999). A review of frequency and time parameters of cetacean tonal calls. Bioacoustics, 10(1), 47–71. https://doi.org/10.1080/09524622.1999.9753418spa
dc.relation.referencesMay-collado, L. J., Agnarsson, I., & Wartzok, D. (2007). A phylogenetic review of tonal sound production in whales. August. https://doi.org/10.1186/1471-2148-7-136spa
dc.relation.referencesMcGowen, M. R. (2011). Toward the resolution of an explosive radiation-A multilocus phylogeny of oceanic dolphins (Delphinidae). Molecular Phylogenetics and Evolution, 60(3), 345–357. https://doi.org/10.1016/j.ympev.2011.05.003spa
dc.relation.referencesMcGowen, M. R., Tsagkogeorga, G., Álvarez-Carretero, S., Dos Reis, M., Struebig, M., Deaville, R., Jepson, P. D., Jarman, S., Polanowski, A., Morin, P. A., & Rossiter, S. J. (2020). Phylogenomic Resolution of the Cetacean Tree of Life Using Target Sequence Capture. Systematic Biology, 69(3), 479–501. https://doi.org/10.1093/sysbio/syz068spa
dc.relation.referencesMellinger, D. K., & Clark, C. W. (2006). MobySound: A reference archive for studying automatic recognition of marine mammal sounds. Applied Acoustics, 67(11–12), 1226–1242. https://doi.org/10.1016/j.apacoust.2006.06.002spa
dc.relation.referencesMoore, S. E., Haug, T., Víkingsson, G. A., & Stenson, G. B. (2019). Progress in Oceanography Baleen whale ecology in arctic and subarctic seas in an era of rapid habitat alteration. Progress in Oceanography, 176(September 2018), 102118. https://doi.org/10.1016/j.pocean.2019.05.010spa
dc.relation.referencesMünkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., & Thuiller, W. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3(4), 743– 756. https://doi.org/10.1111/j.2041-210X.2012.00196.xspa
dc.relation.referencesOswald, J. N., Barlow, J., & Norris, T. (2000). Acoustic identification of nine delphinid species in the eastern tropical Pacific Ocean. The Journal of the Acoustical Society of America, 108(5), 2635– 2635. https://doi.org/10.1121/1.4743807spa
dc.relation.referencesPagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877– 884. https://doi.org/10.1038/44766spa
dc.relation.referencesPalevitz, B. A. (2000). Evolutionary genomics. In Scientist (Vol. 14, Issue 16).spa
dc.relation.referencesPavan, G., Favaretto, A., Scaravelli, D., & Macchio, S. (2015). Bioacoustics and ecoacoustics applied to environmental monitoring and management. September.spa
dc.relation.referencesPenar, W., Magiera, A., & Klocek, C. (2020). Applications of bioacoustics in animal ecology. In Ecological Complexity (Vol. 43). https://doi.org/10.1016/j.ecocom.2020.100847spa
dc.relation.referencesPrieto, R., Tobeña, M., & Silva, M. A. (2017). Deep – Sea Research II Habitat preferences of baleen whales in a mid-latitude habitat. Deep-Sea Research Part II, 141(August 2016), 155–167. https://doi.org/10.1016/j.dsr2.2016.07.015spa
dc.relation.referencesRambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2017). Software for Systematics and Evolution Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol, 00(0), 1–3. https://doi.org/10.1093/sysbio/syy032/4989127spa
dc.relation.referencesReidenberg, J. S., & Laitman, J. T. (2007). Discovery of a low frequency sound source in mysticeti (baleen whales): Anatomical establishment of a vocal fold homolog. Anatomical Record, 290(6), 745–759. https://doi.org/10.1002/ar.20544spa
dc.relation.referencesRevell, M. L. J. (2022). Phylogenetic Tools for Comparative Biology (and Other Things). 1.spa
dc.relation.referencesRoman, J., Estes, J. A., Morissette, L., Smith, C., Costa, D., McCarthy, J., Nation, J. B., Nicol, S., Pershing, A., & Smetacek, V. (2014). Whales as marine ecosystem engineers. Frontiers in Ecology and the Environment, 12(7), 377–385. https://doi.org/10.1890/130220spa
dc.relation.referencesRonquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029spa
dc.relation.referencesSasaki, T. A. S., Ikaido, M. A. N., Amilton, H. E. H., Oto, M. U. G., Ato, H. I. K., Anda, N. A. K., Astene, L. U. I. S. A. P., Ao, Y. I. N. G. C., Ordyce, R. E. W. A. N. F., Asegawa, M. A. H., & Kada, N. O. O. (2005). Mitochondrial Phylogenetics and Evolution of Mysticete Whales. 54(1), 77–90. https://doi.org/10.1080/10635150590905939spa
dc.relation.referencesSchaffeld, T., Bräger, S., Gallus, A., Dähne, M., Krügel, K., Herrmann, A., Jabbusch, M., Ruf, T., Verfuß, U. K., Benke, H., & Koblitz, J. C. (2016). Diel and seasonal patterns in acoustic presence and foraging behaviour of free-ranging harbour porpoises. Marine Ecology Progress Series, 547(Au 1993), 257–272. https://doi.org/10.3354/meps11627spa
dc.relation.referencesSousa, A., Alves, F., Dinis, A., Bentz, J., Cruz, M. J., & Nunes, J. P. (2019). How vulnerable are cetaceans to climate change? Developing and testing a new index. Ecological Indicators, 98(October 2018), 9–18. https://doi.org/10.1016/j.ecolind.2018.10.046spa
dc.relation.referencesSpringer, M. S., Guerrero-Juarez, C. F., Huelsmann, M., Collin, M. A., Danil, K., McGowen, M. R., Oh, J. W., Ramos, R., Hiller, M., Plikus, M. V., & Gatesy, J. (2021). Genomic and anatomical comparisons of skin support independent adaptation to life in water by cetaceans and hippos. Current Biology, 31(10), 2124-2139.e3. https://doi.org/10.1016/j.cub.2021.02.057spa
dc.relation.referencesSuchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1), 1–5. https://doi.org/10.1093/ve/vey016spa
dc.relation.referencesTamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120spa
dc.relation.referencesThewissen, J. G. M., Cooper, L. N., George, J. C., & Bajpai, S. (2009). From Land to Water: The Origin of Whales, Dolphins, and Porpoises. Evolution: Education and Outreach, 2(2), 272–288. https://doi.org/10.1007/s12052-009-0135-2spa
dc.relation.referencesTonini, J. F. R., Provete, D. B., Maciel, N. M., Morais, A. R., Goutte, S., Toledo, L. F., & Pyron, R. A. (2020). Allometric escape from acoustic constraints is rare for frog calls. Ecology and Evolution, 10(8), 3686–3695. https://doi.org/10.1002/ece3.6155spa
dc.relation.referencesTrawicki, M. B. (2021). Multispecies discrimination of whales (cetaceans) using Hidden Markov Models (HMMS). Ecological Informatics, 61(November 2020). https://doi.org/10.1016/j.ecoinf.2021.101223spa
dc.relation.referencesWatkins, W. A., Fristrup, K., Daher, M. A., & Howald, T. (1992). SOUND database of marine animal vocalizations : structure and operations. SOUND Database of Marine Animal Vocalizations : Structure and Operations. https://doi.org/10.1575/1912/854spa
dc.relation.referencesWilkins, M. R., Seddon, N., & Safran, R. J. (2013). Evolutionary divergence in acoustic signals: Causes and consequences. Trends in Ecology and Evolution, 28(3), 156–166. https://doi.org/10.1016/j.tree.2012.10.002spa
dc.relation.referencesWollenberg, K. C., Glaw, F., Meyer, A., & Vences, M. (2007). Molecular phylogeny of Malagasy reed frogs, Heterixalus, and the relative performance of bioacoustics and color-patterns for resolving their systematics. Molecular Phylogenetics and Evolution, 45(1). https://doi.org/10.1016/j.ympev.2007.06.024spa
dc.relation.referencesXiong, Y., Brandley, M. C., Xu, S., Zhou, K., & Yang, G. (2009). Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales. BMC Evolutionary Biology, 9(1), 1–13. https://doi.org/10.1186/1471-2148-9-20spa
dc.relation.referencesYang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586–1591. https://doi.org/10.1093/molbev/msm088spa
dc.relation.referencesZhou, X., Xu, S., Yang, Y., Zhou, K., & Yang, G. (2011). Phylogenomic analyses and improved resolution of Cetartiodactyla. Molecular Phylogenetics and Evolution, 61(2), 255–264. https://doi.org/10.1016/j.ympev.2011.02.009spa
dc.relation.referencesZurano, J. P., Magalhães, F. M., Asato, A. E., Silva, G., Bidau, C. J., Mesquita, D. O., & Costa, G. C. (2019). Cetartiodactyla: Updating a time-calibrated molecular phylogeny. Molecular Phylogenetics and Evolution, 133(December 2018), 256–262. https://doi.org/10.1016/j.ympev.2018.12.015spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.proposalMacroevoluciónspa
dc.subject.proposalMétodo comparativospa
dc.subject.proposalVariación de rasgosspa
dc.subject.proposalMovimiento brownianospa
dc.subject.proposalCetáceosspa
dc.subject.proposalMacroevolutioneng
dc.subject.proposalComparative methodeng
dc.subject.proposalTrait variationeng
dc.subject.proposalBrownian motioneng
dc.subject.proposalCetaceanseng
dc.subject.unescoAnimal
dc.subject.unescoMamífero
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
dc.description.degreenameBiólogo(a)spa
dc.publisher.programBiologíaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem