Mostrar el registro sencillo del ítem


Modelación y simulación de criterios de mejoramiento genético para el fortalecimiento de la sostenibilidad ambiental de la actividad ganadera

dc.contributor.advisorMesa E, Henry
dc.contributor.authorMoncada Aguirre, Rafael Ricardo
dc.date.accessioned2021-08-11T16:19:10Z
dc.date.available2021-08-11T16:19:10Z
dc.date.issued2021-08-10
dc.identifier.urihttps://repositorio.ucaldas.edu.co/handle/ucaldas/16953
dc.descriptionGráficasspa
dc.description.abstractspa:Las metodologías de evaluación y selección de individuos para aumentar la productividad en animales son ampliamente conocidas y aplicadas en muchas partes del mundo. Si entendemos el mejoramiento genético animal como una herramienta para lograr la adaptación de las poblaciones al ambiente disponible, debemos reconocer que los nuevos ambientes tienen restricciones a las que nos debemos adaptar. En Colombia se han hecho algunos avances en la aplicación de esas metodologías, pero como en el resto del mundo, se ha dejado fuera de la ecuación la sostenibilidad de los sistemas productivos vacunos, poniendo en riesgo la capacidad de producir alimentos en el futuro. Ante la pregunta: ¿cómo puede el mejoramiento genético aportar al fortalecimiento de la sostenibilidad de los sistemas productivos vacunos? se ha optado por las metodologías del análisis de sistemas como una forma integral de identificar variables, indicadores y metas que puedan ser evaluadas y posteriormente incluidas en las ponderaciones tradicionales de los programas de mejoramiento y evaluación genética, para la construcción de índices de selección. La dinámica de los modelos mostró que variables relacionadas con costos de producción, calidad del producto, bienestar animal e impacto ambiental son importantes en la definición de objetivos hacia la sostenibilidad. Como punto de partida, se realizó la compilación sistemática de indicadores de sostenibilidad de los sistemas productivos vacunos potencialmente mejorables genéticamente, y fueron ser modelados y simulados posteriormente. La metodología de dinámica de sistemas permitió proponer diferentes escenarios y políticas construidas a partir de los tres enfoques de sostenibilidad en la producción vacuna preponderantes en nuestro país para evaluar la sensibilidad de algunos indicadores de sostenibilidad a cambios en el progreso genético de una población para las variables seleccionadas.spa
dc.description.abstracteng:The methodologies of evaluation and selection of individuals to increase the productivity in animals are widely known and applied in many parts of the world. If we understand animal genetic improvement as a tool to achieve the adaptation of populations to the available environment, we must recognize that new environments have restrictions to which we must adapt. In Colombia, some progress has been made in the enforcement of these methodologies, but as in the rest of the world, the sustainability of cattle production systems has been left out of the equation, putting at risk the capacity to produce food in the future. When asked: how can genetic improvement contribute to strengthening the sustainability of cattle production systems? Systems analysis methodologies have been chosen as a comprehensive way of identifying variables, indicators and goals that can be evaluated and later included in the traditional weightings of breeding programs and genetic evaluation, for the construction of selection indices. The dynamics of the models showed that variables related to production costs, product quality, animal welfare and environmental impact are important in defining objectives towards sustainability. As a starting point, the systematic compilation of sustainability indicators of potentially genetically improved cattle production systems was carried out, and they were subsequently modeled and simulated. The systems dynamics methodology allowed proposing different scenarios and policies built from the three predominant sustainability approaches in vaccine production in our country to evaluate the sensitivity of some sustainability indicators to changes in the genetic progress of a population for the variables selected.eng
dc.description.tableofcontentsACKNOWLEDGMENT /LIST OF FIGURES/ LIST OF TABLES/ Abstract / Chapter / I. Introduction/ Background/ Objectives / II. Literature review / Genetic improvement/ Genetic improvement in Colombian cattle livestock / Sustainability/ Bovine genetic improvement aimed at sustainability/ Indicators to assess sustainability/ Systematic review / Systemic approach/ Dynamic of systems/ Modeling with system dynamics/ Validation of the models/ III. Systematic compilation of indicators of sustainability of the cattle activity, and determination of the indicators with potential of genetic improvement / Abstract/ Introduction / Materials and methods/ Research question / Study inclusion and exclusion criteria / Literature search plan / Quality assessment of selected studies / Results / 4 Environmental indicators/ Economic indicators/ Social indicators/ Discussion/ IV. Modeling of a breeding livestock system, and simulation of the effect of trampling cattle on soil porosity and its productive capacity / Abstract/ Introduction / Materials and methods/ Main components of the model / Dynamic hypothesis, mental model/ Flow and level diagrams / Dry matter production and consumption / Compaction and animal dynamic / Determination of the loss of porosity for each cattle step, at different pressure levels/ Genetic progress/ Indicators / Model evaluation/ Structure valuation test / Dimensional consistency test/ Extreme conditions test/ Sensitivity analysis test (Monte Carlo test)/ Simulation policies / Actual state / Genetic progress/ Results and discussion / Actual state / Genetic progress of the hoof area/ Sustainability indicators/ Conclusions / V. Simulation of the effect of genetic progress on enteric methane emissions in a rearing system using the system dynamics methodology based on the IPCC tier 2 methodology/ 5 Abstract/ Introduction / Materials and methods/ Construction and parameterization of the CH4 enteric emissions estimation model / Determination of emission factors by subcategory/ Sustainability indicator / Model evaluation/ Extreme conditions test/ Sensitivity analysis test (monte carlo test) / Simulation policie / Base line / Genetic progress/ Conclusions / Annexes / Bibliography.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.titleModeling and simulation of genetic improvement criteria to strengthen the environmental sustainability of cattle livestockeng
dc.titleModelación y simulación de criterios de mejoramiento genético para el fortalecimiento de la sostenibilidad ambiental de la actividad ganaderaspa
dc.typeTrabajo de grado - Doctoradospa
dc.contributor.educationalvalidatorRaúl Andrés Molina Benavides
dc.contributor.educationalvalidatorJuan Carlos Montoya Salazar
dc.contributor.researchgroupGIPPA: Producción Agropecuaria (Categoría A1)spa
dc.description.degreelevelDoctoradospa
dc.description.notesEste no puede ser publicado ya que esta sujeto a publicación de articulo científico.spa
dc.identifier.instnameUniversidad de Caldasspa
dc.identifier.reponameRepositorio institucional Universidad de Caldasspa
dc.identifier.repourlhttps://repositorio.ucaldas.edu.co/spa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placeManizalesspa
dc.relation.referencesADSA. (2016). American Dairy Science Association Retrieved from https://www.adsa.org/spa
dc.relation.referencesAmir, I., Raghavan, G. S. V., McKyes, E., & Broughton, R. S. (1976). Soil Compaction As a Function of Contact Pressure and Soil Moisture Content. Canadian Agricultural Engineering, 18(1), 54–57.spa
dc.relation.referencesAxelsson, H. H., Johansson, K., Eriksson, S., Petersson, K.-J., Rydhmer, L., & Philipsson, J. (2011). Selection of bull dams for production and functional traits in an open nucleus herd. JOURNAL OF DAIRY SCIENCE, 94(5), 2592–2600. https://doi.org/10.3168/jds.2010-3478spa
dc.relation.referencesB D, S., & Ouwerkerk, V. (1994). Soil Compaction in Crop Production, Developments in Agricultural Engineering Series, vol. 11. Elsevier Science, Amsterdam, The Netherlands, pp.spa
dc.relation.referencesBedoya, C., Alzate, J., Ángel, J., Escobar, C., & Calvo, S. (2018). Genetic evaluation for weight traits in commercial Brahman cattle. Journal MVZ Cordoba.spa
dc.relation.referencesBeltran, O. (2005). Revisiones sistemáticas de la literatura. Asociaciones Colombianas de Gastroenterología, Endoscopia digestiva, Coloproctología y Hepatología.spa
dc.relation.referencesBennett, N., Croke, B., Guariso, G., Guillaume, J., Hamiltona, S., Jakemana, A., & Andreassian, V. (2013). Characterising performance of environmental models. Elsevier.spa
dc.relation.referencesBennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J. P., Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B. D., & Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling and Software, 40, 1–20. https://doi.org/10.1016/j.envsoft.2012.09.011spa
dc.relation.referencesBourdon, R. (2000). Understanding animal breeding. New Jerseyspa
dc.relation.referencesCampos, D., & Isaza, J. (2009). A geometrical index for measuring species diversity. Ecological Indicators 9: 651 – 658.spa
dc.relation.referencesCardellino, R., & Rovira, J. (1987). Mejoramiento Genetico Animal. Editorial Hemisferio Sur.spa
dc.relation.referencesCastoldi, N., & Bechini, L. (2009). Integrated sustainability assessment of cropping systems with agro-ecological and economic indicators in northern Italy. European Journal of Agronomy, 32(1), 59–72. https://doi.org/10.1016/j.eja.2009.02.003spa
dc.relation.referencesChen, X., Gao, M.-Q., Liang, D., Yin, S., Yao, K., & Zhang, Y. (2017). Safety assessment of genetically modified milk containing human beta-defensin-3 on rats by a 90-day feeding study. Food and Chemical Toxicology, 100, 34–41. https://doi.org/https://doi.org/10.1016/j.fct.2016.12.012spa
dc.relation.referencesCluzeau, D., Binet, F., Vertes, F., Simon, J. ., Riviere, J. ., & Trehen, P. (1992). Effects of intensive cattle trampling on soil-plant-earthworms system in two grassland types. Soil Biology and Biochemistry, 24(12), 1661–1665.spa
dc.relation.referencesCorpocaldas. (2018). Descripcion climatica y topografica del municipio de norcasia.spa
dc.relation.referencesDANE. (2015). Encuesta nacional agropecuaria. ENA [Press Release].spa
dc.relation.referencesDantsis, T., Douma, C., Giourga, C., Loumou, A., & Polychronaki, E. (2009). A methodological approach to assess and compare the sustainability level of agricultural plant production systems.spa
dc.relation.referencesDe´fosseza, P., Richarda, G., Boizardb, H., & O’Sullivanc, M. F. (2003). Modeling change in soil compaction due to agricultural traffic as function of soil water content. Institut National de Recherche Agronomique.spa
dc.relation.referencesDe Haas, Y., Windig, J., Calus, M., Dijkstra, J., Haan, M. De, Bannink, A., & Veerkamp, R. (2011). Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J Dairy Sci, 94, 6122–6134.spa
dc.relation.referencesDe Rosa, G., Grasso, F., Pacelli, C., Napolitano, F., & Winckler, C. (2009). The welfare of dairy buffalo. ITALIAN JOURNAL OF ANIMAL SCIENCE, 8(1, SI), 103–116. https://doi.org/10.4081/ijas.2009.s1.103spa
dc.relation.referencesDenmead, L. H., Barker, G. M., Standish, R. J., & Didham, R. K. (2015). Experimental evidence that even minor livestock trampling has severe effects on land snail communities in forest remnants. Journal of Applied Ecology, 52(1), 161–170. https://doi.org/10.1111/1365-2664.12370spa
dc.relation.referencesDíaz, M. (2014). Estudio de la variabilidad climática y los agroecosistemas cafeteros desde la dinámica de sistemas. (Tesis de maestría), Universidad Nacional de Colombia, Bogota.spa
dc.relation.referencesDomingo-Olive, F., Bosch-Serra, A. D., Yaguee, M. R., Poch, R. M., & Boixadera, J. (2016). Long term application of dairy cattle manure and pig slurry to winter cereals improves soil quality. NUTRIENT CYCLING IN AGROECOSYSTEMS, 104(1), 39–51. https://doi.org/10.1007/s10705-015-9757-7spa
dc.relation.referencesDuarte, N. (2005). Sostenibilidad socioeconómica y ecológica de sistemas agroforestales de café (Coffea arabica) en la microcuenca del Río Sesesmiles, Copán, Honduras. (Tesis de maestría ). Turrialba, Costa Ricaspa
dc.relation.referencesDuarte, Nina. (2005). Sostenibilidad socioeconómica y ecológica de sistemas agroforestales de café (Coffea arabica) en la microcuenca del río Sesesmiles, Copán, Honduras. Catie, 36–39. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Sostenibilidad+soci oecon?mica+y+ecol?gica+de+sistemas+agroforestales+de+caf?+(Coffea+arabica)+en +la+microcuenca+del+R?o+Sesesmiles,+Cop?n,+Honduras#0spa
dc.relation.referencesFalconer, D., & Mackay, T. (1996). Introduction to quantitative genetics. England.spa
dc.relation.referencesFAO. (2009). Métodos de mejora genética en apoyo de una utilización sostenible. Estado de La Cuestión En La Gestión de Los Recursos Zoogenético, 1, 417–467. http://www.fao.org/docrep/012/a1250s/a1250s18.pdfspa
dc.relation.referencesFAO. (2013). tackling climate change through livestock, a global assessment of emissions and mitigation opportunities.spa
dc.relation.referencesFAO. (2017). Food and Agriculture Organization. Rome Italy. www.fao.org.spa
dc.relation.referencesFAO. (2018). Food and Agriculture Organization. Rome Italy. STAT Database. www.fao.orgspa
dc.relation.referencesFAO. (2019). The state of food security and nutrition in the world, Safeguarding against economic Slowdowns and Downturns. In food and Agriculture Organization of the United Nations (Vol. 7, Issue 7). https://doi.org/10.1109/JSTARS.2014.2300145spa
dc.relation.referencesFedegan. (2016). Análisis del inventario ganadero colombiano. Comportamiento y variables explicativas. Retrieved from http://www.fedegan.org.co/publicacion/publicaciones_presentaciones/presentacione s-tecnicas.spa
dc.relation.referencesFernandes, L. A. de O., & Woodhouse, P. J. (2008). Family farm sustainability in southern Brazil: An application of agri-environmental indicators. Ecological Economics, 66(2–3), 243–257. https://doi.org/10.1016/j.ecolecon.2008.01.027spa
dc.relation.referencesFlores-Delgadillo, L., & Alcalá-Martínez, J. R. (2010). Manual de Procedimientos Analíticos. Instituto de Geologia (UNAM), 56. https://www.geologia.unam.mx/igl/deptos/edafo/lfs/Manual del laboratorio de física de suelos.pdfspa
dc.relation.referencesGaleano, A. (2010). Evaluación genética del recurso animal de los sistemas de producción de bovinos en doble propósito en Colombia. (Tesis de maestría), Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesGavrilova, O., Leip, A., Dong, H., Macdonald, J., Gomez, C., Amon, B., Barahona Rosales, R., Del Prado, A., Lima, M., Oyhantcabal, W., Weerden, T., Widiawati, Y., Bannink, A., & Beauchem, T. (2019). Emissions from livestock and manure management. In Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.spa
dc.relation.referencesGisbert, J., & Bonfillc, X. (2004). Cómo realizar, evaluar y utilizar revisiones sistemáticasy metaanálisis? Upper Gastrointestinal and Pancreatic Diseases Group.spa
dc.relation.referencesGómez, F., & López, J. (2010). Análisis de La Sostenibilidad Agraria Mediante Indicadores Sintéticos. Sociedade Brasileira de Economia, Administração e Sociologia Rural: 1–21. http://www.sober.org.br/palestra/15/430.pdf.spa
dc.relation.referencesGonzález, E., & Schmidt, J. (2012). Regulation of dietary intake and energy balance; factors and mechanisms involved. Nutr. Hosp., 27(6).spa
dc.relation.referencesGoodland, R. (2002). Sustainability: Human, Social, Economic and Environmental. Encyclopedia of Global Environmental Change, 3 p.spa
dc.relation.referencesGoyache, F., Gutiérrez, J. P., Fernández, I., Royo, L. J., & Álvarez, I. (2005). Genetic analysis of days open in beef cattle. Livestock Production Science, 93(3), 283–289. https://doi.org/10.1016/j.livprodsci.2004.10.002spa
dc.relation.referencesGRA. (2018). Reducing greenhouse gas emissions from livestock, best practice and emerging options. Global research alliance. Livestock Research Group.spa
dc.relation.referencesHamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil and Tillage Research, 82(2), 121–145. https://doi.org/10.1016/j.still.2004.08.009spa
dc.relation.referencesHarris, D. (1970). Breeding for Efficiency in Livestock Production: Defining the Economic Objectives. J. Anim. Sci., 30, 860-865.spa
dc.relation.referencesIman Raj Chongtham, Göran Bergkvist, Christine A. Watson, Emil Sandström, J. an B. & I. Ö. (2016). Factors influencing crop rotation strategies on organic farms with different time periods since conversion to organic production. Journal Biological Agriculture & HorticultureBiological Agriculture & Horticulture.spa
dc.relation.referencesIPCC. (2006). Guidelines for National Green House Gas Inventories. Agriculture, Forestry and Land Use (AFOLU). Chapter 10(Vol 4).spa
dc.relation.referencesIPCC. (2014). Anexo II: Glosario [Mach, K.J., S. Planton y C. von Stechow (eds.)]. En: Cambio climático 2014: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambiospa
dc.relation.referencesKatherine, G., Mogollón Miguel, & Jesús, C. (2011). INCIDENCIA DEL TRÁFICO DEL TRACTOR EN LA RESISTENCIA A LA. August. https://doi.org/10.13140/RG.2.1.1265.8726spa
dc.relation.referencesKnapp, J. R., Laur, G. L., Vadas, P. A., Weiss, W. P., & Tricarico, J. M. (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97(6), 3231–3261. https://doi.org/10.3168/jds.2013-7234spa
dc.relation.referencesKonečný, O. (2017). Spatial polarization of agriculture of Czechia during the integration into the European Union [Prostorová polarizace zemĕdĕlství Česka v období začleňování do Evropské unie]. Geografie-Sbornik CGS, 122(3), 257–280. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85032267205&partnerID=40&md5=3569ca877739e4260e903633693dbcedspa
dc.relation.referencesLai, L., & Kumar, S. (2020). A global meta-analysis of livestock grazing impacts on soil properties. PloS One, 15(8), e0236638. https://doi.org/10.1371/journal.pone.0236638spa
dc.relation.referencesLaurenson, S., Monaghan, R., Orchiston, T., & Dalley, D. (2017). Assessing the environmental implications of applying dairy cow effluent during winter using low rate and low depth application methods. New Zealand Journal of Agricultural Research, 60(4), 449–469. https://doi.org/10.1080/00288233.2017.1366344spa
dc.relation.referencesLópez-Ridaura, S., Van Keulen, H., Van Ittersum, M. K., & Leffelaar, P. A. (2005). Multiscale methodological framework to derive criteria and indicators for sustainability evaluation of peasant natural resource management systems. Environment, Development and Sustainability, 7(1), 51–69. https://doi.org/10.1007/s10668-003- 6976-xspa
dc.relation.referencesLopez-Ridaura, S., Vankeulen, H., Vanittersum, M., & Leffelaar, P. (2005). Multiscale methodological framework to derive criteria and indicators for sustainability evaluation of peasant natural resource management systems. Environment, Development and Sustainability, 7, 51–69.spa
dc.relation.referencesLUGO, J., QUINTEROS, G., BACALLAO, J., FERNÁNDEZ, L., SANCHO-GARNIER, H., & SÉGURET, F. (1998). Validación Preliminar y Aplicación de un Instrumento para Medir la Calidad de Vida en Pacientes con Cáncer de Mama. Instituto Nacional de Oncología y Radiobiología, Revista Cu.spa
dc.relation.referencesLush, J. (1945). Animal Breeding Plans. Ames, Iowa: The Iowa State College Press.spa
dc.relation.referencesMarandure, T., Mapiye, C., Makombe, G., & Dzama, K. (2017). Indicator-based sustainability assessment of the smallholder beef cattle production system in South Africa. Agroecology and Sustainable Food Systems, 41(1), 3–29. https://doi.org/10.1080/21683565.2016.1231152spa
dc.relation.referencesMarcos-Martinez, R., Bryan, B. A., Connor, J. D., & King, D. (2017). Agricultural land-use dynamics: Assessing the relative importance of socioeconomic and biophysical drivers for more targeted policy. Land Use Policy, 63, 53–66. https://doi.org/https://doi.org/10.1016/j.landusepol.2017.01.011spa
dc.relation.referencesMasera, O., Astier, M., & Lopez-Ridaura, S. (1999). Sustentabilidad y Manejo de Recursos Naturales. El Marco de Evaluación MESMIS. Grupo Interdisciplinario de Tecnología Rural Apropiada, México. 109 p.spa
dc.relation.referencesMolina, Donney`s, G., Montoya, S., Rivera, J. E., Villegas, G., Chará, J., & Barahona, R. (2015). La inclusión de Leucaena leucocephala reduce la producción de metano de terneras lucerna alimentadas con Cynodon plectostachyus y Megathyrsus maximus. Livestock Research for Rural Development, 27(5).spa
dc.relation.referencesMolina, R. (2015). Estudio de la sostenibilidad en cuatro sistemas ganaderos con diferentes niveles de intensificación mediante dinámica de sistemas. (Tesis de Doctorado), Universidad Nacional de Colombia, palmira.spa
dc.relation.referencesMora Marín, M. A., Ríos Pescador, L., Ríos Ramos, L., & Almario Charry, J. L. (2017). Impacto de la actividad ganadera sobre el suelo en Colombia. Ingeniería y Región, 17, 1. https://doi.org/10.25054/22161325.1212spa
dc.relation.referencesMorales, S., & Ortiz, S. (2018). Productivity and efficiency of specialized dairy farms in the Valley of Cauca (Colombia). Rev. Med. Vet. Zoot., vol.65(no.3).spa
dc.relation.referencesMukesh, D., & Anil Kumar, K. (2007). CHAPTER 7 - Alternate Energy Sources. In Green Chemistry and Engineering (pp. 171–192).spa
dc.relation.referencesMüller, S. (1996). How to measure sustainability: an approach for agriculture and natural resources. San José, CR: GTZ-IICA.spa
dc.relation.referencesMurgueitio, E. (2003). Sistemas agroforestales para la producción Ganadera en Colombia. Pastos y Forrajes, 3.spa
dc.relation.referencesNoguera. (2003). Asociación de Desarrollo Rural Coop V. Aproximación a un Sistema de Indicadores de Sostenibilidad para la Ganadería Ovina en la Provincia de Castellón. Caudiel (Castellón).spa
dc.relation.referencesNRC. (2002). The Scientific Basis for Estimating Air Emissions from Animal Feeding Operations. In The Scientific Basis for Estimating Air Emissions from Animal Feeding Operations,NATIONAL RESEARCH COUNCIL. https://doi.org/10.17226/10391spa
dc.relation.referencesOba, M., & Allen, M. . (2010). Evaluation of the Importance of the Digestibility of Neutral Detergent Fiber from Forage: Effects on Dry Matter Intake and Milk Yield of Dairy Cows. American Dairy Science Association (ADSA).spa
dc.relation.referencesOlesen, I., Groen, A., & Gjerde, B. (2000). Definition of animal breeding goals for sustainable production systems. J. Anim. Sci., 78, 570-582.spa
dc.relation.referencesPeck, S. (2004). Simulation as experiment: a philosophical reassessment for biological modeling. elsevierspa
dc.relation.referencesPerrin, G. (1967). Control de costes por el método GP. Madrid: Ibérico europea de ediciones.spa
dc.relation.referencesPetticrew, M., & Roberts, H. (2006). Systematic Reviews in the Social Sciences. In Systematic Reviews in the Social Sciences. https://doi.org/10.1002/9780470754887spa
dc.relation.referencesPickering, N. K., Chagunda, M. G. G., Banos, G., Mrode, R., McEwan, J. C., & Wall, E. (2015). Genetic parameters for predicted methane production and laser methane detector measurements. Journal of Animal Science, 93(1), 11–20. https://doi.org/10.2527/jas.2014-8302spa
dc.relation.referencesPickering, N. K., Oddy, V. H., Basarab, J., Cammack, K., Hayes, B., Hegarty, R. S., Lassen, J., McEwan, J. C., Miller, S., Pinares-Patino, C. S., & De Haas, Y. (2015). Animal board invited review: Genetic possibilities to reduce enteric methane emissions from ruminants. Animal, 9(9), 1431–1440. https://doi.org/10.1017/S1751731115000968spa
dc.relation.referencesPindyck, R., & Rubinfeld, D. (2001). Microeconomía 5a Edición. Prentice Hall: Ed. Madrid.spa
dc.relation.referencesPitesky, M. E., Stackhouse, K. R., & Mitloehner, F. M. (2009). Chapter 1 Clearing the Air. Livestock’s Contribution to Climate Change. Advances in Agronomy, 103, 1–40. https://doi.org/10.1016/S0065-2113(09)03001-6spa
dc.relation.referencesPruyt, R. (2013). System Dynamics Models for Big Issues: Triple Jump towards Real-World Dynamic Complexity. In (pp. 324).spa
dc.relation.referencesPszczola, M., Rzewuska, S., Mucha, S., & Strabel, T. (2017). Heritability of methane emissions from dairy cows over a lactation measured on commercial farms. Farms. J Anim Sci. 2017 Nov;95(11):4813-4819. Doi: 10.2527/Jas2017.1842. PMID: 29293701; PMCID: PMC6292309.spa
dc.relation.referencesReklewski, Z., Jasiorowski, H., Stolzman, M., Łukaszewicz, M., & Laurans, A. De. (1985). Testing of different strains of friesian cattle in Poland II. Beef performance of male crossbreds of different Friesian cattle strains under intensive feeding conditions. Livestock Production Science, 12(2), 117–129. https://doi.org/https://doi.org/10.1016/0301-6226(85)90085-5spa
dc.relation.referencesRiera-nieves, M., Vila-vals, V., Nieves-crespo, L., & Zabaleta, J. (2011). Características morfológicas de las pezuñas y su relación con el grado y distribución de las claudicaciones en vacas de raza carora. Actas Iberoamericanas de Conservación Animal, 1, 300–303. http://www.uco.es/conbiand/aica/templatemo_110_lin_photo/articulos/2011/Riera 2011_1_300_303.pdfspa
dc.relation.referencesRiera, M., Vila, V., Nieves, L., Perez, M. L., Gavidia, J., & Zabaleta, J. (2011). MORPHOLOGICAL CHARACTERISTICS OF THE HOOVES AND RELATIONSHIP WITH THE GRADE AND DISTRIBUTION OF LAMENESS IN CARORA COW BREED. Actas Iberoamericanas de Conservación Animal.spa
dc.relation.referencesRigby, D., Woodhouse, P., Young, T., & Burton, M. (2001). Constructing a farm level indicator of sustainable agricultural practice. 242–245.spa
dc.relation.referencesRivas, L., & Holmann, F. (2005). Potential economic impact from the adoption of Brachiaria hybrids resistant to spittlebugs in livestock systems of Colombia, Mexico and Central America. Livestock Research for Rural Development, 17(5). https://www.scopus.com/inward/record.uri?eid=2-s2.0- 21744445234&partnerID=40&md5=7bc0fbef7d190e96e793e0ee2aa98930spa
dc.relation.referencesRobbins, S., & Coulter, M. (2005). Administración. Octava edición. México: Pearson educación.spa
dc.relation.referencesRoesch, A., Weisskopf, P., Oberholzer, H., Valsangiacomo, A., & Nemecek, T. (2019). An approach for describing the effects of grazing on soil quality in life-cycle assessment. Sustainability (Switzerland), 11(18). https://doi.org/10.3390/su11184870spa
dc.relation.referencesRuiz, J. F., Rosales, R., & Vergara, D. M. (2017). Sustainability indicators for specialized dairy production: A review [Indicadores de sustentabilidad para lechería especializada: Una revisión]. Livestock Research for Rural Development, 29(1). https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85008970560&partnerID=40&md5=46e148508656501c622d6d606968b98fspa
dc.relation.referencesSadok, W., Angevin, F., & Bergez, J. (2008). Ex ante assessment of the sustainability of alternative cropping systems: implications for using multicriteria decision-aid methods.spa
dc.relation.referencesSAFA. (2013). Sustainability Assessment of Food and Agriculture Systems, INDICATORS Roma: FAO.spa
dc.relation.referencesSAFA. (2014). Anexo II: Glosario [Mach, K.J., S. Planton y C. von Stechow (eds.)]. En: Cambio climático 2014: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el cambio.spa
dc.relation.referencesSánchez, B. (2002). Análisis de Rentabilidad de la empresa, [en línea]. Retrieved from http://www.5campus.com/leccion/anarenta.spa
dc.relation.referencesSandøe, P., Nielsen, B., Christense, L., & Sørensen, P. (1999). Stayin good while playing God: The ethics of breeding farm animals. Anim. Welf., 8, 313-328.spa
dc.relation.referencesSauvenier, X., Bielders, C., Hermy, M., Mathijs, E., Muys, B., Vanclosster, M., Peeters, A., Valckx, J., Van Cauwenbergh, N., Wauters, E., & Bachev. (2005). Framework for assessing sustainability levels in {Belgian} agricultural systems ({SAFE}).spa
dc.relation.referencesSchaffernicht, M. (2009). Indagación de situaciones dinámicas mediante la dinámica de sistemas. In Vol. 1. E. U. D. TALCA (Ed.), (pp. 285).spa
dc.relation.referencesSerway, J. (2008). Fisica,Vol.1spa
dc.relation.referencesShah, A. N., Tanveer, M., Shahzad, B., Yang, G., Fahad, S., Ali, S., Bukhari, M., Tung, Shahbaz Atta Hafeez, A., & Souliyanonh, B. (2017). Soil compaction effects on soil health and cropproductivity: an overview. Environmental Science and Pollution Research, 24, 10056–10067.spa
dc.relation.referencesShibata, M., & Terada, F. (2010). Factors affecting methane production and mitigation in ruminants. Animal Science Journal, 81(1), 2–10. https://doi.org/10.1111/j.1740- 0929.2009.00687.xspa
dc.relation.referencesSingleton, P. L., & Addison, B. (1999). Effects of cattle treading on physical properties of three soils used for dairy farming in the Waikato, North Island, New Zealand. Australian Journal of Soil Research, 37, 891–902.spa
dc.relation.referencesSouza, M. De, & Junior, D. (2003). A Soil Mechanics Approach to Study Soil Compaction and Traffic Effect on the Preconsolidation Pressure of Tropical Soils. March, 3–21.spa
dc.relation.referencesSterman, J. (2000a). Business Dynamics Systems Thinking and Modeling for a Complex World. Jeffrey J. Shelsfud United States of America.spa
dc.relation.referencesSterman, J. (2000b). Business Dynamics Systems Thinking and Modeling for a Complex World United States of America: Jeffrey J. Shelsfud.spa
dc.relation.referencesUSDA. (2017). National Agricultural statistics service, Milk production.spa
dc.relation.referencesVan Amstel, A. (2005). Integrated assessment of climate change with reduction of methane emissions. Environ Sci, 2(2-3), 315-326.spa
dc.relation.referencesVan Calker KJ, PBM, B., de Boer IJM, GWJ, G., & RBM, H. (2006). Modelling worker physical health and societal sustainability at farm level: an application to conventional and organic dairy farming.spa
dc.relation.referencesVan der Werf, Kanyarushoki, C., & Corson, M. (2009). An operational method for the evaluation of resource use and environmental impacts of dairy farms by life cycle assessmentspa
dc.relation.referencesVan Vleck, L. (1993). Selection Index and introduction to mixed model methods for genetic improvement of animals: the green book. Boca Raton, FL: CRC Press, Inc.spa
dc.relation.referencesVergara, W. V. (2010). La ganadería extensiva y el problema agrario. El reto de un modelo de desarrollo rural sustentable para Colombia. Revista Ciencia Animal, 3, 45–53. http://revistas.lasalle.edu.co/index.php/ca/article/view/350spa
dc.relation.referencesVoora, V., & Thrift, C. (2010). Using Emergy to Value Ecosystem Goods and Services. Alberta Environment. Weller, J. (1994). Economic Aspects of Animal Breeding. London , UK: Chapman & Hall.spa
dc.relation.referencesWall, E., Simm, G., & Moran, D. (2010). Developing breeding schemes to assist mitigation of greenhouse gas emissions. Animal, 4(3), 366–376spa
dc.relation.referencesWeller, J. (1994). Economic Aspects of Animal Breeding. London , UK: Chapman & Halspa
dc.relation.referencesWilton, J. (1979). The use of production systems analysis in developing mating plans and selection goals. J. Anim. Sci., 49(3), 809-816.spa
dc.relation.referencesWolstenholme, E. (1990). System Enquiry-A System Dynamics Approach. . Chichester,England: John Wiley and Sons.spa
dc.relation.referencesZhou, Y., Xiao, X., Zhang, G., Wagle, P., Bajgain, R., Dong, J., Jin, C., Basara, J. B., Anderson, M. C., Hain, C., & Otkin, J. A. (2017). Quantifying agricultural drought in tallgrass prairie region in the U.S. Southern Great Plains through analysis of a water-related vegetation index from MODIS images. Agricultural and Forest Meteorology, 246, 111–122. https://doi.org/https://doi.org/10.1016/j.agrformet.2017.06.007spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.lembGenética animal
dc.subject.lembGanado vacuno
dc.subject.proposalSimulationeng
dc.subject.proposalGenetic progresseng
dc.subject.proposalCompactioneng
dc.subject.proposalRearing systemeng
dc.subject.proposalModeleng
dc.subject.proposalSystem dynamicseng
dc.subject.proposalVensimeng
dc.subject.proposalCattleeng
dc.subject.proposalGenetic improvementeng
dc.subject.proposalProgreso genéticospa
dc.subject.proposalSoileng
dc.subject.proposalSustainabilityeng
dc.subject.proposalGanadospa
dc.subject.proposalSimulaciónspa
dc.subject.proposalVensimspa
dc.subject.proposalSistema de criaspa
dc.subject.proposalMejoramiento genéticospa
dc.subject.proposalCompactaciónspa
dc.subject.proposalSostenibilidadspa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
dc.description.degreenameDoctor(a) en Ciencias Agrariasspa
dc.publisher.programDoctorado en Ciencias Agrariasspa
dc.description.researchgroupMejora animalspa
dc.description.researchgroupDinámica de sistemasspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem