Mostrar el registro sencillo del ítem

dc.contributor.advisorSepúlveda Gallego, Luz Elena
dc.contributor.authorRestrepo Arias, Valeria Camila
dc.date.accessioned2022-10-06T17:23:21Z
dc.date.available2022-10-06T17:23:21Z
dc.date.issued2022-10-06
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/18111
dc.descriptionIlustraciones, mapas, gráficasspa
dc.description.abstractspa: Introducción: Con el inició de la pandemia por COVID-19 se empezó a notar un aumento de casos reportados sobre manifestaciones autoinmunes en medio de la enfermedad y sobre casos nuevos de autoinmunidad tras la infección. Objetivo: Correlacionar la tasa de pruebas positivas de SARS-CoV-2 con la tasa de diagnósticos nuevos de enfermedad autoinmune en pacientes pediátricos del departamento del Huila, entre marzo de 2020 y septiembre de 2021. Métodos: Se realizó una caracterización sociodemográfica de los sujetos con diagnóstico de enfermedad autoinmune, una caracterización de los casos de SARS-CoV2, un análisis de la tendencia mensual de los casos de ambos eventos y finalmente, un modelo de correlación entre la tasa de diagnóstico de SARS-CoV2 y la tasa de enfermedades autoinmunes entre marzo de 2020 y septiembre de 2021. Resultados: Durante el periodo de estudio se diagnosticaron en Huila 94 casos de enfermedad autoinmune, con una edad promedio al diagnóstico de 8.3 años, la mayoría de sujetos fueron niñas y pertenecían a la zona urbana y al régimen de salud subsidiado, y la púrpura trombocitopénica inmune fue el diagnóstico más común. Se detectaron 4303 casos de SARS-CoV2, con una edad promedio de 7,9 años. Finalmente, se evidenció que la mayor tasa de enfermedad autoinmune se reportó justo después de los picos más altos de SARS-CoV2. Conclusiones: Este estudio no demostró una correlación estadística entre la tasa de pruebas positivas de SARS-CoV-2 y la tasa de diagnósticos nuevos de enfermedad autoinmune en los pacientes pediátricos del departamento durante los primeros dieciocho meses de la pandemia.spa
dc.description.abstracteng: Introduction: With the onset of the COVID-19 pandemic, there was an increase in reported cases of autoimmune manifestations in the midst of the disease and new cases of autoimmunity after infection. Objective: To correlate the rate of positive tests for SARS-CoV-2 with the rate of new diagnoses of autoimmune disease in pediatric patients of the department of Huila, between March 2020 and September 2021. Methods: A socio-demographic characterization of the subjects diagnosed with autoimmune disease, a characterization of the cases of SARS-CoV2, an analysis of the monthly trend of the cases of both events and, finally, a correlation model between the rate of SARS-CoV2 diagnosis and the rate of autoimmune diseases between March 2020 and September 2021. Results: During the study period, 94 cases of autoimmune disease were diagnosed in Huila, with a mean age at diagnosis of 8. 3 years, most of the subjects were girls and belonged to the urban area and the subsidized health regime, and immune thrombocytopenic purpura was the most common diagnosis. A total of 4303 cases of SARS-CoV2 were detected, with a mean age of 7. 9 years. Finally, it was evidenced that the highest rate of autoimmune disease was reported just after the highest peaks of SARS-CoV2. Conclusions: This study did not show a statistical correlation between the rate of positive tests for SARS-CoV-2 and the rate of new diagnoses of autoimmune disease in pediatric patients of the department during the first eighteen months of the pandemic.eng
dc.description.tableofcontentsContenidos / Introducción / 2 Referente teórico/ 3 Objetivos / 4 Metodología / 5 Resultados /6 Discusión / 7 Conclusiones y recomendaciones / 10 Bibliografía.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleCorrelación entre las pruebas positivas de SARS-CoV-2 y el número de diagnósticos nuevos de enfermedad autoinmune en pacientes pediátricos del departamento del Huila de marzo de 2020 a septiembre de 2021spa
dc.typeTrabajo de grado - Especializaciónspa
dc.description.degreelevelEspecializaciónspa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/mydspacespa
dc.publisher.facultyFacultad de Ciencias para la Saludspa
dc.publisher.placeManizalesspa
dc.relation.references1. Smatti M, Cyprian F, Nasrallah G, et al. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019 Aug 19;11(8):1-18spa
dc.relation.references2. Richard-Eaglin A, Smallheer B. Immunosuppressive/Autoimmune Disorders. Nurs Clin North Am. 2018 Sep 1;53(3):319–34.spa
dc.relation.references3. V’kovski P, Kratzel A, Steiner S, et al. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2020;19(3):155–70.spa
dc.relation.references4. Vojdani A, Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clinical Immunology. 2020;217:1–2.spa
dc.relation.references5. Guan W, Ni Z, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–20spa
dc.relation.references6. Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Current opinion in rheumatology. 2021;33(2):155–62spa
dc.relation.references7. Gracia A, Martin E, Hernández G. New onset of autoimmune diseases following covid-19 diagnosis. Cells. 2021 Dec 1;10(12):1-19spa
dc.relation.references8. Aggarwal A y Scott C. Global Issues in Pediatric Rheumatology. En Petty R, Laxer R, Lindsley C, et al. Textbook of Pediatric Rheumatology- ClinicalKey. 8th ed. Elsevier; 2020: 151-156spa
dc.relation.references9. Thierry S, Fautrel B, Lemelle I, et al. Prevalence and incidence of juvenile idiopathic arthritis: A systematic review. Jt Bone Spine. 2014 Mar 1;81(2):112–7spa
dc.relation.references10. CREA (Centro de estudios de Enfermedades Autoinmunes) [Sitio web de https://www.urosario.edu.co/]. 29 de enero de 2018. Disponible en: https://www.urosario.edu.co/Periodico-NovaEtVetera/Nuestra-U/El-5-de-la-poblacion-enColombia-sufre-de-alguna/. Consultado septiembre 12 de 2021.spa
dc.relation.references11. Palmezano J, Figueroa C, Rodríguez R, et al. Prevalencia y caracterización de las enfermedades autoinmunitarias en pacientes mayores de 13 años en un hospital de Colombia. Med interna México. 2018 J;34(4):522–35.spa
dc.relation.references12. Londoño J, Peláez I, Cuervo F, et al. Prevalencia de la enfermedad reumática en Colombia, según estrategia COPCORD - Asociación Colombiana de Reumatología. Estudio de prevalencia de enfermedad reumática en población colombiana mayor de 18 años. Rev Colomb Reumatol. 2018;25(4):245–56spa
dc.relation.references13. Organización paramericana de la salud. Actualización Epidemiológica: Enfermedad por coronavirus (COVID-19) - [Sitio web de www.paho.org]. 21 de agosto de 2021. Disponible en: https://www.paho.org/es/documentos/actualizacion-epidemiologica-enfermedad-porcoronavirus-covid-19-21-agosto-2021. Consultado en septiembre 11 de 2021].spa
dc.relation.references14. Gobernación del Huila - Emergencia por COVID 19. [Página web de www.huila.gov.co]. 2021. Disponible en: https://www.huila.gov.co/salud/publicaciones/9522/gobernacion-delhuila---emergencia-por-covid-19/. Consultado en junio 5 de 2021.spa
dc.relation.references15. Instituto nacional de salud. Modelos-covid-19 [Página web de www.ins.gov.co]. 2021 disponible en: https://www.ins.gov.co/Direcciones/ONS/modelos-covid-19. Consultado en septiembre 11 de 2021.spa
dc.relation.references16. Jiang L, Tang K, Levin M, et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect Dis. 2020;20(11):276–88spa
dc.relation.references17. Iannarella R, Lattanzi C, Cannata G, et al. Coronavirus infections in children: From SARS and MERS to COVID-19, a narrative review of epidemiological and clinical features. Acta Biomed. 2020;91(3):1–14.spa
dc.relation.references18. Zimmermann P, Curtis N. Coronavirus infections in children including COVID-19: An overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. Pediatric Infectious Disease Journal. 2020 May;39(5):355-368spa
dc.relation.references19. Khera N, Santesmasses D, Kerepesi C, et al. COVID-19 mortality rate in children is Ushaped. Aging (Albany NY). 2021 Aug 8;13(16):54-62.spa
dc.relation.references20. Piedra L, Howe M, Francis J, et al. Latinos and the Pandemic: Results from the National Social Life, Health, and Aging Project—COVID-19 Study. J Appl Gerontol. 2022 May 1;41(5):1465-1472.spa
dc.relation.references21. Andrasfay T, Goldman N. Reductions in 2020 US life expectancy due to COVID-19 and the disproportionate impact on the Black and Latino populations. medRxiv Prepr Serv Heal Sci. 2020 Oct 15; 118 (5): 1-22spa
dc.relation.references22. Thomas S, Griffiths C, Smeeth L, et al. Burden of Mortality Associated With Autoimmune Diseases Among Females in the United Kingdom. Am J Public Health. 2010 Nov 1;100(11):2279-2287.spa
dc.relation.references23. Mitratza M, Klijs B, Hak A, et al. Systemic autoimmune disease as a cause of death: mortality burden and comorbidities. Rheumatology (Oxford). 2021 Mar 1;60(3):1321–30spa
dc.relation.references24. Kim H, Cho S, Kim J, et al. An increased disease burden of autoimmune inflammatory rheumatic diseases in Korea. Semin Arthritis Rheum. 2020 Jun 1;50(3):526–33.spa
dc.relation.references25. Safiri S, Kolahi A, Smith E, et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis. 2020;79(6):1-10spa
dc.relation.references26. Barber M, Clarke A. Socioeconomic consequences of systemic lupus erythematosus. Curr Opin Rheumatol. 2017 Sep 1;29(5):480–5spa
dc.relation.references27. Kent T, Davidson A, Newman D, et al. Burden of illness in systemic lupus erythematosus: results from a UK patient and carer online survey. Lupus. 2017 Sep 1;26(10):1095–100.spa
dc.relation.references28. Jacobs P, Bissonnette R, Guenther L. Socioeconomic Burden of Immune-Mediated Inflammatory Diseases — Focusing on Work Productivity and Disability. J Rheumatol Suppl. 2011 Nov 1;88(88):55–61.spa
dc.relation.references29. Jiang M, Near A, Desta B, et al. Original research: Disease and economic burden increase with systemic lupus erythematosus severity 1 year before and after diagnosis: a real-world cohort study, United States, 2004–2015. Lupus Sci Med. 2021 Sep 14;8(1):1-10spa
dc.relation.references30. Strand V, Tundia N, Song Y, et al. Economic burden of patients with inadequate response to targeted immunomodulators for rheumatoid arthritis. J Manag Care Spec Pharm. 2018 Apr 1;24(4):344–52.spa
dc.relation.references31. Fair D, Rodriguez M, Knight A, et al. Depression And Anxiety In Patients With Juvenile Idiopathic Arthritis: Current Insights And Impact On Quality Of Life, A Systematic Review. Open Access Rheumatol Res Rev. 2019;11:237-252.spa
dc.relation.references32. Quilter M, Hiraki L, Korczak D. Depressive and anxiety symptom prevalence in childhood-onset systemic lupus erythematosus: A systematic review. Lupus. 2019 Jun 1;28(7):878–87spa
dc.relation.references33. Geist R, Grdisa V, Otley A. Psychosocial issues in the child with chronic conditions. Best Pract Res Clin Gastroenterol. 2003 Apr 1;17(2):141–52.spa
dc.relation.references34. Abdul-Sattar A, Magd S, Negm M. Associates of school impairment in Egyptian patients with juvenile idiopathic arthritis: Sharkia Governorate. Rheumatol Int. 2013 Sep 26;34(1):35– 42.spa
dc.relation.references35. Sentenac M, Santos T, Augustine L, et al. Chronic health conditions and school experience in school-aged children in 19 European countries. Eur Child Adolesc Psychiatry. 2022; 40(2):1-11spa
dc.relation.references36. Walsh S, Rau L. Autoimmune diseases: a leading cause of death among young and middle-aged women in the United States. Am J Public Health. 2000;90(9):1463–6.spa
dc.relation.references37. Souza D, Santo A, Sato E. Mortality profile related to systemic lupus erythematosus: a multiple cause-of-death analysis. J Rheumatol. 2012;39(3):496–503.spa
dc.relation.references38. Gacem O, Zeroual Z, Arrada Z, et al. Predictors of mortality in childhood-onset Systemic Lupus Erythematosus. Rheumatology. 2021 Nov 11;60(5):1–10.spa
dc.relation.references39. Yen E, McCurdy D. Autoimmune Diseases: Declining Mortality Between 1999 and 2008 However Continuing to be a Leading Cause of Death in Children-A 10-Year Retrospective Review. American College of Rheumatology. 2012;1–31.spa
dc.relation.references40. Jung S, Kim W. Targeted Immunotherapy for Autoimmune Disease. Immune Netw. 2022 Feb 1;22(1):1-23spa
dc.relation.references41. Departamento nacional de planeación. Ficha de caracterización 2019 [Página web de sirhuila.gov.co]. 30 de diciembre de 2019. Disponible en: http://tempo.sirhuila.gov.co/category/dnp/fichas-de-caracterizacion-municipal/. Citado el 12 de septiembre de 2021.spa
dc.relation.references42. Pollard C, Morran M, Kalinoski A. The COVID-19 pandemic: a global health crisis. Physiol Genomics. 2020;52(11):549–57.spa
dc.relation.references43. Domingues R, Lippi A, Setz C, et al. SARS-CoV-2, immunosenescence and inflammaging: partners in the COVID-19 crime. Aging (Albany NY). 2020 Sep 30;12(18):18778–89spa
dc.relation.references44. Wang M, Zhao R, Gao L, et al. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front Cell Infect Microbiol. 2020 Nov 25;10:1-17.spa
dc.relation.references45. Kutsuna S. Clinical Manifestations of Coronavirus Disease 2019. JMA J. 2021 Apr 4;4(2):76-80.spa
dc.relation.references46. Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol. 2017;18(7):716-724.spa
dc.relation.references47. Dotan A, Muller S, Kanduc D, et al. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev. 2021 Apr 1;20(4):1–10.spa
dc.relation.references48. Chowdhury S, Oommen A. Epidemiology of COVID-19. J Dig Endosc. 2020;11(1):3-7spa
dc.relation.references49. Yazdanpanah N, Rezaei N. Autoimmune complications of COVID-19. J Med Virol. 2021 Aug 31;1(9):1–9.spa
dc.relation.references50. Galeotti C, Bayry J. Autoimmune and inflammatory diseases following COVID-19. Nat Rev Rheumatol. 2020;16(8):413–4.spa
dc.relation.references51. Tang K, Hsu B, Chen D. Autoimmune and Rheumatic Manifestations Associated With COVID-19 in Adults: An Updated Systematic Review. Frontiers in Immunology. 2021;(12): 1-16spa
dc.relation.references52. Taherifard E, Movahed H. Hematologic autoimmune disorders in the course of COVID19: a systematic review of reported cases. Hematology. 2021;26(1):225–39spa
dc.relation.references53. Novelli L, Motta F, Santis M, et al. The JANUS of chronic inflammatory and autoimmune diseases onset during COVID-19 – A systematic review of the literature. J Autoimmun. 2021;117(2021):1–24.spa
dc.relation.references54. Rodríguez Y, Novelli L, Rojas M, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020 Nov 1;114:1–18spa
dc.relation.references55. Li J, Liu H, Yin X, et al. COVID-19 illness and autoimmune diseases: recent insights. Inflamm Res. 2021;70(4):407–28.spa
dc.relation.references56. López M, Peral M, Calabuig I, et al. Case series of acute arthritis during COVID-19 admission. Ann Rheum Dis. 2021;80(4):1–2.spa
dc.relation.references57. Saricaoglu E, Hasanoglu I, Guner R. et al. The first reactive arthritis case associated with COVID‐19. J Med Virol. 2021;93(1):192–3.spa
dc.relation.references58. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):1–3.spa
dc.relation.references59. Bowles L, Platton S, Yartey N, et al. Lupus Anticoagulant and Abnormal Coagulation Tests in Patients with Covid-19. 2020;383(3):1–2spa
dc.relation.references60. Uppal N, Kello N, Shah H. et al. De Novo ANCA-Associated Vasculitis With Glomerulonephritis in COVID-19. Kidney Int reports. 2020;5(11):1–5.spa
dc.relation.references61. Toubiana J, Poirault C, Corsia A, et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. BMJ. 2020 Jun 3;369:1–7.spa
dc.relation.references62. Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020;395(10239):1–8.spa
dc.relation.references63. Feldstein L, Rose E, Horwitz S, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. 2020;383(4):1–13spa
dc.relation.references64. Debliquis A, Harzallah I, Mootien J, et al. Haemophagocytosis in bone marrow aspirates in patients with COVID‐19. Br J Haematol. 2020;190(2):1–4.spa
dc.relation.references65. Wood H, Jones J, Hui K, et al. Secondary HLH is uncommon in severe COVID-19. Br J Haematol. 2020;190(5):1–3.spa
dc.relation.references66. M Verheyden, M Grosber, J Gutermuth. Et al. Relapsing symmetric livedo reticularis in a patient with COVID-19 infection. J Eur Acad Dermatol Venereol. 2020;34(11):684–6.spa
dc.relation.references67. Dominguez M, Diaz B, Garcia P, et al. Cutaneous small-vessel vasculitis associated with novel 2019 coronavirus SARS-CoV-2 infection (COVID-19). J Eur Acad Dermatol Venereol. 2020;34(10):536–7.spa
dc.relation.references68. Restivo D, Centonze D, Alesina A, et al. Myasthenia Gravis Associated With SARSCoV-2 Infection. Ann Intern Med. 2020;173(12):1–2.spa
dc.relation.references69. Foresti C, Servalli M, Frigeni B, et al. COVID-19 provoking Guillain-Barré syndrome: The Bergamo case series. Eur J Neurol. 2021 Oct;28(10):84-85.spa
dc.relation.references70. Mubarak M, Tolouian R, Kowalewska J, et al. Comment: Newly diagnosed glomerulonephritis during COVID-19 infection undergoing immunosuppression therapy, a case report. Iran J Kidney Dis. 2020 jul 1;14(4):323–5spa
dc.relation.references71. Slimani Y, Abbassi R, Zohra F. Systemic lupus erythematosus and varicella-like rash following COVID-19 in a previously healthy patient. J Med Virol. 2021;93(2):1184–7.spa
dc.relation.references72. Cardoso E, Hundal J, Feterman D, et al. Concomitant new diagnosis of systemic lupus erythematosus and COVID-19 with possible antiphospholipid syndrome. Just a coincidence? A case report and review of intertwining pathophysiology. Clin Rheumatol. 2020;39(9):2811–5.spa
dc.relation.references73. Mehan W, Yoon B, Lang M. Paraspinal Myositis in Patients with COVID-19 Infection. AJNR Am J Neuroradiol. 2020 oct 1;41(10):1949–52.spa
dc.relation.references74. Riphagen S, Gomez X, Gonzalez C, et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395(10237):1607–8.spa
dc.relation.references75. Saavedra C. Consenso Colombiano SARS-CoV-2/COVID-19. Infectio. 2021;25(4):153– 67spa
dc.relation.references76. Gobernación del Huila. Datos de primera infancia, infancia y adolescencia [Página web de huila.gov.co]. 12 de junio de 2020. Disponible en: 61 www.huila.gov.co/mujer/publicaciones/9578/datos-de-primera-infancia-infancia-yadolescencia/. Consultado en agosto 26 de 2021spa
dc.relation.references77. Departamento Administrativo Nacional de Estadística (DANE). Censo nacional de población y vivienda 2018 [Página web de dane.gov.co]. 30 de agosto de 2019. Disponible en: https://sitios.dane.gov.co/cnpv/#!/est_pob. Consultado en: septiembre 8 de 2021spa
dc.relation.references78. Instituto Nacional de Salud Colombia - Boletines casos COVID-19 Colombia [Página web de ins.gov.co]. 2021 disponible en: https://www.ins.gov.co/Paginas/Boletines-casosCOVID-19-Colombia.aspx. Consultado en: septiembre 28 de 2021spa
dc.relation.references79. Bowyer S, Roettcher P. Pediatric rheumatology clinic populations in the United States: results of a 3 year survey. J Rheumatol. 1996 Nov; 23(11):1968–74.spa
dc.relation.references80. Rosenberg A. Longitudinal analysis of a pediatric rheumatology clinic population. J Rheumatol. 2005 Oct; 32(10):1992–2001.spa
dc.relation.references81. Terrell D, Beebe L, Vesely S, et al. The incidence of immune thrombocytopenic purpura in children and adults: A critical review of published reports. Am J Hematol. 2010 Mar; 85(3):174–80spa
dc.relation.references82. Kamphuis S, Silverman E. Prevalence and burden of pediatric-onset systemic lupus erythematosus. Nat Rev Rheumatol. 2010 Sep; 6(9):538–46.spa
dc.relation.references83. Angum F, Khan T, Kaler J, et al. The Prevalence of Autoimmune Disorders in Women: A Narrative Review. Cureus. 2020 May;12(5):1-7.spa
dc.relation.references84. Sohn E. Why autoimmunity is most common in women. Nature. 2021 Jul 1;595(7867):51–3.spa
dc.relation.references85. Kühne T, Buchanan G, Zimmerman S, et al. A prospective comparative study of 2540 infants and children with newly diagnosed idiopathic thrombocytopenic purpura (ITP) from the Intercontinental Childhood ITP Study Group. J Pediatr. 2003; 143(5):605–8.spa
dc.relation.references86. Instituto Nacional de Salud. El Coronavirus en Colombia [Página web de coronaviruscolombia.gov.co] 2022. Disponible en: https://coronaviruscolombia.gov.co/Covid19/index.html. Consultado el 30 de mayo de 2022.spa
dc.relation.references87. Wu Z, McGoogan J. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13): 1239–42.spa
dc.relation.references88. Stokes E, Zambrano L, Anderson K, et al. Coronavirus Disease 2019 Case Surveillance — United States, January 22–May 30, 2020. Morb Mortal Wkly Rep. 2020; 69(24): 759-765.spa
dc.relation.references89. American Academy of Pediatrics. Children and COVID-19: State-Level Data Report [Página web de www.aap.org]. 2022. Disponible en: https://www.aap.org/en/pages/2019- novel-coronavirus-covid-19-infections/children-and-covid-19-state-level-data-report/. Consultado en: 30 de mayo de 2022.spa
dc.relation.references90. Dawood F, Porucznik C, Veguilla V, et al. Incidence Rates, Household Infection Risk, and Clinical Characteristics of SARS-CoV-2 Infection Among Children and Adults in Utah and New York City, New York. JAMA Pediatr. 2022 Jan 1; 176(1): 59–67.spa
dc.relation.references91. Dong Y, Mo X, Hu Y. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China - PMC. J Emerg Med. 2020 Apr;58(4):712–3.spa
dc.relation.references92. Murillo E, Aguilar F, Delgado I, et al. Predictors of laboratory-positive COVID-19 in children and teenagers. Public Health. 2020 Dec 1; 189 (2020):153-157.spa
dc.relation.references93. Wurzel D, McMinn A, Hoq M, et al. Original research: Prospective characterisation of SARS-CoV-2 infections among children presenting to tertiary paediatric hospitals across Australia in 2020: a national cohort study. BMJ Open. 2021 Nov 8; 11(11):1-9spa
dc.relation.references94. Pathak E, Salemi J, Sobers N, et al. COVID-19 in Children in the United States: Intensive Care Admissions, Estimated Total Infected, and Projected Numbers of Severe Pediatric Cases in 2020. J Public Heal Manag Pract. 2020 Apr 4; 26(4): 325–33spa
dc.relation.references95. Williams P, Howard A, Hsu P, et al. SARS-CoV-2 in children: spectrum of disease, transmission and immunopathological underpinnings. Pathology. 2020 Dec 1; 52(7):801.spa
dc.relation.references96. Chu V, Schwartz N, Donnelly M, et al. Comparison of Home Antigen Testing With RTPCR and Viral Culture During the Course of SARS-CoV-2 Infection. JAMA Intern Med. 2022 Apr 29; e221827: 1-9spa
dc.relation.references97. Lindsay L, Secrest M, Rizzo S, et al. Factors associated with COVID-19 viral and antibody test positivity and assessment of test concordance: a retrospective cohort study using electronic health records from the USA. BMJ Open. 2021; 11:e051707: 1-13spa
dc.relation.references98. Lau C, Johns J, Merlene S, et al. Trends in COVID-19 Testing and Positivity Rates from a Mobile Testing Program in the Phoenix Metropolitan Area. J Community Health. 2021 Dec 1;46(6):1221–5.spa
dc.relation.references99. Naimoli A. Modelling the persistence of Covid-19 positivity rate in Italy. Socioecon Plann Sci. 2022 Jan 7;101225: 1-15spa
dc.relation.references100. Furuse Y, Ko Y, Ninomiya K, et al. Relationship of test positivity rates with covid‐19 epidemic dynamics. Int J Environ Res Public Health. 2021 Apr 27;18(9):1-10spa
dc.relation.references101. AlDallal A, AlDallal U, Al Dallal J. Positivity rate: an indicator for the spread of COVID19. Curr Med Res Opin. 2021;37(12):2067–76spa
dc.relation.references102. Lindsley C. Seasonal variation in systemic onset juvenile rheumatoid arthritis. Arthritis Rheum. 1987;30(7):838–9.spa
dc.relation.references103. Feldman B, Birdi N, Boone J, et al. Seasonal onset of systemic-onset juvenile rheumatoid arthritis. J Pediatr. 1996;129(4):513–8.spa
dc.relation.references104. Wong K, Farooq Alam Shah M, Khurshid M, et al. COVID-19 associated vasculitis: A systematic review of case reports and case series. Ann Med Surg. 2022 Feb 1;74:103249:1- 5spa
dc.relation.references105. Esposito S, Principi N. Multisystem Inflammatory Syndrome in Children Related to SARS-CoV-2. Paediatr Drugs. 2021;23(2):119-129.spa
dc.relation.references106. Talarico R, Stagnaro C, Ferro F, et al. Symmetric peripheral polyarthritis developed during SARS-CoV-2 infection. Lancet Rheumatol. 2020;2(9):e518–9.spa
dc.relation.references107. Vacchi C, Meschiari M, Milic J, et al. COVID-19-associated vasculitis and thrombotic complications: from pathological findings to multidisciplinary discussion. Rheumatology (Oxford). 2020;59(12):E147–50.spa
dc.relation.references108. Bonometti R, Sacchi M, Stobbione P, et al. The first case of systemic lupus erythematosus (SLE) triggered by COVID-19 infection. Eur Rev Med Pharmacol Sci. 2020;24(18):9695–7spa
dc.relation.references109. Bennett J, Brown C, Rouse M, et al. Immune Thrombocytopenia Purpura Secondary to COVID-19. Cureus. 2020 Jul; 12(7):1-5spa
dc.relation.references110. Hindilerden F, Yonal-Hindilerden I, Akar E, et al. Severe Autoimmune Hemolytic Anemia in COVID-19 İnfection, Safely Treated with Steroids. Mediterr J Hematol Infect Dis. 2020;12(1):1-4spa
dc.relation.references111. Pritchard M, Matthews N, Munro J. Antibodies to influenza A in a cluster of children with juvenile chronic arthritis. Br J Rheumatol. 1988;27(3):176–80.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.lembAnálisis clínicos
dc.subject.lembDiagnóstico
dc.subject.lembNiños
dc.subject.proposalInfecciones por coronavirusspa
dc.subject.proposalEnfermedades Autoinmunesspa
dc.subject.proposalNiñospa
dc.subject.proposalPediatríaeng
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
dc.description.degreenameEspecialista en Epidemiologíaspa
dc.publisher.programEspecialización en Epidemiologíaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem