Mostrar el registro sencillo del ítem


Evaluación del efecto de plaguicidas sobre rasgos biológicos de Chironomus columbiensis

dc.contributor.advisorGomes Dias, Lucimar
dc.contributor.advisorde Oliveira, Eugenio Eduardo
dc.contributor.advisorToro Restrepo, Beatriz
dc.contributor.authorMontaño Campaz, Milton Leoncio
dc.date.accessioned2022-10-05T15:16:49Z
dc.date.available2050-12-31
dc.date.available2022-10-05T15:16:49Z
dc.date.issued2022-10-03
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/18106
dc.descriptionIlustraciones, gráficasspa
dc.description.abstractspa:El uso de plaguicidas como los piretroides, neonicotinoides y diamidas en la agricultura ha generado un cambio sustancial en la producción agrícola, pero también han generado grandes daños ambientales, afectando directa e indirectamente a una gran variedad de organismos no objetivo. Estos compuestos químicos desencadenan una serie de mecanismos de respuesta en los organismos que pueden darse a nivel fisiológico, reproductivo, morfológico, conductual y genómico. Por ello, el objetivo de esta tesis fue evaluar los efectos de los plaguicidas sobre los rasgos biológicos de Chironomus columbiensis en condiciones controladas de laboratorio, así como evaluar herramientas biorracionales que provoquen menores riesgos toxicológicos en el medio ambiente. Para desarrollar estos objetivos se realizaron cuatro ensayos, en los cuales se evaluaron los mecanismos y procesos de respuesta individuales que se producen principalmente a nivel fisiológico, reproductivo y morfológico. El primer experimento (Capítulo II) presenta los resultados sobre cómo la exposición subletal de C. columbiensis inmaduros a deltametrina alteró intra y transgeneracionalmente la reproducción y la forma del ala. Además, se evaluó la recuperación de estos rasgos biológicos en las poblaciones tras la eliminación de la deltametrina. El segundo experimento (Capítulo III) demuestra cambios dependientes del sexo (emergencia, peso, reproducción y forma) como respuestas adaptativas de Chironomus columbiensis a exposiciones subletales agudas y crónicas a imidacloprid. El tercer experimento (Capítulo IV) demostramos cambios dependientes del sexo (emergencia, tiempo para alcanzar el estado adulto, masa corporal, reproducción), además de variaciones en la forma de los huevos y las alas como respuesta de Chironomus columbiensis a las exposiciones subletales al clorantraniliprol y su combinacion con el imidacloprid. En el cuarto estudio (Capítulo V) presenta los resultados de la composición química de los aceites esenciales de Siparuna guianensis y Siparuna gesnerioides y su efecto sobre el vector Aedes aegypti y su depredador. Este trabajo contiene exclusivamente datos de laboratorio, que evidencian las respuestas del insecto no objetivo C. columbiensis a estresores plaguicidas como la deltametrina, el imidacloprid y el clorantraniliprol; además de evaluar las respuestas de Aedes aegypti y su depredador frente a la exposición a aceites esenciales de dos especies del género Siparuna. La comprensión los mecanismos de respuesta que se producen a nivel individual y poblacional(por ejemplo, fisiología, reproducción y morfología) es clave para la dinámica poblacional de estos insectos acuáticos. Nuestras pruebas ponen de manifiesto la necesidad de adoptar estrategias de gestión adecuadas para mitigar los efectos no deseados de los insecticidas sintéticos sobre los insectos no objetivo.spa
dc.description.abstracteng:The use of pesticides such as pyrethroids, neonicotinoids and diamides in agriculture has generated a substantial change in agricultural production, but they have also generated great environmental damage, with direct and indirect effects on a wide variety of non-target organisms. These chemical compounds trigger a series of response mechanisms in organisms, which can occur at the physiological, reproductive, morphological, behavioral and genomic levels. For this reason, the objective of this thesis was to evaluate the effects of pesticides on biological traits of Chironomus columbiensis under controlled laboratory conditions, and also to evaluate biorational tools that cause less toxicological risks in the environment. To develop these objectives, four assays were carried out to evaluate the individual response mechanisms and processes that occur mainly at the physiological, reproductive and morphological levels. The first experiment (Chapter II) presents results on how sublethal exposure of immature C. columbiensis to deltamethrin intra- and transgenerationally altered reproduction and wing shape. In addition, it was evaluated whether the populations after exposure to the insecticide could show a recovery of reproduction (increase in the number of eggs per spawning) and wing shape after the elimination of deltamethrin in one or two generations. The second experiment (Chapter III) demonstrates sex-dependent changes (emergence, weight, reproduction and shape) in the adaptive responses of Chironomus columbiensis to acute and chronic sublethal exposures to imidacloprid. The third experiment (Chapter IV) we demonstrate sex-dependent changes (emergence, time to reach the adult stage, body mass, reproduction) and variations in egg and wing shape in responses of Chironomus columbiensis to sublethal exposures to chlorantraniliprole and its combination with imidacliprid. The fourth study (Chapter V) presents the results of the Chemical composition of essential oils of Siparuna guianensis and Siparuna gesnerioides and its effect on the Aedes aegypti and its predator. This work contains exclusively laboratory data, which evidences the responses of the non-target insect C. columbiensis to pesticide stressors such as deltamethrin, imidacloprid and chlorantraniliprole. The understanding the response mechanisms that occur at the individual and population level (e.g., physiology, reproduction, and morphology) is key to the population dynamics of thesenon-target aquatic insects. Our evidence highlights the need to adopt appropriate management strategies to mitigate the unwanted effects of synthetic insecticides on non-target insects.eng
dc.description.tableofcontentsCHAPTER I: General introduction and overview /1. Impact of agricultural activities and use of pesticides on aquatic ecosystems aquatic ecosystems / 2. General aspects of pesticides/ 3. Insecticides/ 4. Most used pesticides in pest control programs in Caldas/ 5. Some tools used in pesticide effect assessment/ 6. Research objective and chapter outline/ 7. Articles derived from the thesis / 8. Institutional affiliations/ 9. References/ CHAPTER II: Exposures to deltamethrin on immature Chironomus columbiensis drive sublethal and transgenerational effects on their reproduction and wing morphology/ Abstract/ 1. Introduction/ 2. Materials and methods / 3. Results/ 4. Discussion / 4. Conclusions/ 6. References/ CHAPTER III: Chronic and acute sublethal exposures to imidacloprid cause sexdependent changes on the adaptive responses of Chironomus columbiensis/ Abstract/ 1. Introduction/ 2. Material and methods/ 3. Results/ 4. Discussion /5. Conclusions/ 6. Referencias.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleEvaluation of the effect of pesticides on the biological traits of Chironomus columbiensiseng
dc.titleEvaluación del efecto de plaguicidas sobre rasgos biológicos de Chironomus columbiensisspa
dc.typeTrabajo de grado - Doctoradospa
dc.contributor.researchgroupBIONAT: Grupo de investigación en Biodiversidad y Recursos Naturales (Categoría A1)spa
dc.description.degreelevelDoctoradospa
dc.description.notesNo autorizo la publicación de la tesis doctoral por se realizará publicación científicaspa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/mydspacespa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placeViçosaspa
dc.publisher.placeManizalesspa
dc.relation.referencesAbbes, K., Biondi, A., Kurtulus, A., Ricupero, M., Russo, A., Siscaro, G., ... & Zappala, L. (2015). Combined non-target effects of insecticide and high temperature on the parasitoid Bracon nigricans. PLoS One, 10(9), e0138411. https://doi.org/10.1371/journal.pone.0138411spa
dc.relation.referencesAnagnostopoulou, K., Nannou, C., Evgenidou, E., & Lambropoulou, D. (2022). Overarching issues on relevant pesticide transformation products in the aquatic environment: A review. Science of The Total Environment, 152863. https://doi.org/10.1016/j.scitotenv.2021.152863spa
dc.relation.referencesBarbosa, W. F., Smagghe, G., & Guedes, R. N. C. (2015). Pesticides and reduced‐risk insecticides, native bees and pantropical stingless bees: pitfalls and perspectives. Pest Management Science, 71(8), 1049-1053. https://doi.org/10.1002/ps.4025spa
dc.relation.referencesBakker, L., van der Werf, W., Tittonell, P. A., Wyckhuys, K. A., & Bianchi, F. J. (2020). Neonicotinoids in global agriculture: evidence for a new pesticide treadmill? Ecology and Society, 25(3). https://doi.org/10.5751/ES-11814-250326spa
dc.relation.referencesBentley, K. S., Fletcher, J. L., & Woodward, M. D. (2010). Chlorantraniliprole: an insecticide of the anthranilic diamide class. In Hayes' Handbook of Pesticide Toxicology (pp. 2231- 2242). Academic Press. https://doi.org/10.1016/B978-0-12-374367-1.00102-6spa
dc.relation.referencesBernhardt, E. S., Rosi, E. J., & Gessner, M. O. (2017). Synthetic chemicals as agents of global change. Frontiers in Ecology and the Environment, 15(2), 84-90. https://doi.org/10.1002/fee.1450spa
dc.relation.referencesCao, G., Jia, M., Zhao, X., Wang, L., Tu, X., Wang, G., ... & Zhang, Z. (2017). Effects of chlorantraniliprole on detoxification enzymes activities in Locusta migratoria L. Journal of Asia-Pacific Entomology, 20(3), 741-746. https://doi.org/10.1016/j.aspen.2017.04.013spa
dc.relation.referencesCrain, C. M., Kroeker, K., & Halpern, B. S. (2008). Interactive and cumulative effects of multiple human stressors in marine systems. Ecology letters, 11(12), 1304-1315. https://doi.org/10.1111/j.1461-0248.2008.01253.xspa
dc.relation.referencesCui, X., Dong, J., Huang, Z., Liu, C., Qiao, X., Wang, X., ... & Shen, J. (2020). Polychlorinated biphenyls in the drinking water source of the Yangtze River: characteristics and risk assessment. Environmental Sciences Europe, 32(1), 1-9. https://doi.org/10.1186/s12302-020-00309-6spa
dc.relation.referencesDaam, M. A., Chelinho, S., Niemeyer, J. C., Owojori, O. J., De Silva, P. M. C., Sousa, J. P., ... & Römbke, J. (2019). Environmental risk assessment of pesticides in tropical terrestrial ecosystems: test procedures, current status and future perspectives. Ecotoxicology and environmental safety, 181, 534-547. https://doi.org/10.1016/j.ecoenv.2019.06.038spa
dc.relation.referencesDesneux, N., Decourtye, A., & Delpuech, J. M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual review of entomology, 52(1), 81-106. https://doi.org/10.1146/annurev.ento.52.110405.091440spa
dc.relation.referencesDu, Y., Xu, X., Liu, Q., Bai, L., Hang, K., & Wang, D. (2022). Identification of organic pollutants with potential ecological and health risks in aquatic environments: Progress and challenges. Science of the total environment, 806, 150691. https://doi.org/10.1016/j.scitotenv.2021.150691spa
dc.relation.referencesEuropean Food Safety Authority. (2013). Conclusion on the peer review of the pesticide risk assessment of the active substance chlorantraniliprole. EFSA Journal, 11(6), 3143. https://doi.org/10.2903/j.efsa.2013.3143spa
dc.relation.referencesGilbert, L. I., Rybczynski, R., & Warren, J. T. (2002). Control and biochemical nature of the ecdysteroidogenic pathway. Annual review of entomology, 47(1), 883-916.spa
dc.relation.referencesGoh, K. S., Luo, Y., & Singhasemanon, N. (2019). Surface water protection program for pesticide use in California. In Pesticides in Surface Water: Monitoring, Modeling, Risk Assessment, and Management (pp. 1-10). American Chemical Society. https://doi.org/10.1021/bk-2019-1308.ch001spa
dc.relation.referencesGontijo, P. C., Moscardini, V. F., Michaud, J. P., & Carvalho, G. A. (2014). Non-target effects of chlorantraniliprole and thiamethoxam on Chrysoperla carnea when employed as sunflower seed treatments. Journal of Pest Science, 87(4), 711-719. https://doi.org/10.1007/s10340-014-0611-5spa
dc.relation.referencesGuedes, R. N. C., Smagghe, G., Stark, J. D., & Desneux, N. (2016). Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. http://doi.org/10.1146/annurev-ento-010715-023646spa
dc.relation.referencesGuo, L., Desneux, N., Sonoda, S., Liang, P., Han, P., & Gao, X. W. (2013). Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth, Plutella xylostella L. Crop Protection, 48, 29-34. https://doi.org/10.1016/j.cropro.2013.02.009spa
dc.relation.referencesHannig, G. T., Ziegler, M., & Marcon, P. G. (2009). Feeding cessation effects of chlorantraniliprole, a new anthranilic diamide insecticide, in comparison with several insecticides in distinct chemical classes and mode‐of‐action groups. Pest Management Science: formerly Pesticide Science, 65(9), 969-974. https://doi.org/10.1002/ps.1781spa
dc.relation.referencesHan, W., Zhang, S., Shen, F., Liu, M., Ren, C., & Gao, X. (2012). Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest management science, 68(8), 1184-1190. https://doi.org/10.1002/ps.3282spa
dc.relation.referencesKhan, M. M., Hafeez, M., Elgizawy, K., Wang, H., Zhao, J., Cai, W., ... & Hua, H. (2021). Sublethal effects of chlorantraniliprole on Paederus fuscipes (Staphylinidae: Coleoptera), a general predator in paddle field. Environmental Pollution, 291, 118171. https://doi.org/10.1016/j.envpol.2021.118171spa
dc.relation.referencesLahm, G. P., Stevenson, T. M., Selby, T. P., Freudenberger, J. H., Cordova, D., Flexner, L., ... & Benner, E. A. (2007). Rynaxypyr™: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorganic & Medicinal Chemistry Letters, 17(22), 6274-6279. https://doi.org/10.1016/j.bmcl.2007.09.012spa
dc.relation.referencesLiu, X., Zhang, Q., Li, S., Mi, P., Chen, D., Zhao, X., & Feng, X. (2018). Developmental toxicity and neurotoxicity of synthetic organic insecticides in zebrafish (Danio rerio): A comparative study of deltamethrin, acephate, and thiamethoxam. Chemosphere, 199, 16-25. https://doi.org/10.1016/j.chemosphere.2018.01.176spa
dc.relation.referencesNakanishi, K., Usio, N., Yokomizo, H., Takashima, T., & Hayashi, T. I. (2021). Chlorantraniliprole application differentially affects adult emergence of Sympetrum dragonflies in rice paddy fields (pp. 1-7). Springer Singapore. https://doi.org/10.1007/s10333-021-00880-5spa
dc.relation.referencesNawaz, M., Cai, W., Jing, Z., Zhou, X., Mabubu, J. I., & Hua, H. (2017). Toxicity and sublethal effects of chlorantraniliprole on the development and fecundity of a non-specific predator, the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Chemosphere, 178, 496-503. https://doi.org/10.1016/j.chemosphere.2017.03.082spa
dc.relation.referencesMajlesi, S., Carrasco-Navarro, V., Sorvari, J., Panzuto, S., Naarala, J., Akkanen, J., Juutilainen, J. (2020). Is developmental instability in chironomids a sensitive endpoint for testing uranium mine-affected sediments? Sci. Total Environ. 720, 137496. https://doi.org/10.1016/j.scitotenv.2020.137496spa
dc.relation.referencesMaloney, E. M., Sykes, H., Morrissey, C., Peru, K. M., Headley, J. V., & Liber, K. (2020). Comparing the acute toxicity of imidacloprid with alternative systemic insecticides in the aquatic insect Chironomus dilutus. Environmental toxicology and chemistry, 39(3), 587-594. https://doi.org/10.1002/etc.4639spa
dc.relation.referencesMeng, Z., Cui, J., Liu, L., Yang, C., Bao, X., Wang, J., & Chen, X. (2022) Toxicity Effects of Chlorantraniliprole in Zebrafish (Danio Rerio) Involving in Liver Function and Metabolic Phenotype. Available at SSRN 4143308. http://dx.doi.org/10.2139/ssrn.4143308spa
dc.relation.referencesMenezes Oliveira, V. B., de Oliveira Bianchi, M., & Espíndola, E. L. G. (2018). Hazard assessment of the pesticides KRAFT 36 EC and SCORE in a tropical natural soil using an ecotoxicological test battery. Environmental Toxicology and Chemistry, 37(11), 2919-2924. https://doi.org/10.1002/etc.4056spa
dc.relation.referencesMontaño-Campaz, M. L., Dias, L. G., Bacca, T., Toro-Restrepo, B., & Oliveira, E. E. (2022). Exposures to deltamethrin on immature Chironomus columbiensis drive sublethal and transgenerational effects on their reproduction and wing morphology. Chemosphere, 296, 134042. https://doi.org/10.1016/j.chemosphere.2022.134042spa
dc.relation.referencesMontaño-Campaz, M. L., Gomes-Dias, L., Toro Restrepo, B. E., & García-Merchán, V. H. (2019). Incidence of deformities and variation in shape of mentum and wing of Chironomus columbiensis (Diptera, Chironomidae) as tools to assess aquatic contamination. PloS one, 14(1), e0210348. https://doi.org/10.1371/journal.pone.0210348spa
dc.relation.referencesMoscardini, V. F., Gontijo, P. C., Michaud, J. P., & Carvalho, G. A. (2014). Sublethal effects of chlorantraniliprole and thiamethoxam seed treatments when Lysiphlebus testaceipes feed on sunflower extrafloral nectar. BioControl, 59(5), 503-511. https://doi.org/10.1007/s10526-014-9588-5spa
dc.relation.referencesMoscardini, V. F., Gontijo, P. C., Michaud, J. P., & Carvalho, G. A. (2015). Sublethal effects of insecticide seed treatments on two nearctic lady beetles (Coleoptera: Coccinellidae). Ecotoxicology, 24(5), 1152-1161. https://doi.org/10.1007/s10646-015- 1462-4spa
dc.relation.referencesParsaeyan, E., Saber, M., Safavi, S. A., Poorjavad, N., & Biondi, A. (2020). Side effects of chlorantraniliprole, phosalone and spinosad on the egg parasitoid, Trichogramma brassicae. Ecotoxicology, 29(7), 1052-1061. https://doi.org/10.1007/s10646-020- 02235-yspa
dc.relation.referencesPisa, L., Goulson, D., Yang, E. C., Gibbons, D., Sánchez-Bayo, F., Mitchell, E., ... & Bonmatin, J. M. (2021). An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environmental Science and Pollution Research, 28(10), 11749-11797. https://doi.org/10.1007/s11356-017-0341-3spa
dc.relation.referencesRodrigues, A. C., Gravato, C., Quintaneiro, C., Golovko, O., Žlábek, V., Barata, C., ... & Pestana, J. L. (2015). Life history and biochemical effects of chlorantraniliprole on Chironomus riparius. Science of the Total Environment, 508, 506-513. https://doi.org/10.1016/j.scitotenv.2014.12.021spa
dc.relation.referencesRodrigues, A.C., Gravato, C., Quintaneiro, C., Barata, C., Soares, A.M., Pestana, J.L., (2015). Sub-lethal toxicity of environmentally relevant concentrations of esfenvalerate to Chironomus riparius. Environ. Pollut. 207, 273–279. https://doi.org/10.1016/j. envpol.2015.09.035.spa
dc.relation.referencesSial, A. A., & Brunner, J. F. (2012). Baseline toxicity and stage specificity of recently developed reduced‐risk insecticides chlorantraniliprole and spinetoram to obliquebanded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). Pest management science, 68(3), 469-475. https://doi.org/10.1002/ps.2296spa
dc.relation.referencesSong, C., Zhang, J., Hu, G., Meng, S., Fan, L., Zheng, Y., ... & Zhang, X. (2019). Risk assessment of chlorantraniliprole pesticide use in rice-crab coculture systems in the basin of the lower reaches of the Yangtze River in China. Chemosphere, 230, 440-448. https://doi.org/10.1016/j.chemosphere.2019.05.097spa
dc.relation.referencesSoin, T., & Smagghe, G. (2007). Endocrine disruption in aquatic insects: a review. Ecotoxicology, 16(1), 83-93. https://doi.org/10.1007/s10646-006-0118-9spa
dc.relation.referencesSpurgeon, D. J., Jones, O. A., Dorne, J. L. C., Svendsen, C., Swain, S., & Stürzenbaum, S. R. (2010). Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures. Science of the total environment, 408(18), 3725- 3734. https://doi.org/10.1016/j.scitotenv.2010.02.038spa
dc.relation.referencesStinson, S. A., Hasenbein, S., Connon, R. E., Deng, X., Alejo, J. S., Lawler, S. P., & Holland, E. B. (2022). Agricultural surface water, imidacloprid, and chlorantraniliprole result in altered gene expression and receptor activation in Pimephales promelas. Science of The Total Environment, 806, 150920. https://doi.org/10.1016/j.scitotenv.2021.150920spa
dc.relation.referencesSpindler, K. D., Hönl, C., Tremmel, C., Braun, S., Ruff, H., & Spindler-Barth, M. (2009). Ecdysteroid hormone action. Cellular and molecular life sciences, 66(24), 3837-3850. https://doi.org/10.1007/s00018-009-0112-5spa
dc.relation.referencesTaenzler, V., Bruns, E., Dorgerloh, M., Pfeifle, V., Weltje, L. (2007). Chironomids: suitable test organisms for risk assessment investigations on the potential endocrine disrupting properties of pesticides. Ecotoxicology 16 (1), 221–230. https://doi.org/ 10.1007/s10646-006-0117-x.spa
dc.relation.referencesTaillebois, E., Cartereau, A., Jones, A. K., & Thany, S. H. (2018). Neonicotinoid insecticides mode of action on insect nicotinic acetylcholine receptors using binding studies. Pesticide biochemistry and physiology, 151, 59-66. https://doi.org/10.1016/j.pestbp.2018.04.007spa
dc.relation.referencesTeixeira, L. A., & Andaloro, J. T. (2013). Diamide insecticides: Global efforts to address insect resistance stewardship challenges. Pesticide Biochemistry and Physiology, 106(3), 76- 78. https://doi.org/10.1016/j.pestbp.2013.01.010spa
dc.relation.referencesTodgham, A. E., & Stillman, J. H. (2013). Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integrative and comparative biology, 53(4), 539-544. https://doi.org/10.1093/icb/ict086spa
dc.relation.references(USEPA) US Environmental Protection Agency. (2008). Pesticide fact sheet: chlorantraniliprole. DC, pp. 1-77spa
dc.relation.referencesVarg, J.E., Kunce, W., Outomuro, D., Svanb¨ ack, R., Johansson, F. (2021). Single and combined effects of microplastics, pyrethroid and food resources on the life-history traits and microbiome of Chironomus riparius. Environ. Pollut. 289, 117848. https:// doi.org/10.1016/j.envpol.2021.117848.spa
dc.relation.referencesWu, S. F., Zhao, D. D., Huang, J. M., Zhao, S. Q., Zhou, L. Q., & Gao, C. F. (2018). Molecular characterization and expression profiling of ryanodine receptor gene in the pink stem borer, Sesamia inferens (Walker). Pesticide biochemistry and physiology, 146, 1-6. https://doi.org/10.1016/j.pestbp.2018.01.004spa
dc.relation.referencesYang, Y., Wan, P. J., Hu, X. X., & Li, G. Q. (2014). RNAi mediated knockdown of the ryanodine receptor gene decreases chlorantraniliprole susceptibility in Sogatella furcifera. Pesticide Biochemistry and Physiology, 108, 58-65. https://doi.org/10.1016/j.pestbp.2013.12.004spa
dc.relation.referencesYang, L., Kemadjou, J. R., Zinsmeister, C., Bauer, M., Legradi, J., Müller, F., ... & Strähle, U. (2007). Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo. Genome biology, 8(10), 1-17. https://doi.org/10.1186/gb-2007-8-10- r227spa
dc.relation.referencesArias, M., Bonetto, C., & Mugni, H. (2020). Sublethal effects on Simocephalus vetulus (Cladocera: Daphnidae) of pulse exposures of cypermethrin. Ecotoxicology and Environmental Safety, 196, 110546. https://doi.org/10.1016/j.ecoenv.2020.110546spa
dc.relation.referencesAnagnostopoulou, K., Nannou, C., Evgenidou, E., & Lambropoulou, D. (2022). Overarching issues on relevant pesticide transformation products in the aquatic environment: A review. Science of The Total Environment, 152863. https://doi.org/10.1016/j.scitotenv.2021.152863spa
dc.relation.referencesAngert, A. L., Crozier, L. G., Rissler, L. J., Gilman, S. E., Tewksbury, J. J. and Chunco, A. J. (2011). Do species’ traits predict recent shifts at expanding range edges ? Ecol. Lett. 14, 677–689spa
dc.relation.referencesArambourou, H., Planelló, R., Llorente, L., Fuertes, I., Barata, C., Delorme, N., ... & Bonnineau, C. (2019). Chironomus riparius exposure to field-collected contaminated sediments: from subcellular effect to whole-organism response. Science of the Total Environment, 671, 874-882. https://doi.org/10.1016/j.scitotenv.2019.03.384spa
dc.relation.referencesArambourou, H., Llorente, L., Moreno-Ocio, I., Herrero, Ó., Barata, C., Fuertes, I., ... & Planelló, R. (2020). Exposure to heavy metal-contaminated sediments disrupts gene expression, lipid profile, and life history traits in the midge Chironomus riparius. Water Research, 168, 115165. https://doi.org/10.1016/j.watres.2019.115165spa
dc.relation.referencesBarmentlo, S. H., Schrama, M., De Snoo, G. R., Van Bodegom, P. M., van Nieuwenhuijzen, A., & Vijver, M. G. (2021). Experimental evidence for neonicotinoid driven decline in aquatic emerging insects. Proceedings of the National Academy of Sciences, 118(44), e2105692118. https://doi.org/10.1073/pnas.2105692118spa
dc.relation.referencesChristen, V., & Fent, K. (2017). Exposure of honey bees (Apis mellifera) to different classes of insecticides exhibit distinct molecular effect patterns at concentrations that mimic environmental contamination. Environmental pollution, 226, 48-59. https://doi.org/10.1016/j.envpol.2017.04.003spa
dc.relation.referencesCribiu, P., Devaux, A., Garnero, L., Abbaci, K., Bastide, T., Delorme, N., ... & Chaumot, A. (2020). A “population dynamics” perspective on the delayed life-history effects of environmental contaminations: An illustration with a preliminary study of cadmium transgenerational effects over three generations in the Crustacean Gammarus. International journal of molecular sciences, 21(13), 4704. https://doi.org/10.3390/ijms21134704spa
dc.relation.referencesDalhoff, K., Hansen, A. M., Rasmussen, J. J., Focks, A., Strobel, B. W., & Cedergreen, N. (2020). Linking morphology, toxicokinetic, and toxicodynamic traits of aquatic invertebrates to pyrethroid sensitivity. Environmental science & technology, 54(9), 5687-5699. https://doi.org/10.1021/acs.est.0c00189spa
dc.relation.referencesDu, Y., Xu, X., Liu, Q., Bai, L., Hang, K., & Wang, D. (2022). Identification of organic pollutants with potential ecological and health risks in aquatic environments: Progress and challenges. Science of the total environment, 806, 150691. https://doi.org/10.1016/j.scitotenv.2021.150691spa
dc.relation.referencesFu, H., Tan, P., Wang, R., Li, S., Liu, H., Yang, Y., & Wu, Z. (2022). Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. Journal of Hazardous Materials, 424, 127494. https://doi.org/10.1016/j.jhazmat.2021.127494spa
dc.relation.referencesGoretti, E., Pallottini, M., Pagliarini, S., Catasti, M., La Porta, G., Selvaggi, R., ... & Ali, A. (2019). Use of larval morphological deformities in chironomus plumosus (chironomidae: Diptera) as an indicator of freshwater environmental contamination (Lake Trasimeno, Italy). Water, 12(1), 1. https://doi.org/10.3390/w12010001spa
dc.relation.referencesGuedes, R. N. C., Walse, S. S., & Throne, J. E. (2017). Sublethal exposure, insecticide resistance, and community stress. Current opinion in insect science, 21, 47-53. https://doi.org/10.1016/j.cois.2017.04.010spa
dc.relation.referencesGutiérrez, Y. (2020). Multiple mechanisms in which agricultural insects respond to environmental stressors: canalization, plasticity and evolution. Rev. Ciencias Agrícolas 37, 90–99.spa
dc.relation.referencesIntisar, A., Ramzan, A., Sawaira, T., Kareem, A. T., Hussain, N., Din, M. I., ... & Iqbal, H. M. (2022). Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials–A review. Chemosphere, 293, 133538. https://doi.org/10.1016/j.chemosphere.2022.133538spa
dc.relation.referencesIsman, M. B., Miresmailli, S., & Machial, C. (2011). Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochemistry reviews, 10(2), 197-204. https://doi.org/10.1007/s11101-010- 9170-4spa
dc.relation.referencesJager, T., Albert, C., Preuss, T. G., & Ashauer, R. (2011). General unified threshold model of survival-a toxicokinetic-toxicodynamic framework for ecotoxicology. Environmental science & technology, 45(7), 2529-2540. https://doi.org/10.1021/es103092abspa
dc.relation.referencesJia, Z. Z., Zhang, J. W., Zhou, D., Xu, D. Q., & Feng, X. Z. (2019). Deltamethrin exposure induces oxidative stress and affects meiotic maturation in mouse oocyte. Chemosphere, 223, 704-713. https://doi.org/10.1016/j.chemosphere.2019.02.092spa
dc.relation.referencesJu, D., Liu, Y. X., Liu, X., Dewer, Y., Mota-Sanchez, D., & Yang, X. Q. (2022). Sublethal and transgenerational effects of lambda-cyhalothrin and abamectin on the development and reproduction of Cydia pomonella. bioRxiv. https://doi.org/10.1101/2022.07.05.498911spa
dc.relation.referencesKadiru, S., Patil, S., & D’Souza, R. (2022). Effect of pesticide toxicity in aquatic environments: A recent review. https://doi.org/10.22271/fish.2022.v10.i3b.2679spa
dc.relation.referencesKuechle, K. J., Webb, E. B., Mengel, D., & Main, A. R. (2022). Seed treatments containing neonicotinoids and fungicides reduce aquatic insect richness and abundance in midwestern USA–managed floodplain wetlands. Environmental Science and Pollution Research, 1-15. https://doi.org/10.1007/s11356-022-18991-9spa
dc.relation.referencesLencioni, V., Di Nica, V., & Villa, S. (2021). Investigation of the combined effects of rising temperature and pesticide contamination on the swimming behaviour of alpine chironomids. Water, 13(24), 3618. https://doi.org/10.3390/w13243618spa
dc.relation.referencesLin, X., & Smagghe, G. (2019). Roles of the insulin signaling pathway in insect development and organ growth. Peptides, 122, 169923. https://doi.org/10.1016/j.peptides.2018.02.001spa
dc.relation.referencesMacaulay, S. J., Hageman, K. J., Piggott, J. J., & Matthaei, C. D. (2021). Imidacloprid dominates the combined toxicities of neonicotinoid mixtures to stream mayfly nymphs. Science of the Total Environment, 761, 143263. https://doi.org/10.1016/j.scitotenv.2020.143263spa
dc.relation.referencesMamon, M. A. C., Añano, J. A. P., Abanador, L. C., Agcaoili, G. J. T., Sagum, C. B., Pagliawan, R. L. H., ... & Minalang, A. J. A. (2016). Pollutant exposure in Manila Bay: Effects on the allometry and histological structures of Perna viridis (Linn.). Asian Pacific Journal of Reproduction, 5(3), 240-246. https://doi.org/10.1016/j.apjr.2016.03.002spa
dc.relation.referencesMelo, B. S., Ribeiro, F., de Souza Saraiva, A., da Silva Barbosa, R., de Jesus Ferreira, J. S., Melo, M. S., ... & Sarmento, R. A. (2022). Is there a common mechanism of neonicotinoid resistance among insects? Preliminary results show that F1 larvae of preexposed Chironomus xanthus are more tolerant to imidacloprid. Journal of Hazardous Materials Advances, 6, 100073. https://doi.org/10.1016/j.hazadv.2022.100073spa
dc.relation.referencesMerga, L. B., & Van den Brink, P. J. (2021). Ecological effects of imidacloprid on a tropical freshwater ecosystem and subsequent recovery dynamics. Science of the Total Environment, 784, 147167. https://doi.org/10.1016/j.scitotenv.2021.147167spa
dc.relation.referencesMontaño-Campaz, M. L., Dias, L. G., Bacca, T., Toro-Restrepo, B., & Oliveira, E. E. (2022). Exposures to deltamethrin on immature Chironomus columbiensis drive sublethal and transgenerational effects on their reproduction and wing morphology. Chemosphere, 296, 134042. https://doi.org/10.1016/j.chemosphere.2022.134042spa
dc.relation.referencesPhillips, B. M., Voorhees, J. P., Siegler, K., McCalla, L., Meertens, P., Bower, J., & Tjeerdema, R. S. (2022). Acute and Chronic Effects of Clothianidin, Thiamethoxam and Methomyl on Chironomus dilutus. Bulletin of Environmental Contamination and Toxicology, 108(5), 884-889. https://doi.org/10.1007/s00128-021-03416-zspa
dc.relation.referencesSánchez-Bayo, F., & Wyckhuys, K. A. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological conservation, 232, 8-27. https://doi.org/10.1016/j.biocon.2019.01.020spa
dc.relation.referencesSánchez‐Bayo, F., & Wyckhuys, K. A. (2021). Further evidence for a global decline of the entomofauna. Austral Entomology, 60(1), 9-26. https://doi.org/10.1111/aen.12509spa
dc.relation.referencesShang, J., Yao, Y. S., Chen, L. L., Zhu, X. Z., Niu, L., Gao, X. K., ... & Cui, J. J. (2021). Sublethal exposure to deltamethrin stimulates reproduction and alters symbiotic bacteria in Aphis gossypii. Journal of Agricultural and Food Chemistry, 69(50), 15097-15107. https://doi.org/10.1021/acs.jafc.1c05070spa
dc.relation.referencesSoin, T., & Smagghe, G. (2007). Endocrine disruption in aquatic insects: a review. Ecotoxicology, 16(1), 83-93. https://doi.org/10.1007/s10646-006-0118-9spa
dc.relation.referencesWang, Q., Rui, C., Wang, L., Huang, W., Zhu, J., Ji, X., ... & Cui, L. (2022). Comparative Toxicity and Joint Effects of Chlorantraniliprole and Carbaryl Against the Invasive Spodioptera frugiperda (Lepidoptera: Noctuidae). Journal of Economic Entomology. https://doi.org/10.1093/jee/toac059spa
dc.relation.referencesWei, F., Wang, D., Li, H., & You, J. (2021). Joint toxicity of imidacloprid and azoxystrobin to Chironomus dilutus at organism, cell, and gene levels. Aquatic Toxicology, 233, 105783. https://doi.org/10.1016/j.aquatox.2021.105783spa
dc.relation.referencesWiberg-Larsen, P., Graeber, D., Kristensen, E. A., Baattrup-Pedersen, A., Friberg, N., & Rasmussen, J. J. (2016). Trait characteristics determine pyrethroid sensitivity in nonstandard test species of freshwater macroinvertebrates: a reality check. Environmental science & technology, 50(10), 4971-4978. https://doi.org/10.1021/acs.est.6b00315spa
dc.relation.referencesYe, X., & Liu, J. (2019). Effects of pyrethroid insecticides on hypothalamic-pituitary-gonadal axis: a reproductive health perspective. Environmental pollution, 245, 590-599. https://doi.org/10.1016/j.envpol.2018.11.031spa
dc.relation.referencesZhang, D. W., Dai, C. C., Ali, A., Liu, Y. Q., Pan, Y., Desneux, N., & Lu, Y. H. (2022). Lethal and sublethal effects of chlorantraniliprole on the migratory moths Agrotis ipsilon and Agrotis segetum: new perspectives for pest management strategies. Pest Management Science. https://doi.org/10.1002/ps.7029spa
dc.relation.referencesZhang, X., Zhang, T., Ren, X., Chen, X., Wang, S., & Qin, C. (2021). Pyrethroids toxicity to male reproductive system and offspring as a function of oxidative stress induction: rodent studies. Frontiers in Endocrinology, 12, 656106. https://doi.org/10.3389/fendo.2021.656106spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.lembInsectos nocivos para la agricultura.
dc.subject.lembPlagas agrícolas.
dc.subject.proposalInsecticidas sintéticosspa
dc.subject.proposalInsecticidas biorracionalesspa
dc.subject.proposalAceites esencialesspa
dc.subject.proposalInsectos no objetivospa
dc.subject.proposalSynthetic insecticideseng
dc.subject.proposalBiorational insecticideseng
dc.subject.proposalEssential oilseng
dc.subject.proposalNon-target insectseng
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
dc.description.degreenameDoctor(a) en Ciencias Agrariasspa
dc.publisher.programDoctorado en Ciencias Agrariasspa
dc.description.researchgroupEcotoxicologíaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem