Mostrar el registro sencillo del ítem

dc.contributor.advisorValencia-Jimenez, Arnubio
dc.contributor.advisorVélez Arango, Ana María
dc.contributor.authorSánchez Londoño, Laura
dc.date.accessioned2022-10-13T15:17:34Z
dc.date.available2032-12-31
dc.date.available2022-10-13T15:17:34Z
dc.date.issued2022-10-13
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/18133
dc.descriptionIlustracionesspa
dc.description.abstractspa:El maíz es uno de los principales productos agrícolas cosechados en los Estados Unidos, el cual se utiliza para alimentar animales, poblaciones humanas, y para la producción de biocombustibles. Diabrotica virgifera virgifera es un insecto plaga del orden Coleoptera que ataca la raíz del maíz causando millonarias pérdidas anuales. A lo largo de los años su productividad se ha visto muy afectada, debido principalmente a la resistencia que estas plagas han adquirido a los diferentes métodos de control que se han implementado. El estudio de los genes y las proteínas relacionados con la función epigenética, podría ayudar a elucidar mecanismos de resistencia, así como proponer nuevas estrategias genéticas para el manejo de esta plaga. Dentro del grupo de genes con mayor asociación a efectos epigenéticos se encuentran las histonas acetil transferasas (HAT), las cuales están relacionados con factores de transcripción y expresión génica. En este estudio se identificaron cinco genes asociados a HAT en todos los estados de desarrollo de D. virgifera virgifera. Utilizando herramientas bioinformáticas, se caracterizaron dichos genes considerando su cercanía y similitud filogenética con otras especies dentro del mismo orden, presencia de los principales dominios proteicos de cromo y bromo y la predicción de los niveles de expresión génica de los mismos. Dentro de los resultados más relevantes se encuentra la predicción de la mayor expresión genética de todos los HAT en huevos, en comparación con los otros estados de desarrollo del insecto, lo cual proporciona algunas ideas sobre la relevancia de esos genes en los procesos de desarrollo tempranos. Además de un nivel de expresión mayor en todos los genes en las hembras con respecto a los machos. De este modo, estos genes pueden ser propuestos como posibles genes diana para ser utilizados en técnicas como RNAi, la cual es una estrategia molecular para el manejo de poblaciones de insectos plaga en cultivos de maíz.spa
dc.description.abstracteng:Corn is one of the main agricultural products harvested in the United States, which is used for feeding livestock, human populations and production of biofuels. Diabrotica virgifera virgifera is a coleopteran insect pest that attacks the corn roots causing millions of losses annually. Over the years, the management of this pest has been highly affected due to the evolving resistance to the different control methods implemented. The study of genes and proteins related to epigenetic function might help elucidating resistance mechanisms, as well as propose new genetic strategies for the management of this pest. Histone acetyl transferases (HAT) are considered one the most closely related proteins with transcriptional factors and epigenetic effects. In this study, five HAT-associated genes were identified in all developmental stages of D. virgifera virgifera. These genes were characterized utilizing bioinformatic tools considering the following features: their proximity and phylogenetic similarity with other species within the same order, the presence of the main chromium and bromine protein domains, and the prediction of their gene expression levels in silico. One of the most interesting results reveled the prediction of the highest genetic expression of all HATs in eggs, compared to other developmental stages, providing some insights about the relevance of those genes in early developmental processes. Therefore, these genes might be proposed as possible markers for management tools such as RNAi, which is a molecular strategy for management of pest insect populations in agricultural crops.eng
dc.description.tableofcontents1. INTRODUCCIÓN / 2. OBJETIVOS / 2.1. General / 2.2. Específicos / 3. MATERIALES Y MÉTODOS / 3.1. Identificación de histonas acetiltransferasas en el transcriptoma de Diabrotica virgifera virgifera / 3.2. Filtrado de secuencias / 3.3. Identificación de dominios proteicos / 3.4. Análisis filogenéticos / 3.5. Predicción in silico de la expresión de genes HAT en los transcriptomas de los diferentes estados de desarrollo / 4. RESULTADOS / 4.1. Genes HAT en los diferentes estados de desarrollo de D. virgifera virgifera / 3.3. Dominios proteicos en los genes de HAT de D. virgifera virgifera / 3.4. Análisis filogenéticos / 3.5. Nivel de expresión de los genes en los estados de desarrollo de D. virgifera virgifera / 5. DISCUSIÓN Y RECOMENDACIONES / 6. MATERIAL SUPLEMENTARIO / 7. AGRADECIMIENTOS / 8. REFERENCIASspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleCaracterización in silico de histonas acetiltransferasas en los diferentes estados de desarrollo de Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae)spa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelUniversitariospa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizalesspa
dc.relation.referencesBingsohn, L., Knorr, E., & Vilcinskas, A. (2016). The model beetle Tribolium castaneum can be used as an early warning system for transgenerational epigenetic side effects caused by pharmaceuticals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 185–186, 57–64. https://doi.org/10.1016/j.cbpc.2016.03.002spa
dc.relation.referencesBrevik, K., Bueno, E. M., McKay, S., Schoville, S. D., & Chen, Y. H. (2021). Insecticide exposure affects intergenerational patterns of DNA methylation in the Colorado potato beetle, Leptinotarsa decemlineata. Evolutionary Applications, 14(3), 746– 757. https://doi.org/10.1111/eva.13153spa
dc.relation.referencesBurggren, W. W. (2017). Chapter One—Epigenetics in Insects: Mechanisms, Phenotypes and Ecological and Evolutionary Implications. In H. Verlinden (Ed.), Advances in Insect Physiology (Vol. 53, pp. 1–30). Academic Press. https://doi.org/10.1016/bs.aiip.2017.04.001spa
dc.relation.referencesCarrozza, M. J., Utley, R. T., Workman, J. L., & Côté, J. (2003). The diverse functions of histone acetyltransferase complexes. Trends in Genetics, 19(6), 321–329. https://doi.org/10.1016/S0168-9525(03)00115-Xspa
dc.relation.referencesChiang, H. C. (1978). Pest Management in Corn. Annual Review of Entomology, 23(1), 101–123. https://doi.org/10.1146/annurev.en.23.010178.000533spa
dc.relation.referencesChoppin, M., Feldmeyer, B., & Foitzik, S. (2021). Histone acetylation regulates the expression of genes involved in worker reproduction in the ant Temnothorax rugatulus. BMC Genomics, 22(1), 871. https://doi.org/10.1186/s12864-021-08196-8spa
dc.relation.referencesDhandapani, R. K., Gurusamy, D., Duan, J. J., & Palli, S. R. (2020). RNAi for management of Asian long-horned beetle, Anoplophora glabripennis: Identification of target genes. Journal of Pest Science, 93(2), 823–832. https://doi.org/10.1007/s10340- 020-01197-8spa
dc.relation.referencesFishilevich, E., Bowling, A. J., Frey, M. L. F., Wang, P.-H., Lo, W., Rangasamy, M., Worden, S. E., Pence, H. E., Gandra, P., Whitlock, S. L., Schulenberg, G., Knorr, E., Tenbusch, L., Lutz, J. R., Novak, S., Hamm, R. L., Schnelle, K. D., Vilcinskas, A., & Narva, K. E. (2019). RNAi targeting of rootworm Troponin I transcripts confers root protection in maize. Insect Biochemistry and Molecular Biology, 104, 20–29. https://doi.org/10.1016/j.ibmb.2018.09.006spa
dc.relation.referencesFujisawa, T., & Filippakopoulos, P. (2017). Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nature Reviews Molecular Cell Biology, 18(4), 246–262. https://doi.org/10.1038/nrm.2016.143spa
dc.relation.referencesGassmann, A. J., Petzold-Maxwell, J. L., Keweshan, R. S., & Dunbar, M. W. (2011). FieldEvolved Resistance to Bt Maize by Western Corn Rootworm. PLOS ONE, 6(7), e22629. https://doi.org/10.1371/journal.pone.0022629spa
dc.relation.referencesGibney, E. R., & Nolan, C. M. (2010). Epigenetics and gene expression. Heredity, 105(1), 4–13. https://doi.org/10.1038/hdy.2010.54spa
dc.relation.referencesGlastad, K. M., Hunt, B. G., & Goodisman, M. A. D. (2019). Epigenetics in Insects: Genome Regulation and the Generation of Phenotypic Diversity. Annual Review of Entomology, 64(1), 185–203. https://doi.org/10.1146/annurev-ento-011118-111914spa
dc.relation.referencesJacobi, V. G., Fernández, P. C., & Zavala, J. A. (2022). The stink bug Dichelops furcatus: A new pest of corn that emerges from soybean stubble. Pest Management Science, 78(6), 2113–2120. https://doi.org/10.1002/ps.6821spa
dc.relation.referencesJakub, T., Quesnel, K., Keung, C., Bérubé, N. G., & Kramer, J. M. (2021). Chapter 21— Epigenetics in intellectual disability. In J. Peedicayil, D. R. Grayson, & D. Avramopoulos (Eds.), Epigenetics in Psychiatry (Second Edition) (pp. 489–517). Academic Press. https://doi.org/10.1016/B978-0-12-823577-5.00030-1spa
dc.relation.referencesJavaid, N., & Choi, S. (2017). Acetylation- and Methylation-Related Epigenetic Proteins in the Context of Their Targets. Genes, 8(8). https://doi.org/10.3390/genes8080196spa
dc.relation.referencesJoga, M. R., Zotti, M. J., Smagghe, G., & Christiaens, O. (2016). RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Frontiers in Physiology, 7. https://www.frontiersin.org/articles/10.3389/fphys.2016.00553spa
dc.relation.referencesJosling, G. A., Selvarajah, S. A., Petter, M., & Duffy, M. F. (2012). The Role of Bromodomain Proteins in Regulating Gene Expression. Genes, 3(2), 320–343. https://doi.org/10.3390/genes3020320spa
dc.relation.referencesKirfel, P., Skaljac, M., Grotmann, J., Kessel, T., Seip, M., Michaelis, K., & Vilcinskas, A. (2020). Inhibition of histone acetylation and deacetylation enzymes affects longevity, development, and fecundity in the pea aphid (Acyrthosiphon pisum). Archives of Insect Biochemistry and Physiology, 103(3), e21614. https://doi.org/10.1002/arch.21614spa
dc.relation.referencesKleczewski, N. M., Plewa, D. E., Bissonnette, K. M., Bowman, N. D., Byrne, J. M., LaForest, J., Dalla-Lana, F., Malvick, D. K., Mueller, D. S., Chilvers, M. I., Paul, P. A., Raid, R. N., Robertson, A. E., Ruhl, G. E., Smith, D. L., & Telenko, D. E. P. (2020). Documenting the Establishment, Spread, and Severity of Phyllachora maydis on Corn, in the United States. Journal of Integrated Pest Management, 11(1), 14. https://doi.org/10.1093/jipm/pmaa012spa
dc.relation.referencesKnorr, E., Billion, A., Fishilevich, E., Tenbusch, L., Frey, M. L. F., Rangasamy, M., Gandra, P., Arora, K., Lo, W., Geng, C., Vilcinskas, A., & Narva, K. E. (2021). Knockdown of Genes Involved in Transcription and Splicing Reveals Novel RNAi Targets for Pest Control. Frontiers in Agronomy, 3. https://www.frontiersin.org/articles/10.3389/fagro.2021.715823spa
dc.relation.referencesLatcheva, N. K., Delaney, T. L., Viveiros, J. M., Smith, R. A., Bernard, K. M., Harsin, B., Marenda, D. R., & Liebl, F. L. W. (2019). The CHD Protein, Kismet, is Important for the Recycling of Synaptic Vesicles during Endocytosis. Scientific Reports, 9(1), 19368. https://doi.org/10.1038/s41598-019-55900-6spa
dc.relation.referencesLo, C.-L., & Zhou, F. C. (2014). Chapter One—Environmental Alterations of Epigenetics Prior to the Birth. In S. C. Pandey (Ed.), International Review of Neurobiology (Vol. 115, pp. 1–49). Academic Press. https://doi.org/10.1016/B978-0-12-801311- 3.00001-9spa
dc.relation.referencesMaddison, W. P., & Maddison. D. R. (2021). Mesquite: a modular system for evolutionary analysis. Version 3.70 http://www.mesquiteproject.orgspa
dc.relation.referencesMeinke, L. J., Sappington, T. W., Onstad, D. W., Guillemaud, T., Miller, N. J., Komáromi, J., Levay, N., Furlan, L., Kiss, J., & Toth, F. (2009). Western corn rootworm (Diabrotica virgifera virgifera LeConte) population dynamics. Agricultural and Forest Entomology, 11(1), 29–46. https://doi.org/10.1111/j.1461- 9563.2008.00419.xspa
dc.relation.referencesMeinke, L. J., Souza, D., & Siegfried, B. D. (2021). The Use of Insecticides to Manage the Western Corn Rootworm, Diabrotica virgifera virgifera, LeConte: History, FieldEvolved Resistance, and Associated Mechanisms. Insects, 12(2). https://doi.org/10.3390/insects12020112spa
dc.relation.referencesMichereff, M. F. F., Nascimento, I. N., Santana, G. T., Sarria, A. L. F., Borges, M., Laumann, R. A., Withall, D. M., Caulfield, J. C., Birkett, M. A., & Blassioli- Moraes, M. C. (2022). Neotropical maize genotypes with different levels of benzoxazinoids affect fall armyworm development. Physiological Entomology, n/a(n/a). https://doi.org/10.1111/phen.12392spa
dc.relation.referencesMukherjee, K., Twyman, R. M., & Vilcinskas, A. (2015). Insects as models to study the epigenetic basis of disease. Epigenetic Inheritance and Programming, 118(1), 69– 78. https://doi.org/10.1016/j.pbiomolbio.2015.02.009spa
dc.relation.referencesNichol, J. N., Dupéré-Richer, D., Ezponda, T., Licht, J. D., & Miller, W. H. (2016). Chapter Three—H3K27 Methylation: A Focal Point of Epigenetic Deregulation in Cancer. In K. D. Tew & P. B. Fisher (Eds.), Advances in Cancer Research (Vol. 131, pp. 59–95). Academic Press. https://doi.org/10.1016/bs.acr.2016.05.001spa
dc.relation.referencesNowak, D. J., Pasek, J. E., Sequeira, R. A., Crane, D. E., & Mastro, V. C. (2001). Potential Effect of Anoplophora glabripennis (Coleoptera: Cerambycidae) on Urban Trees in the United States. Journal of Economic Entomology, 94(1), 116–122. https://doi.org/10.1603/0022-0493-94.1.116spa
dc.relation.referencesOnstad, D. W., Mitchell, P. D., Hurley, T. M., Lundgren, J. G., Patrick Porter, R., Krupke, C. H., Spencer, J. L., Difonzo, C. D., Baute, T. S., Hellmich, R. L., Buschman, L. L., Hutchison, W. D., & Tooker, J. F. (2011). Seeds of Change: Corn Seed Mixtures for Resistance Management and Integrated Pest Management. Journal of Economic Entomology, 104(2), 343–352. https://doi.org/10.1603/EC10388spa
dc.relation.referencesPereira, A. E., Wang, H., Zukoff, S. N., Meinke, L. J., French, B. W., & Siegfried, B. D. (2015). Evidence of Field-Evolved Resistance to Bifenthrin in Western Corn Rootworm (Diabrotica virgifera virgifera LeConte) Populations in Western Nebraska and Kansas. PLOS ONE, 10(11), e0142299. https://doi.org/10.1371/journal.pone.0142299spa
dc.relation.referencesPereira, A. E., Wang, H., Zukoff, S. N., Meinke, L. J., French, B. W., & Siegfried, B. D. (2015). Evidence of Field-Evolved Resistance to Bifenthrin in Western Corn Rootworm (Diabrotica virgifera virgifera LeConte) Populations in Western Nebraska and Kansas. PLOS ONE, 10(11), e0142299. https://doi.org/10.1371/journal.pone.0142299spa
dc.relation.referencesReay-Jones, F. P. F. (2019). Pest Status and Management of Corn Earworm (Lepidoptera: Noctuidae) in Field Corn in the United States. Journal of Integrated Pest Management, 10(1), 19. https://doi.org/10.1093/jipm/pmz017spa
dc.relation.referencesReynolds, J. A., Bautista-Jimenez, R., & Denlinger, D. L. (2016). Changes in histone acetylation as potential mediators of pupal diapause in the flesh fly, Sarcophaga bullata. Insect Biochemistry and Molecular Biology, 76, 29–37. https://doi.org/10.1016/j.ibmb.2016.06.012spa
dc.relation.referencesRuan, Z., Wang, X., Liu, Y., & Liao, W. (2019). Chapter 3—Corn. In Z. Pan, R. Zhang, & S. Zicari (Eds.), Integrated Processing Technologies for Food and Agricultural ByProducts (pp. 59–72). Academic Press. https://doi.org/10.1016/B978-0-12-814138- 0.00003-4spa
dc.relation.referencesShen, C.-H., Jin, L., Fu, K.-Y., Guo, W.-C., & Li, G.-Q. (2022). RNA interference targeting Ras GTPase gene Ran causes larval and adult lethality in Leptinotarsa decemlineata. Pest Management Science, 78(9), 3849–3858. https://doi.org/10.1002/ps.6822spa
dc.relation.referencesSmith, J. L., Baute, T. S., Sebright, M. M., Schaafsma, A. W., & DiFonzo, C. D. (2018). Establishment of Striacosta albicosta (Lepidoptera: Noctuidae) as a Primary Pest of Corn in the Great Lakes Region. Journal of Economic Entomology, 111(4), 1732– 1744. https://doi.org/10.1093/jee/toy138spa
dc.relation.referencesSpencer, J. L., Hibbard, B. E., Moeser, J., & Onstad, D. W. (2009). Behaviour and ecology of the western corn rootworm (Diabrotica virgifera virgifera LeConte). Agricultural and Forest Entomology, 11(1), 9–27. https://doi.org/10.1111/j.1461- 9563.2008.00399.xspa
dc.relation.referencesTajul-Arifin, K., Teasdale, R., Ravasi, T., Hume, D. A., & Mattick, J. S. (2003). Identification and analysis of chromodomain-containing proteins encoded in the mouse transcriptome. Genome Research, 13(6B), 1416–1429. https://doi.org/10.1101/gr.1015703spa
dc.relation.referencesTamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120spa
dc.relation.referencesVan Rozen, K., & Ester, A. (2010). Chemical control of Diabrotica virgifera virgifera LeConte. Journal of Applied Entomology, 134(5), 376–384. https://doi.org/10.1111/j.1439-0418.2009.01504.xspa
dc.relation.referencesVélez, A. M., Fishilevich, E., Matz, N., Storer, N. P., Narva, K. E., & Siegfried, B. D. (2017). Parameters for Successful Parental RNAi as An Insect Pest Management Tool in Western Corn Rootworm, Diabrotica virgifera virgifera. Genes, 8(1). https://doi.org/10.3390/genes8010007spa
dc.relation.referencesXu, T., & Teale, S. A. (2021). Chemical Ecology of the Asian Longhorn Beetle, Anoplophora glabripennis. Journal of Chemical Ecology, 47(6), 489–503. https://doi.org/10.1007/s10886-021-01280-zspa
dc.relation.referencesYoungson, N. A., & Whitelaw, E. (2008). Transgenerational Epigenetic Effects. Annual Review of Genomics and Human Genetics, 9(1), 233–257. https://doi.org/10.1146/annurev.genom.9.081307.164445spa
dc.relation.referencesZhubi, A., Cook, E. H., Guidotti, A., & Grayson, D. R. (2014). Chapter Six—Epigenetic Mechanisms in Autism Spectrum Disorder. In S. C. Pandey (Ed.), International Review of Neurobiology (Vol. 115, pp. 203–244). Academic Press. https://doi.org/10.1016/B978-0-12-801311-3.00006-8spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.proposalAcetilaciónspa
dc.subject.proposalHistonasspa
dc.subject.proposalEpigenéticaspa
dc.subject.proposalExpresión génicaspa
dc.subject.proposalManejo de plagasspa
dc.subject.proposalMaízspa
dc.subject.proposalAcetylationeng
dc.subject.proposalHistoneeng
dc.subject.proposalEpigeneticeng
dc.subject.proposalGene expressioneng
dc.subject.proposalPest managementeng
dc.subject.proposalCorneng
dc.subject.unescoGenética
dc.subject.unescoBiología
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
dc.description.degreenameBiólogo(a)spa
dc.publisher.programBiologíaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem